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1 Introduction

In this paper, we consider the nonlinear programming problem

minimize
x∈IRn

f(x) (1.1)

subject to the general constraints

ci(x) = 0, i = 1, . . . , m, (1.2)

and the simple bounds
l ≤ x ≤ u. (1.3)

We assume that the region B = {x ∈ IRn | l ≤ x ≤ u} is non-empty and may
be infinite. Furthermore, we assume that

AS1. f(x) and the ci(x) are twice continuously differentiable for all x in B.

The exposition is conveniently simplified by taking the lower bounds as
identically equal to zero and the upper bound as infinity. Thus, in most of
what follows, B = {x ∈ IRn | x ≥ 0}. The modification required to handle more
general bounds is indicated at the end of the paper.

The approach we intend to take is that of () and is based upon incorporating
the equality constraints via an augmented Lagrangian function whilst handling
upper and lower bounds directly. The sequential, approximate minimization of
the augmented Lagrangian function is performed in a trust region framework
such as that proposed by Conn et al.1988a ().

Our aim in this paper is to consider how these two different algorithms
mesh together. In particular, we aim to show that ultimately very little work is
performed in the iterative sequential minimization algorithm for every iteration
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of the outer augmented Lagrangian algorithm. This is contrary to most analyses
of sequential penalty function and augmented Lagrangian methods in which the
effort required to solve the inner iteration subproblems is effectively disregarded,
the analysis concentrating on the convergence of the outer iteration (see for
instance the book by Bertsekas1982, . An exception to this is the sequential
penalty function method analyzed by Gould1989, ).

This work was primarily motivated by observations that the authors made
when testing their large-scale nonlinear programming package LANCELOT (see,
Conn et al.1991b, ), which is an implementation of the algorithms discussed in
this paper. It was often apparent that only a single iteration of the inner it-
eration subroutine SBMIN was ultimately required for every outer iteration of
the sequential augmented Lagrangian program AUGLG. While the conditions
required in this paper to turn this observation to a proven result are rela-
tively strong (and we feel probably about as weak as is possible), the package
frequently exhibits the same behaviour on problems which violate our assump-
tions.

We define the concepts and notation that we shall need in section 2. Our
algorithm is fully described in section 3 and analyzed in sections 4 and 5.

2 Notation

Let g(x) denotes the gradient ∇xf(x) of f(x). Similarly, let A(x) denote the
Jacobian of c(x), where

c(x) = [c1(x), · · · , cm(x)]T . (2.1)

Thus
A(x)T = [∇c1(x), · · ·∇cm(x)]. (2.2)

We define the Lagrangian and augmented Lagrangian functions as

ℓ(x, λ) = f(x) +
m

∑

i=1

λici(x), (2.3)

and

Φ(x, λ, µ) = f(x) +
m

∑

i=1

λici(x) +
1

2µ

m
∑

i=1

ci(x)2 (2.4)

respectively. We note that ℓ(x, λ) is the Lagrangian with respect to the ci

constraints only. Let gℓ(x, λ) and Hℓ(x, λ) respectively denote the gradient,
∇xℓ(x, λ), and Hessian, ∇xxℓ(x, λ), of the Lagrangian.

We denote the non-negativity restrictions by

x ∈ B = {x ∈ IRn | x ≥ 0}. (2.5)

We will make much use of the projection operator defined componentwise by,

(P [x, l, u])i =











li if xi ≤ li
ui if xi ≥ ui

xi otherwise.
(2.6)
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This operator projects the point x onto the region defined by the simple bounds
(1.3). Let

P (x, v, l, u) = x − P [x − v, l, u]. (2.7)

Furthermore, define P [x] = P [x, 0,∞] and P (x, v) = P (x, v, 0,∞).
Let ∈ B and be given values of x and λ. If h(x, λ, . . .) is any function of x,

λ, . . ., we shall write h(k) as a shorthand for h(, , . . .).
Now, let N = {1, . . . , n}. For any x(k) we have two possibilities for each com-

ponent x
(k)
i , i = 1, . . . , n, namely (i) 0 ≤ x

(k)
i ≤ (∇xΦ(k))i or (ii) (∇xΦ(k))i <

x
(k)
i . We shall call all x

(k)
i that satisfy (i) dominated variables while the remain-

ing x
(k)
i are floating variables. It is important to notice that, as ∈ B

(P (,∇x))i =i whenever i is dominated (2.8)

while
(P (,∇x))i = (∇x)i otherwise. (2.9)

If x∗ is the limit point of the (sub-)sequence {x(k)}, k ∈ K, we partition N
into four index sets related to the two possibilities (i) and (ii) above and the
corresponding x∗. We define

D1
def
= {i | x

(k)
i are dominated for all k ∈ K sufficiently large },

F1
def
= {i | x

(k)
i are floating for all k ∈ K sufficiently large and x∗

i > 0},

F2
def
= {i | x

(k)
i are floating for all k ∈ K sufficiently large but x∗

i = 0} and

F3
def
= N \ (D1 ∪ F1 ∪ F2) .

(2.10)
We will use the notation that if J1 and J2 are any subsets of N and H is an n
by n matrix, H[J1,J2] is the matrix formed by taking the rows and columns of
H indexed by J1 and J2 respectively. Likewise, if A is an m by n matrix, A[J1]

is the matrix formed by taking the columns of A indexed by J1.
We denote the (appropriately dimensioned) identity matrix by I; its i-th

column is ei. A vector of ones is denoted by e.
We will use a variety of vector and subordinate matrix norms. We shall only

consider norms ‖ · ‖z which are consistent with the two-norm, that is, norms
which satisfy the inequalities

‖v‖z ≤ a
1
2
0 ‖v‖2 and ‖v‖2 ≤ a

1
2
0 ‖v‖z (2.11)

for all vectors v and some constant a0 ≥ 1, independent of z. It then follows
that, for any pair of two-norm-consistent norms ‖ · ‖y and ‖ · ‖z,

‖v‖z ≤ a0‖v‖y and ‖v‖y ≤ a0‖v‖z. (2.12)

Following (), we now describe an algorithm for solving (1.1), (1.2) and (2.5).
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3 Statement of the algorithm

In order to solve the problem (1.1), (1.2) and (2.5), we consider the following
algorithmic model.

Algorithm 3.1 [Outer Iteration Algorithm]

step 0 : [Initialization] The positive constants η0, ω0, µ0, τ < 1, γ0 < 1,
αω, βω, αη, βη, small positive convergence tolerances ω∗ and η∗, and the
vector λ(0) ∈ IRm are chosen. The two-norm-consistent norms ‖ · ‖p and
‖ · ‖c are specified. We require that

αη < min(1, αω) and βη < min(1, βω). (3.1)

Set µ(0) = µ0, α(0) = min(µ(0), γ0), ω(0) = ω0(α
(0))αω , η(0) = η0(α

(0))αη

and k = 0.

step 1 : [Inner Iteration] Find x(k) ∈ B such that

‖P (x(k),∇xΦ(k))‖p ≤ ω(k) (3.2)

If
‖c(x(k))‖c ≤ η(k) (3.3)

execute step 2. Otherwise, execute step 3.

step 2 : [Test for convergence and update Lagrange multipliers] If

‖P (x(k),∇xΦ(k))‖p ≤ ω∗ and ‖c(x(k))‖c ≤ η∗, (3.4)

stop. Otherwise, set

α(k+1) = min(µ(k+1), γ0),

η(k+1) = η(k)(α(k+1))βη ,

ω(k+1) = ω(k)(α(k+1))βω ,

λ(k+1) = λ(k) + c(x(k))/µ(k),

µ(k+1) = µ(k),

(3.5)

increment k by one and go to step 1.

step 3 : [Decrease penalty parameter if constraints too large]

µ(k+1) = τµ(k),

α(k+1) = min(µ(k+1), γ0),

η(k+1) = η0(α
(k+1))αη ,

ω(k+1) = ω0(α
(k+1))αω ,

(3.6)

increment k by one and go to step 1.

end of Algorithm 3.1
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We shall call the vector P (x(k),∇xΦ(k)) the projected gradient of the aug-
mented Lagrangian or the projected gradient for short. The norms ‖ · ‖p and
‖ · ‖c are normally chosen to be either two or infinity norms.

Our decreasing sequence of µ(k)s is given by µ(k) = µ0(τ)kj , but any mono-
tonic decreasing sequence of µ(k)’s converging to zero if step 3 is executed an
infinite number of times, will suffice. It is also irrelevant, in theory, as to how
we find a suitable point satisfying (3.2). However, from a practical perspec-
tive, a suitable point is found by an iterative procedure. In our algorithm, it
is normal to start this inner iteration from, or close to, the solution to the last
one. Indeed, from the point of view of the results we are about to establish,
this is crucial. Such a starting point is desirable as function and derivative
information from the conclusion of one inner iteration may be passed as input
to the next.

The main purpose of this article is to show that asymptotically we take one
inner iteration per outer iteration. More specifically, under certain assumptions,
we first show that (3.3) is eventually satisfied at each outer iteration. We then
show that, under additional assumptions, it is possible to satisfy the convergence
test (3.2) after a single iteration of the algorithm given in ().

The specific inner iteration algorithm we shall consider is as follows:
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Algorithm 3.2 [Inner Iteration Algorithm]

step 0 : [Initialization] The positive constants µ < η < 1 and γ0 ≤ γ1 <
1 ≤ γ2 are given. The starting point, x(k,0), a nonnegative convergence
tolerance, ω(k), an initial trust region radius, ∆(k,0), a symmetric ap-
proximation, B(k,0), to the Hessian of the Lagrangian and a two-norm-
consistent norm ‖ · ‖p are specified. Compute Φ(x(k,0), , ) and its gradient.
Set the inner iteration counter j = 0.

step 1 : [Test for convergence] If

‖P (x(k,j),∇xΦ(k,j))‖p ≤ ω(k) (3.7)

set = x(k,j) and stop.

step 2 : [Significantly reduce a model of the augmented Lagrangian function]
Construct a quadratic model,

m(k,j)(x + s)
def
= Φ(x, , ) + sT∇xΦ(x, , )

+ 1
2
sT (B(k,j) + 1

µ
A(x)T A(x))s,

(3.8)

of Φ(x+ s, , ). Compute a step s(k,j) which significantly reduces the value
of the model, m(k,j)(x(k,j) + s).

step 3 : [Compute a measure of the effectiveness of the step] Compute
Φ(x(k,j) + s(k,j), , ) and the ratio

ρ(k,j) =
Φ(x(k,j), , ) − Φ(x(k,j) + s(k,j), , )

m(k,j)(x(k,j)) − m(k,j)(x(k,j) + s(k,j))
. (3.9)

step 4 : [Accept or reject the step] Set

x(k,j+1) =

{

x(k,j) + s(k,j) if ρ(k) > µ

x(k,j) otherwise,
(3.10)

and

∆(k,j+1) =











γ
(k,j)
0 ∆(k,j) if ρ(k,j) ≤ µ

if µ < ρ(k,j) < η

γ
(k,j)
2 ∆(k,j) otherwise,

(3.11)

where γ
(k,j)
0 ∈ [γ0, 1) and γ

(k,j)
2 ∈ [1, γ2].

step 5 : [Updating] If necessary, compute the gradient of Φ(x(k,j+1), , ) and
a further approximation to the Hessian of the Lagrangian B(k,j+1). Incre-
ment the inner iteration counter j by one and go to step 1.

end of Algorithm 3.2
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There are a number of possible ways of choosing γ
(k,j)
0 and γ

(k,j)
2 in step 4.

The simplest is merely to pick γ
(k,j)
0 = γ0 and γ

(k,j)
2 = γ2; other alternatives are

discussed by ().
It remains to give a description of the starting point, initial trust region ra-

dius and approximation to the Hessian of the Lagrangian, and of the calculation
that is performed in step 2 of Algorithm 3.2.

Let 0 < θ < 1. We choose

x
(k,0)
i =

{

0 if 0 ≤ x
(k−1)
i ≤ θ(∇xΦ(k−1))i

x
(k−1)
i otherwise.

(3.12)

Thus variables which are significantly dominated at the end of the (k − 1)-
st iteration are set to their bounds while the remainder are left unaltered.
This choice is made since, under a suitable non-degeneracy assumption (AS7
in section 4), the set of dominated variables is asymptotically the same as the
set of variables which lie on their bounds (see, , , Theorem 5.4). Our choice of
x(k,0) then encourages subsequent iterates to encounter their asymptotic state
as soon as possible. We also pick ∆(k,0) so that

∆(k,0) ≥ κ‖P (x(k,0),∇xΦ(k,0))‖ζ
p (3.13)

for some positive constants κ and ζ < 1 (typical values might be κ = 1 and
ζ = 0.9). This value is chosen so that the trust region does not interfere with the
asymptotic convergence of the algorithm, while providing a reasonable starting
value in the earlier stages of the method. Finally B(k,0) is taken to be any
sufficiently good symmetric approximation to the Hessian of the Lagrangian
function at . We qualify what we mean by “sufficiently good” in the next
section but suffice it to say that exact second derivatives satisfy this property
and are often to be recommended.

The calculation in step 2 is performed in two stages.

1. Firstly, the so-called generalized Cauchy point, xC(k,j) ≡ x(k,j) +sC(k,j), is
determined. This is merely an approximation to the first local minimizer
of the quadratic model, m(k,j)(x + s), along the Cauchy arc. The Cauchy
arc is the path x + s, where

s = s(k,j)(t)
def
= P [x(k,j) − t∇xΦ(x(k,j+1), , ), l, u] − x(k,j), (3.14)

as the parameter t increases from 0, which finishes when the path first
intersects the boundary of the trust region,

‖s‖t ≤ ∆(k,j), (3.15)

for some two-norm-consistent norm ‖ · ‖t. Thus the Cauchy arc is simply
the path which starts in the steepest descent direction for the model but
which is subsequently “bent” to follow the boundary of the “box” region
defined by the feasible region (2.5) (or, in general, (1.3)) and which stops
on the boundary of the trust region (3.15). The two or infinity norm is
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normally picked, the latter having some advantages as the trust region is
then aligned with the feasible region (2.5).

The method proposed by () calculates the exact generalized Cauchy point
by marching along the Cauchy arc until either the trust region boundary
is encountered or the model starts to increase. An alternative method
by Moré1988 () finds an approximation sC(k,j) = s(k,j)(tC(k,j)) which is
required to lie within the trust-region and to satisfy the Goldstein-Armijo
type conditions

m(k,j)(x(k,j)+s(k,j)(tC(k,j))) ≤ m(k,j)(x(k,j))+µ1s
(k,j)(tC(k,j))T∇xΦ(x(k,j), λ(k), µ(k))

(3.16)
and

tC(k,j) ≥ ν1 or tC(k,j) ≥ ν2t
L(k,j), (3.17)

where tL(k,j) > 0 is any value for which

m(k,j)(x(k,j)+s(k,j)(tL(k,j))) ≥ m(k,j)(x(k,j))+µ2s
(k,j)(tL(k,j))T∇xΦ(x(k,j), λ(k), µ(k))

(3.18)
or

‖s(k,j)(tL(k,j))‖ ≥ ν3∆
(k,j), (3.19)

and the positive constants µ1, µ2, ν1, ν2 and ν3 satisfy the restrictions
µ1 < µ2 < 1, ν2 < 1 and ν3 < 1. Condition (3.16) ensures that a sufficient
reduction in the model takes place at each iteration while condition (3.17)
is needed to guarantee that every step taken is non-negligible. Moré
shows that it is always possible to pick such a value of tC(k,j) using a
backtracking linesearch, starting on or near to the trust region boundary.
Similar methods have been proposed by Calamai and Moré1987 (), Burke
and Moré1988 (), Toint1988 () and Burke et al.1990 ().

2. Secondly, we pick s(k,j) so that x(k,j) + s(k,j) lies within (2.5), ‖s(k,j)‖t ≤
β1∆

(k,j) and

m(k,j)(x(k,j)) − m(k,j)(x(k,j) + s(k,j))

≥ β2(m
(k,j)(x(k,j)) − m(k,j)(x(k,j) + sC(k,j))) ≥ 0

(3.20)

for some positive β1 ≥ 1 and β2 ≤ 1. In fact, we typically choose β1 =
β2 = 1, in which case we are merely requiring that the computed step gives
a value of the model which is no larger than the value at the generalized
Cauchy point.

In order to accelerate the convergence of the method, it is normal to try
to bias the computed step towards the Newton direction.

The convergence analysis given by () for Algorithm 3.1 indicates that it
is desirable to construct improvements beyond the Cauchy point only in the
subspace of variables which are free from their bounds at the Cauchy point. In
particular, with such a restriction and with a suitable non-degeneracy assump-
tion, it is then shown that the set of variables which are free from their bounds
at the solution is determined after a finite number of iterations. This has the
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advantage of allowing one to analyze the asymptotic convergence rate of the
method purely as if it were an unconstrained calculation, merely by focusing
on the set of free variables.

Let F be a subset of N and let D = N \ F . Furthermore, let

H(k,j) def
= B(k,j) +

1

µ(k)
A(x(k,j))T A(x(k,j)) (3.21)

denote the composite approximation to the Hessian of the augmented La-
grangian. The specific algorithm we shall consider may be summarized as
follows:

Algorithm 3.3 [Algorithm to significantly reduce the model]

step 0 : [Initialization] Select positive constants ν < 1, ξ < 1, β1 ≥ 1 and
β2 ≤ 1.

step 1 : [Calculate the generalized Cauchy point] Calculate an approx-
imation to the the generalized Cauchy point xC(k,j) = x(k,j) +sC(k,j) using
one of the previously mentioned techniques. Compute the set of variables,
FC(k,j), which are free from their bounds at xC(k,j). Set x = xC(k,j),
s = sC(k,j) and F = FC(k,j).

step 2 : [Further improve the model] Let C(β1) = S
⋂

T (β1), where

S = {s[F ] | x(k,j) + s ∈ B and s[D] = s
C(k,j)
[D] } (3.22)

and

T (β1) = {s[F ] | ‖s‖t ≤ β1∆
(k,j) and s[D] = s

C(k,j)
[D] }. (3.23)

If s[F ] lies on the boundary of T (β1), set s(k,j) = s and stop(1). Other-
wise, recompute s[F ] so that (3.20) is satisfied and either s[F ] lies strictly
interior to C(β1) with

‖H
(k,j)
[F ,F ]s[F ] + (∇xΦ

(k,j)
[F ] + H

(k,j)
[F ,D]s[D])‖p

≤ min(ν, ‖P (x(k,j),∇xΦ(k,j))‖ξ
p) · ‖P (x(k,j),∇xΦ(k,j))‖p

(3.24)

or s[F ] lies on the boundary of C(β1). Reset x[F ] to x[F ] + s[F ].

step 3 : [Test for convergence] If s[F ] lies strictly interior to C(β1) and
(3.24) is satisfied or if it is decided that sufficient passes have been made,
set s(k,j) = s and stop. Otherwise remove all of the indices in F for which
|s[F ]i| lies on the boundary of S and perform another pass by returning to
step 2.

end of Algorithm 3.3

(1)If ‖ · ‖t is the infinity norm, it is possible to transfer components of F which lie on the

trust-region boundary to D and to continue.
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In step 2 of this method, the value of s[F ] would normally be computed
as the aggregate step after a number of Conjugate Gradient (CG) iterations,
where CG is applied to minimize the model in the subspace defined by the free
variables. The CG process will end when either a new bound is encountered or
the convergence test (3.24) is satisfied. Algorithm 3.3 is itself finite as the num-
ber of free variables at each pass of step 2 is strictly monotonically decreasing.
See the paper by Conn et al.1988b () for further details.

4 Convergence analysis

We wish to analyze the asymptotic behaviour of Algorithm 3.1, that is in the
case where ω∗ = η∗ = 0. We require the following additional assumptions.

AS2. The iterates generated by Algorithm 3.1 all lie within a closed bounded
domain Ω.

AS3. The matrix A()[F1] is of full rank at any limit point of the sequence
generated by Algorithm 3.1.

Under these assumptions we have the following result.

Theorem 4.1 [, , Theorem 4.4 ] Assume that AS1–AS3 hold, that is a limit
point of the sequence {} generated by Algorithm 3.1 and that

def
= +c()/. (4.1)

Then is a Kuhn-Tucker (first order stationary) point for (1.1), (1.2) and (2.5)
and the corresponding subsequences of {} and {∇x} converge to a set of La-
grange multipliers, , and the gradient of the Lagrangian, gℓ(, ), for the problem,
respectively.

Now consider the following further assumptions.

AS4. The second derivatives of the functions f(x) and ci(x) are Lipschitz con-
tinuous at all points within Ω.

AS5. Suppose that (, ) is a Kuhn-Tucker point for the problem (1.1), (1.2) and
(2.5), and

J1 = {i | (gℓ(, ))i = 0 and i > 0},
J2 = {i | (gℓ(, ))i = 0 and i = 0}.

(4.2)

Then we assume that the Kuhn-Tucker matrix
[

Hℓ(, )[J ,J ] A()T
[J ]

A()[J ] 0

]

(4.3)

is non-singular for all sets J made up from the union of J1 and any subset
of J2.

AS6. Algorithm 3.1 has a single limit point, .
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Under these additional assumptions, we are able to infer the following result.

Theorem 4.2 [, , Theorems 5.3 and 5.5] Assume that AS1, AS3—AS6 hold.
Then there is a constant > 0 such that the penalty parameter generated by
Algorithm 3.1 satisfies = for all k sufficiently large. Furthermore, and satisfy
the bounds

‖ − ‖p ≤ ax()+k and ‖ − ‖p ≤ aλ()+k, (4.4)

where
def
= min(, γ0) ≤, (4.5)

for the two-norm-consistent norm ||.||p and some positive constants ax and aλ.

We shall now investigate the behaviour of Algorithm 3.1 once the penalty
parameter has converged to its asymptotic value, . There is no loss of generality
in assuming that we restart the algorithm from the point which is reached when
the penalty parameter is reduced for the last time. We shall call this iteration
k = 0 and will start with µ(0) =. By construction, (3.3) is satisfied for all k and
the updates (3.5) are always performed. Moreover,

= ()+k and = ()+k. (4.6)

We require the following extra assumptions.

AS7. The set
J2 = {i | gℓ(, )i = 0 and i = 0} = ∅. (4.7)

AS8. If J1 is defined by (4.2), the approximations B(k,0) satisfy

‖(B(k,0) −∇xxℓ(, ))[J1,J1]s
(k,0)
[J1] ‖p ≤ υ‖s

(k,0)
[J1] ‖

1+ς
p , (4.8)

for some positive constants υ and ς and all k sufficiently large.

AS9. Suppose that (, ) is a Kuhn-Tucker point for the problem (1.1), (1.2)
and (2.5), and that J1 is defined by (4.2). Then we assume that the
second derivative approximations B(k,0) have a single limit, and that the
perturbed Kuhn-Tucker matrix

[

[J1,J1] A()T
[J1]

A()[J1] −I

]

(4.9)

is non-singular and has precisely m negative eigenvalues.

Assumption AS7 is often known as the strict complementary slackness condi-
tion. We observe that AS8 is closely related to the necessary and sufficient
conditions for superlinear convergence of the inner iterates given by Dennis and
Moré1974 (). We also observe that AS9 is entirely equivalent to requiring that
the matrix

[J1,J1] +
1
A()T

[J1]A()[J1] (4.10)
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is positive definite (see, for instance, Gould1986, ). The uniqueness of the
limit point in AS9 can also be relaxed by requiring that (4.10) has its smallest
eigenvalue uniformly bounded from below by some positive quantity for all limit
points of the sequence B(k,0). Moreover, (, Proposition 2.4) has shown that
AS5 and AS7 guarantee AS9 provided that is sufficiently small. Although we
shall merely assume that AS9 holds in this paper, it is of course possible to
try to encourage this eventuality. We might, for instance, insist that step 3 of
Algorithm (3.1) is executed rather than step 2 so long as the matrix H(k,0) is
not positive definite. This is particularly relevant if exact second derivatives
are used.

We now show that if we perform the step calculation for Algorithm 3.2
using Algorithm 3.3, a single iteration of Algorithm 3.2 suffices to complete an
iteration of Algorithm 3.1 when k is sufficiently large. Moreover, the solution
of one inner-iteration subproblem, x(k−1) and the shifted starting point for the
next inner iteration (3.12) are asymptotically identical. We do this by showing
that, after a finite number of iterations,

(i) moving to the new starting point does not significantly alter the norms of
the projected gradient or constraints. Furthermore, the status of each
variable (floating or dominated) is unchanged by the move;

(ii) the generalized Cauchy point xC(k,0) occurs before the first “breakpoint”
along the Cauchy arc — the breakpoints are the values of t > 0 at which
the Cauchy arc changes direction as problem or trust region bounds are
encountered. Thus the set of variables which are free at the start of the
Cauchy arc x(k,0) and those which are free at the generalized Cauchy point
are identical;

(iii) any step which satisfies (3.24) also satisfies s[F1] lies strictly interior to
C(β1). Thus a single pass of step 2 of Algorithm 3.3 is required;

(iv) the step s(k,0) is accepted in step 4 of Algorithm 3.1;

(v) the new point x(k,1) satisfies the convergence test (3.7); and

(vi) x(k+1,0) =.

We have the following theorem.

Theorem 4.3 Assume that assumptions AS1,AS3–AS9 hold and that the con-
vergence tolerances and satisfy the extra condition

< (1 + min(ξ, ς)). (4.11)

Then for all k sufficiently large, a single inner iteration of Algorithm 3.2, with
the step computed from Algorithm 3.3, suffices to complete an iteration of Al-
gorithm 3.1. Moreover, the solution to one inner iteration subproblem provides
the starting point for the next without further adjustment, for all k sufficiently
large.

12



Proof. Recall, we have used Theorem 4.2 to relabel the sequence of iterates
so that

‖P (,∇xΦ(, , ))‖p ≤ ()+k (4.12)

and
‖c()‖c ≤ ()+k (4.13)

for all k ≥ 0.
We shall follow the outline given above.

(i) Status of the starting point. The non-degeneracy assumption AS7
ensures that for all k sufficiently large, each variable belongs exclusively to one
of the sets F1 and D1 (see , , Theorem 5.4); moreover,

gℓ(, )i = 0 and i > 0 for all i ∈ F1 (4.14)

and

i = 0 and gℓ(, )i > 0 for all i ∈ D1. (4.15)

As one of i and ∇xi converges to zero while its partner converges to a
strictly positive limit for each i (assumption AS7), we may define nontrivial
regions which separate the two sequences for all k sufficiently large. Let

ǫ =
θ

1 + θ
min
j∈N

max(j , gℓ(, )j) > 0, (4.16)

where θ is as in (3.12). Then there is an iteration k0 such that for variables in
F1,

|i −i | ≤ ǫ and |∇xi| ≤ ǫ, (4.17)

while for those in D1,

|i| ≤ ǫ and |∇xi − gℓ(, )i|,≤ ǫ (4.18)

for all k ≥ k0. Hence, for those variables in D1, (4.16) and (4.18) give that

i ≤ ǫ ≤ θ[minj∈N max[j , gℓ(, )j ] − ǫ]
≤ θ[gℓ(, )i − ǫ] ≤ θ(∇x)i.

(4.19)

Thus, by definition (3.12), i = 0 for each i ∈ D1 when k ≥ k0. Similarly, when
i ∈ F1 and k ≥ k0, i > θ(∇x)i and hence, using (3.12), i =i.

We now consider the starting point for the next inner iteration in detail.
Firstly, combining (2.8), (2.11) and (3.12), we have that

‖ − ‖z ≤ a0‖P (,∇xΦ(, , ))‖p (4.20)

for any two-norm-consistent norm ‖.‖z. We may bound ‖c()‖p using the inte-
gral mean value theorem (see, eg, Dennis and Schnabel1983, , page 74), the
boundedness of A(x) (assumptions AS1 and AS2) and inequalities (2.12), (3.1),
(4.12), (4.13) and (4.20) to obtain

‖c()‖p ≤ a0‖c()‖c + ‖
∫ 1
0 A(x(s))ds‖p‖ − ‖p

≤ a0()
+k + a1a0()

+k

≤ a0(1 + a1/)()+k

(4.21)
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where x(s)
def
= +s(−) and a1 is an upper bound on ‖A(x)‖ within Ω.

Now consider the variables whose indices i lie in F1 for k ≥ k0. Firstly,
(3.12), (4.16) and (4.17) show that

i =i≥
i

1 + θ
> 0. (4.22)

We next bound |∇xΦ(, , )i|. Again using the integral mean value theorem,
the convergence of ≡ λ(k+1) to (Theorem 4.1), the boundedness of the Hessian
of the Lagrangian (with bounded multiplier estimates) and the constraint Ja-
cobian within Ω (assumptions AS1 and AS2) and the inequalities (2.12), (4.12)
and (4.20), we obtain

|∇xΦ(, , )i| ≤ |∇xΦ(, , )i| + ‖ − ‖2·

|eT
i

∫ 1
0 (Hℓ(x(s), ) + 1A(x(s))T A(x(s)))ds|

≤ a0(1 + a2 + a2
1/)()+k,

(4.23)

where a2 is an upper bound on the norm of the Hessian of the Lagrangian (with
bounded multiplier estimates) within Ω. We now combine the identity

∇xΦ(, λ(k+1), ) = ∇xΦ(, λ(k), ) + A()T c()/ (4.24)

with (2.12), (3.1), (4.5), (4.21) and (4.23) to derive the inequality

|∇xΦ(, λ(k+1), )i| ≤ |∇xΦ(, , )i|
+a0‖∇xci()‖p‖c()‖p/

≤ a0(1 + a2 + a2
1/)()+k

+a2
0a1(1 + a1ω0/η0)()

−1+k

≤ a3()
−1+k,

(4.25)

where a3
def
= a0(1+a2+a2

1(1+a0))+a2
0a1. As k increases, the right-hand-side of

the inequality (4.25) converges to zero. Thus for k sufficiently large, i is floating
for each i ∈ F1 and (2.9) and (4.25) imply that

|P (,∇xΦ(, λ(k+1), ))i| = |∇xΦ(, λ(k+1), )i| ≤ a3()
−1+k. (4.26)

Conversely, consider the variables which lie in D1 for k ≥ k0. We then have
that

|∇xΦ(, , )i −∇xΦ(, , )i|

≤ ‖ − ‖2 · |
∫ 1
0 (Hℓ(x(s), ) + 1A(x(s))T A(x(s)))ids|

≤ a0(a2 + a2
1/)()+k

(4.27)

using the same tools that we used to obtain (4.23). Then, combining (2.12),
(3.1), (4.5), (4.21), (4.24) and (4.27) we obtain the inequality

|∇xΦ(, λ(k+1), )i −∇xΦ(, , )i|
≤ a0(a2 + a2

1/)()+k + a0a1(1 + a1ω0/η0)()
−1+k ≤ a4()

−1+k,
(4.28)

where a4
def
= a0(a2 + 2a2

1) + a0a1. Thus, for sufficiently large k the right-hand-
side of (4.28) can be made arbitrarily small. Combining this result with (4.18)
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and the identity i = 0, we see that i is dominated for each i ∈ D1 and (2.8) and
(4.28) imply that

P (,∇xΦ(, λ(k+1), ))i =i= 0. (4.29)

Therefore, using (2.9), (2.12), (4.26) and (4.29), we have

‖P (,∇xΦ(, λ(k+1), ))‖p = ‖∇xΦ(, λ(k+1), )[F1]‖p ≤ a5()
−1+k, (4.30)

for all k sufficiently large, where a5
def
= a0a3‖e[F1]‖2.

(ii) The generalized Cauchy point. We consider the Cauchy arc emanating
from . We have shown that the variables in D1 are on their bounds; the re-
lationships (4.15), (4.18) and (4.28) imply that ∇xΦ(, λ(k+1), )i > 0 and hence
that s(k+1,0)(t)i = 0 for all t > 0 and i ∈ D1. Thus the variables in D1 remain
fixed on the bounds throughout the first inner iteration and

s
(k+1,0)
[D1] = 0 (4.31)

for all k sufficiently large.
The remaining variables, those indexed by F1, are free from their bounds.

The set J1 in assumption AS9 is identical to F1 and under this assumption the
matrix (4.10) is positive definite with extreme eigenvalues 0 < λmin ≤ λmax,
say. The definition (3.12) and inequalities (2.8), (2.9) and (3.2) imply that
converges to . Thus the matrix

H
(k+1,0)
[F1,F1] = B

(k+1,0)
[F1,F1] +

1
A()T

[F1]A()[F1] (4.32)

is also positive definite with extreme eigenvalues satisfying

0 < 1
2
λmin ≤ λ

(k+1,0)
min ≤ λ(k+1,0)

max ≤ 2λmax, (4.33)

say, for all sufficiently large k. Hence the model (3.8) is a strictly convex function
in the subspace of free variables during the first inner iteration.

We now show that the set

L
def
= {s[F1] | m(k+1,0)(+s) ≤ m(k+1,0)() and s[D1] = 0} (4.34)

lies strictly interior to the set C(1) for all k sufficiently large. The diameter
d of L, the maximum distance between two members of the set (measured in
the two norm), can be no larger than twice the distance from the center of the
ellipsoid defined by L to the point on L̄ (the boundary of L) furthest from the
center. The center of L is the Newton point,

s∗[F1] = −H
(k+1,0)−1
[F1,F1] ∇xΦ(, λ(k+1), )[F1]. (4.35)

Let s[F1]
def
= s∗[F1] + v[F1] ∈ L̄. Then, combining (3.8), (4.32), (4.34) and (4.35),

we have that

1
2
vT
[F1]

H
(k+1,0)
[F1,F1] v[F1]

= 1
2
s∗T[F1]H

(k+1,0)
[F1,F1] s

∗
[F1] + (m(k+1,0)(+s∗ + v) − m(k+1,0)())

−(s∗ + v)T
[F1](H

(k+1,0)
[F1,F1] s

∗
[F1] + ∇xΦ(, λ(k+1), )[F1])

= 1
2
s∗T[F1]H

(k+1,0)
[F1,F1] s

∗
[F1]

= 1
2
∇xΦ(, λ(k+1), )T

[F1]H
(k+1,0)−1
[F1,F1] ∇xΦ(, λ(k+1), )[F1].

(4.36)
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Hence, using the extremal properties of the Rayleigh quotient and (4.36), we
have

d2 def
= 4‖v∗[F1]‖

2
2 ≤ 4v∗T[F1]H

(k+1,0)
[F1,F1] v

∗
[F1]

/λ
(k+1,0)
min ≤ 8v∗T[F1]H

(k+1,0)
[F1,F1] v

∗
[F1]

/λmin

= 8∇xΦ(, λ(k+1), )T
[F1]H

(k+1,0)−1
[F1,F1] ∇xΦ(, λ(k+1), )[F1]/λmin

≤ 16‖∇xΦ(, λ(k+1), )[F1]‖
2
2/λ2

min

(4.37)
where ‖v∗[F1]‖2 = maxs∗

[F1]
+v

[F1]
∈L̄ ‖v[F1]‖2. Thus, using (2.12), (4.30) and (4.37),

any step within L satisfies the bound

‖s[F1]‖2 ≤ d ≤ 4‖∇xΦ(, λ(k+1), )[F1]‖2/λmin

≤ 4a0a5()
−1+k/λmin.

(4.38)

The inequality (4.22) shows that i, i ∈ F1, is separated from its bound for
all k sufficiently large while (4.38) and the two-norm consistency of the infinity
norm shows that all steps within L become arbitrarily small. Thus the problem
bounds are excluded from L. Moreover (2.11), (3.13), (4.30), (4.31) and (4.38)
combine to give

‖s‖t = ‖s[F1]‖t ≤ a
1
2
0 ‖s[F1]‖2 ≤ ∆(k+1,0) 4a0‖∇xΦ(, λ(k+1), )[F1]‖

1−ζ
p

λminκ
. (4.39)

for all steps on or within L. Inequality (4.30) then combines with (4.39) to show
that any such step is shorter than the distance to the trust region boundary for
all k sufficiently large.

Thus L lies strictly interior to C(1) ⊆ C(β1) for all k sufficiently large. But,
as all iterates generated by Algorithm 3.3 satisfy (3.20) and thus lie in L, it fol-
lows that both the generalized Cauchy point and any subsequent improvements
are not restricted by the boundaries of C or C(β1).

It remains to consider the Cauchy step in more detail. The Cauchy arc
starts in the steepest descent direction for the variables in F1. The minimizer
of the model in this direction occurs when

t = t∗ =
∇xΦ(, λ(k+1), )T

[F1]∇xΦ(, λ(k+1), )[F1]

∇xΦ(, λ(k+1), )T
[F1]H

(k+1,0)[F1,F1]∇xΦ(, λ(k+1), )[F1]

. (4.40)

and thus, from the above discussion, gives the generalized Cauchy point pro-
posed by (). We use the definition of t∗, (2.11) and the extremal property of
the Rayleigh quotient to obtain

m(k,0)(x(k+1,0)) − m(k+1,0)(x(k+1,0) + sC(k+1,0)) = 1
2
t∗‖∇xΦ(, λ(k+1), )[F1]‖

2
2

≥
‖∇xΦ(, λ(k+1), )[F1]‖

2
p

4a0λmax
(4.41)

for this variant of the generalized Cauchy point. Alternatively, if Moré’s (1988)
variant is used, the requirement (3.16) and the definition of the Cauchy arc
imply that

m(k+1,0)(x(k+1,0))−m(k+1,0)(x(k+1,0)+sC(k+1,0)) ≥ µ1t
C(k,0)‖∇xΦ(, λ(k+1), )[F1]‖

2
2.

(4.42)
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If the first alternative of (3.17) holds, (4.42) implies that

m(k+1,0)(x(k+1,0)) − m(k+1,0)(x(k+1,0) + sC(k+1,0)) ≥ µ1ν1‖∇xΦ(, λ(k+1), )[F1]‖
2
2.

(4.43)
Otherwise, we may use the same arguments as above to show that it is impossi-
ble for tL(k+1,0) to satisfy (3.19) when k is sufficiently large. Therefore, tL(k+1,0)

must satisfy (3.18). Combining (3.8), (3.18), (4.32) and the definition of the
Cauchy arc, we have that

1
2
(tL(k+1,0))2∇xΦ(, λ(k+1), )T

[F1]H
(k+1,0)[F1,F1]∇xΦ(, λ(k+1), )[F1]

≥ (1 − µ2)t
L(k+1,0)‖∇xΦ(, λ(k+1), )[F1]‖

2
2.

(4.44)

Hence, combining (4.33) and (4.44) with the extremal properties of the Rayleigh
quotient, we have that tL(k,j) ≥ (1−µ2)/λmax. Thus, when the second alterna-
tive of (3.17) holds, this result and (4.42) give that

m(k+1,0)(x(k+1,0)) − m(k+1,0)(x(k+1,0) + sC(k+1,0))

≥ [µ1ν2(1 − µ2)/λmax]‖∇xΦ(, λ(k+1), )[F1]‖
2
2.

(4.45)

Therefore, (2.12), (4.43) and (4.45) give the inequality

m(k,0)(x(k,0)) − m(k,0)(x(k,0) + sC(k,0))

≥ (µ1/a0)min(ν1, ν2(1 − µ2)/λmax)‖∇xΦ(, λ(k+1), )[F1]‖
2
p.

(4.46)

We shall make use of thses results in (iv) below.
(iii) Improvements beyond the generalized Cauchy point. We have that

x
(k+1,0)
[D] = 0, and, as a consequence of (4.30), ‖P (,∇xΦ(k+1,0))‖ξ

p ≤ ν for all k
sufficiently large. Hence, because we have shown that any s in L lies strictly
interior to C, a single pass of step 2 of Algorithm 3.3 is required. We must pick

s to satisfy (3.24) and (3.20) by determining s
(k+1,0)
[F1] so that

‖H
(k+1,0)
[F1,F1] s

(k+1,0)
[F1] + ∇xΦ

(k+1,0)
[F ] ‖p ≤ ‖∇xΦ

(k+1,0)
[F ] ‖1+ξ

p . (4.47)

and

m(k,j)(x(k+1,0)) − m(k+1,0)(x(k+1,0) + s(k+1,0))

≥ β2(m
(k+1,0)(x(k+1,0)) − m(k+1,0)(x(k+1,0) + sC(k+1,0)))

(4.48)

for some β2 ≤ 1. The set of values which satisfy (4.47) and (4.48) is non-empty
as the Newton step (4.35) satisfies both inequalities.

It remains to consider such a step in slightly more detail. Suppose that

s
(k+1,0)
[F1] satisfies (4.47). Let

r
(k+1,0)
[F1] = H

(k+1,0)
[F1,F1] s

(k+1,0)
[F1] + ∇xΦ

(k+1,0)
[F ] (4.49)

Then combining (2.11), (4.33), (4.47) and (4.49), we have

‖s
(k+1,0)
[F1] ‖p ≤ a0‖H

(k+1,0)−1
[F1,F1] ‖2(‖r

(k+1,0)
[F1] ‖p + ‖∇xΦ

(k+1,0)
[F ] ‖p)

≤ 2a0‖∇xΦ
(k+1,0)
[F ] ‖p(1 + ‖∇xΦ

(k+1,0)
[F ] ‖ξ

p)/λmin.
(4.50)
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(iv) Acceptance of the new point. We have seen that s
(k+1,0)
[D1] = 0 and

s
(k+1,0)
[F1] satisfies (4.47). We now wish to show that the quantity

|ρ(k+1,0) − 1| =
|Φ(+s(k+1,0), λ(k+1), ) − m(k+1,0)(+s(k+1,0))|

|m(k+1,0)() − m(k+1,0)(+s(k+1,0))|
(4.51)

converges to zero. For then the new point will prove acceptable in step 4 of
Algorithm 3.1.

Consider first the denominator on the right-hand-side of (4.51). Combining
(4.41), (4.46) and (4.48), we have

m(k+1,0)() − m(k+1,0)(+s(k+1,0)) ≥ a6‖∇xΦ(, λ(k+1), )[F1]‖
2
p, (4.52)

where a6 = β2 min(1/(4a0λmax), µ1 min(ν1, ν2(1 − µ2)/λmax)/a0). Turning to
the numerator on the right-hand-side of (4.51), we use the integral mean value
theorem to obtain

Φ(+s(k+1,0), λ(k+1), )

= Φ(, λ(k+1), ) + s
(k+1,0)T
[F1] ∇xΦ(, λ(k+1), )[F1]

+ 1
2

∫ 1
0 s

(k+1,0)T
[F1] ∇xxΦ(x(t), λ(k+1), )[F1,F1]s

(k+1,0)
[F1] dt

= Φ(, λ(k+1), ) + s
(k+1,0)T
[F1] ∇xΦ(, λ(k+1), )[F1]

+ 1
2

∫ 1
0 s

(k+1,0)T
[F1] (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt

+ 1
2
s
(k+1,0)T
[F1] (∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s

(k+1,0)
[F1]

+ 1
2
s
(k+1,0)T
[F1] H

(k+1,0)
[F1,F1] s

(k+1,0)
[F1]

= m(k+1,0)(+s(k+1,0))

+ 1
2

∫ 1
0 s

(k+1,0)T
[F1] (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt

+ 1
2
s
(k+1,0)T
[F1] (∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s

(k+1,0)
[F1] ,

(4.53)
where x(t) = +ts(k+1,0). Considering the last two terms in (4.53) in turn, we
have the bounds

| 1
2

∫ 1
0 s

(k+1,0)T
[F1] (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt|

≤ 1
4
a0a7‖s

(k+1,0)
[F1] ‖3

p

(4.54)
using (2.11), the convergence (and hence boundedness) of the Lagrange mul-
tiplier estimates and the Lipschitz continuity of the second derivatives of the
problem functions (assumption AS4) with some composite Lipschitz constant
a7, and

| 1
2
s
(k+1,0)T
[F1] (∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s

(k+1,0)
[F1] |

≤ a0( 1
2
υ‖s

(k+1,0)
[F1] ‖ς

p + ‖(∇xxℓ(, λ(k+1)) −∇xxℓ(, ))[F1,F1]‖p)‖s
(k+1,0)
[F1] ‖2

p

(4.55)
using (2.11), (3.21), the definition of the Hessian of the augmented Lagrangian
and AS8. Thus, combining (4.50), (4.51), (4.52), (4.53), (4.54) and (4.55), we
obtain
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|ρ(k+1,0) − 1| ≤ 4a3
0(1 + ‖∇xΦ

(k+1,0)
[F ] ‖ξ)2p·

1
4
a7‖s

(k+1,0)
[F1] ‖p + 1

2
υ‖s

(k+1,0)
[F1] ‖ς

p + ‖(∇xxℓ(, λ(k+1)) −∇xxℓ(, ))[F1,F1]‖p

a6λ
2
min

.

(4.56)
As the right-hand-side of (4.56) converges to zero as k increases, = +s(k+1,0)

for all k sufficiently large.
(v) Convergence of the inner iteration at the new point. We now show
that satisfies the inner-iteration convergence test (3.7).

Firstly, in the same vein as (4.27) , for i ∈ D1 we have that

|∇xΦ(, λ(k+1), )i −∇xΦ(, λ(k+1), )i|

≤ ‖s(k+1,0)‖2 · |
∫ 1
0 (Hℓ(x(t), ) + 1A(x(t))T A(x(t)))idt|

≤ (a2 + a2
1/)‖s(k+1,0)‖2,

(4.57)

where x(t) = +ts(k+1,0). Thus, as the right-hand-side of (4.57) can be made
arbitrarily small, by taking k sufficiently large, (4.18) and the identity i =i= 0
for each i ∈ D1, imply that i is dominated for each i ∈ D1 and (2.8) and (4.25)
imply that

P (,∇xΦ(, λ(k+1), ))i =i= 0. (4.58)

We now consider the components of P (,∇xΦ(, λ(k+1), ))i for i ∈ F1. Using
the integral mean value theorem, we have

∇xΦ(, λ(k+1), )[F1]

= ∇xΦ(, λ(k+1), )[F1] +
∫ 1
0 ∇xxΦ(x(t), λ(k+1), )[F1,F1]s

(k+1,0)
[F1] dt

= (H
(k+1,0)
[F1,F1] s

(k+1,0)
[F1] + ∇xΦ(, λ(k+1), )[F1])

+
∫ 1
0 (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt

+(∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s
(k+1,0)
[F1]

(4.59)

where x(t) = +ts(k+1,0). We observe that each of the three terms on the right-
hand-side of (4.59) reflects a different aspect of the approximations made. The
first corresponds to the approximation to the Newton direction used, the second
to the approximation of a nonlinear function by a quadratic and the third to
the particular approximation to the second derivatives used. We now bound
each of these terms in turn.

The first term satisfies the bound (4.47). Hence, combining (4.30) and
(4.47), we obtain

‖H
(k+1,0)
[F1,F1] s

(k+1,0)
[F1] + ∇xΦ

(k+1,0)
[F ] ‖p ≤ a1+ξ

5 ()(−1)(1+ξ)+k(1+ξ). (4.60)

The second term satisfies the bound

‖
∫ 1
0 (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt‖p

≤ 1
2
a0a7‖s

(k+1,0)
[F1] ‖2

p.
(4.61)
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by the same arguments we used to establish inequality (4.54). Picking k suffi-

ciently large that ‖∇xΦ
(k+1,0)
[F ] ‖ ≤ 1, we may combine (4.30), (4.50) and (4.61)

so that

‖
∫ 1
0 (∇xxΦ(x(t), λ(k+1), ) −∇xxΦ(, λ(k+1), ))[F1,F1]s

(k+1,0)
[F1] dt‖

≤ 8a3
0a

2
5a7()

2−2+k2/λ2
min.

(4.62)

Lastly, using the same arguments as those used to establish (4.55), the defi-
nitions (3.21) and of the Hessian of the augmented Lagrangian, the Lipschitz
continuity of the second derivatives of the problem functions (assumption AS4)
and the accuracy of the second derivative approximations (assumption AS8)
imply that

‖(∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s
(k+1,0)
[F1] ‖p

≤ (υ‖s
(k+1,0)
[F1] ‖ς

p + ‖(∇xxℓ(, λ(k+1)) −∇xxℓ(, ))[F1,F1]‖p)‖s
(k+1,0)
[F1] ‖p

≤ (υ‖s
(k+1,0)
[F1] ‖ς

p + a8‖ − ‖p + a9‖λ
(k+1) − ‖p)‖s

(k+1,0)
[F1] ‖p,

(4.63)
for some composite Lipschitz constants a8 and a9. Again picking k sufficiently

large that ‖∇xΦ
(k+1,0)
[F ] ‖p ≤ 1 and recalling that λ(k+1) =, we may combine

(2.12), (4.4), (4.12), (4.20), (4.30), (4.50) and (4.63) so that

‖(∇xxΦ(, λ(k+1), ) − H(k+1,0))[F1,F1]s
(k+1,0)
[F1] ‖p

≤ [υ((4a0a5/λmin)()
−1+k)ς + a8(ax()+k + a0()

+k)
+a9aλ()+k](4a0a5/λmin)()

−1+k.

(4.64)

We now combine equation (4.59) with the inequalities (4.60), (4.62) and
(4.64), the condition ξ < 1 and the definitions of < 1 and > 0 to obtain the
bound

‖∇xΦ(, λ(k+1), )[F1]‖ ≤ a10()
+k, (4.65)

where

a10 = a1+ξ
5 + 8a3

0a
2
5a6/λ2

min + (4a0a5/λmin)(υ((4a0a5/λmin)
ς) + a8(ax + a0) + a9aλ),

= (−1)(1 + max(1, ς)) and
= (1 + min(ξ, ς)).

(4.66)
Firstly, observe that the right-hand-side of (4.65) may be made arbitrarily small.
Therefore, (2.9), (4.58) and (4.65) imply that

‖P (,∇xΦ(, λ(k+1), ))‖p = ‖∇xΦ(, λ(k+1), )[F1]‖p ≤ a10()
+k. (4.67)

Secondly, define δ = log(a10/ω0). Now let k1 be any integer for which

k1 ≥
+ −−δ

−
. (4.68)

Then (4.11), (4.67) and (4.68) imply that

‖P (,∇xΦ(, λ(k+1), ))‖p ≤ a10()
+k ≤ ω0()

+(k+1) = ω(k+1) (4.69)
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for all sufficiently large k ≥ k1. Thus, the iterate satisfies the inner iteration
convergence test (3.2) for all k sufficiently large and we have x(k+1) =.
(vi) Redundancy of the shifted starting point. Finally, we observe that

all the variables x
(k+1)
i , i ∈ D, lie on their bounds for sufficiently large k.

Therefore, x(k+2,0) = x(k+1) and the perturbed starting point is redundant. ✷

5 The general case

We now turn briefly to the more general problem (1.1)—(1.3). The presence
of the more general bounds (1.3) does not significantly alter the conclusions
that we are able to draw. The algorithms of section 3 are basically unchanged.
We now use the region B = {x ∈ IRn | l ≤ x ≤ u} and replace P (x, v) by
P (x, v, l, u) where appropriate. The concept of floating and dominated variables
stays essentially the same. Now for each iterate in B we have three mutually
exclusive possibilities, namely, (i) 0 ≤i −li ≤ (∇xΦ(k))i, (ii) (∇xΦ(k))i ≤i

−ui ≤ 0 or (iii) i − ui < (∇xΦ(k))i <i −li, for each component i. In case (i) we
then have that (∇xΦ(k))i =i −li while in case (ii) (∇xΦ(k))i =i −ui and in case
(iii) (∇xΦ(k))i = (∇xΦ(k))i. The variables that satisfy (i) and (ii) are said to
be the dominated variables, the ones satisfying (i) are dominated above while
those satisfying (ii) are dominated below. Consequently, the sets corresponding
to (2.10) are straightforward to define. D1 is now made up as the union of
two sets D1l, whose variables are dominated above for all k sufficiently large,
and D1u, whose variables are dominated below for all k sufficiently large. F1

contains variables which float for all k sufficiently large and which converge to
values interior to B. Similarly F2 is the union of two sets, F2l and F2u, whose
variables are floating for all k sufficiently large but which converge to their lower
and upper bounds respectively. We also replace (3.12) by

x
(k,0)
i =















li if 0 ≤ x
(k−1)
i − li ≤ θ(∇xΦ(k−1))i

ui if θ(∇xΦ(k−1))i ≤ x
(k−1)
i − ui ≤ 0

x
(k−1)
i otherwise.

(5.1)

With such definitions, we may reprove the results of section 4, extending
AS5, AS7—AS9 in the obvious way. The only important new ingredient is that
() indicate that the non-degeneracy assumption AS7 ensures that the iterates
are asymptotically isolated in three sets F1, D1l and D1u.

6 Conclusions

We have shown that, under suitable assumptions, a single inner iteration is
needed for each outer iteration of the augmented Lagrangian algorithm which
lies at the heart of the LANCELOT package. This then places the algorithm in
the class of diagonal multiplier methods whose asymptotic behaviour has been
studied by Tapia1977 ().
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