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On the number of leaves in a random recursive tree

Yazhe Zhang
Capital Normal University

Abstract. This paper studies the asymptotic behavior of the number of leaves
Ln in a random recursive tree Tn with n nodes. By utilizing the size-bias
method, we derive an upper bound on the Wasserstein distance between the
distribution of Ln and a standard normal distribution. Furthermore, we obtain
a weak version of an Erdös–Rényi type law and a large deviation principle
for Ln.

1 Introduction

Random recursive trees have been introduced as simple probability models aris-
ing from diverse investigations, such as for system generation (Na and Rapoport
(1970)), for spread of contamination of organisms (Meir and Moon (1974)), for
pyramid schemes (Gastwirth and Bhattacharya (1984)), for stemma construction
of philology (Najock and Heyde (1982)), for internet interface maps (Janic et al.
(2002)), and for stochastic growth of networks (Chan et al. (2003)) etc. Moreover,
random recursive trees can also be used for some internet models and for physical
evolving system models (Tetzlaff (2002)). They also appeared in the study of Hopf
algebras under the name of “heap-ordered trees” (Grossman and Larson (1989)).
We refer the reader to the survey in Mahmoud and Smythe (1995) (and references
there) for more detailed descriptions.

In this paper, we study the asymptotic behavior of random recursive trees. We
are concerned with a rooted non-plane size-n tree Tn, n ∈ N, labeled with distinct
integers 1,2, . . . , n, where the node labeled 1 is distinguished as the root, and
for 2 ≤ k ≤ n, the labels of the nodes on the unique path from the root to node
k form an increasing sequence. Such a tree Tn can be constructed uniquely by
attaching a node with label n to one of the n − 1 nodes in Tn−1. This immediately
shows that, for n ≥ 1, the number of recursive trees of size n is given by (n − 1)!.
Throughout this paper, all these (n − 1)! recursive trees are considered to appear
equally likely. Furthermore, we generate a random recursive tree of size n by the
following process. Step 1, we take the node labeled 1 as the root. At step k + 1, we
attach the node labeled k+1 to any previous nodes i (i = 1, . . . , k) with probability
1/k. The process stops after node n is inserted. See Figure 1 for all recursive trees
of size 4.
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Figure 1 All recursive trees of size 4.

Leaves of a random recursive tree are the childless nodes. The number of leaves
Ln in a random recursive tree Tn is a random variable of significant interest. There
are a number of papers devoted to the study of Ln. We would like to mention the
following ones. Na and Rapoport (1970) investigated the average number of leaves
in a random recursive tree; Najock and Heyde (1982) found that the exact limiting
distribution of the number of leaves in a random recursive tree approximately has
a normal distribution by digital analysis, and also see Bergeron et al. (1992). They
showed that the number of leaves tends to a Gaussian limit by analyzing properties
of generating functions. But no bounds on the convergence to this Gaussian limits
have been derived before. In this paper, we develop an explicit upper bound on
the Wasserstein distance between the distribution of Ln and a standard normal
distribution by using the size-bias method.

The Wasserstein distance between any two probability measures μ and ν on
(R,B(R)) is defined as follows

dW(μ, ν) = sup
h∈H

∣∣∣∣
∫
R

h(x)dμ(x) −
∫
R

h(x)dν(x)

∣∣∣∣,
where H := {h :R →R : |h(x) − h(y)| ≤ |x − y|}.

The size-bias method for normal approximation provides a powerful tool for
approximating probabilities by a normal distribution, which was first appeared in
the context of Stein’s method for normal approximation in Goldstein and Rinott
(1996). It turns out that this method provides an efficient way to get an explicit
upper bound on the probability metrics. The reader is referred to Arratia et al.
(2013) and the references therein for a basic introduction to the size-biased cou-
pling method.

Here let us give the definition of size-based distributions.

Definition 1.1. For a non-negative random variable X with E[X] < ∞, we say a
random variable Xs has the size-biased distribution with respect to X if

E
[
Xf (X)

] = E[X]E[
f

(
Xs)],

for all f : [0,∞) →R such that E|Xf (X)| < ∞.
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Since we need to couple Ln to a size-biased version Ls
n in Section 3, it is

necessary to develop a method for size-biased coupling. For a random variable
X = ∑n

i=1 Xi , where Xi ≥ 0 and E[Xi] = μi , we can construct a size-biased ver-
sion of X as follows.

1. For each i = 1, . . . , n, let Xs
i have the size-biased distribution of Xi indepen-

dent of (Xj )j �=i and (Xs
j )j �=i . Define a vector (X

(i)
j )j �=i such that its conditional

distribution given Xs
i coincides with that of (Xj )j �=i given Xi .

2. Choose a summand XI randomly, where the index I is chosen proportional to
μi and independent of all others, i.e. P(I = i) = μi/μ, where μ = E[X].

3. Xs = ∑
j �=I X

(I)
j + Xs

I .

Remark 1.1. Note that for an indicator random variable X, P(Xs = 1) = P(X =
1)/E[X] = 1, which means Xs = 1. Thus, if S = ∑n

i=1 Xi , where Xi, . . . ,Xn are
indicator random variables with P(Xi = 1) = pi and for each i = 1, . . . , n, let
(X

(i)
j )j �=i have the distribution of (Xj )j �=i conditional on Xi = 1, and I is chosen

independent of all else with P(I = i) = pi/E[S], then Ss = ∑
j �=I X

(I)
j + 1 has the

size-biased distribution of S.

The fundamental result we need in this paper is the following theorem.

Theorem 1.2 (Ross (2011)). Let X be a non-negative random variable with mean
μ < ∞ and Var(X) = σ 2. Let Xs have the size-biased distribution with respect
to X. If W = X−μ

σ
and Z ∼ N (0,1), then

dW(W,Z) ≤ μ

σ 2

√
2

π

√
Var

(
E

[
Xs − X | X]) + μ

σ 3E
[(

Xs − X
)2]

. (1.1)

The rest of the paper is organized as follows. In Section 2, we present our main
results about the number of leaves in a size-n random recursive tree. Section 3 is
devoted to the proofs of our results. We first use the size-bias method to prove
Theorem 2.2 and then we get an Erdös–Rényi type law for Ln. Next, we manage
to derive a concentration inequality via application of the same method so as to
gain the large deviation principle for Ln in Theorem 2.4.

2 Main results

Many quantities of interest in the study of random trees can be naturally repre-
sented as a sum of indicator random variables. We will introduce a bijection be-
tween permutations and corresponding random recursive trees, which enables us
to represent Ln as a sum of indicator random variables.
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Let σ = (σ1, . . . , σn−1) be a permutation on {2, . . . , n}. We can construct a re-
cursive tree with nodes 1,2, . . . , n by taking 1 the root, and attaching the node
i ≥ 2 to the rightmost element j of σ , which precedes i and is less than i. If there
is no such an element j , then we define the root 1 to be the parent of i.

From the tree construction process above, Ln can be defined by

Ln =
n−2∑
i=1

I [σi > σi+1] + 1. (2.1)

This is obtained by observing that every appearance of descents in σ means a leaf
will be added to tree Tn. Moreover, the last element σn−1 of σ is always a leaf.

Let Ln be defined as (2.1), then we can obtain E[Ln] and Var(Ln) by straight-
forward calculations.

Lemma 2.1. Let Ln be the number of leaves in Tn, then

E[Ln] = n

2
, Var(Ln) = n

12
. (2.2)

Proof. E[Ln] = n/2 follows by noticing the fact that P(I [σi > σi+1] = 1) = 1/2.
For the second term, we have

E
[
L2

n

] = E

[(
n−2∑
i=1

I [σi > σi+1] + 1

)2]

= E

[(
n−2∑
i=1

I [σi > σi+1]
)2

+ 2

(
n−2∑
i=1

I [σi > σi+1]
)

+ 1

]

= E

[
3

n−2∑
i=1

I [σi > σi+1] + ∑
i �=j

I [σi > σi+1]I [σj > σj+1] + 1

]

= 3(n − 2)

2
+ (n − 3)(n − 4)

4
+ 2(n − 3)

6
+ 1

= n2

4
+ n

12
,

where we have used that

P
(
I [σi > σi+1]I [σj > σj+1] = 1

) =
{

1/6 if |i − j | = 1,
1/4 if |i − j | > 1

in the penultimate equality.
Finally, since Var(Ln) = E[L2

n] − (E[Ln])2, the desired result follows. �

Remark 2.1. Najock and Heyde (1982) have obtained the same result by using the
property of Eulerian numbers. But here we have used a totally different approach.
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We next state our main results about Ln, proofs are postponed until next section.

Theorem 2.2. Let Ln be the number of leaves in a random recursive tree Tn.
Define W := (Ln−n/2)√

n/12
, then

dW(W,Z) ≤ C1
√

n

n − 2
+ C2√

n
,

where C1 = 3
√

3, C2 = 12
√

3, and Z ∼ N (0,1).

Using the result of Theorem 2.2, we can derive the following weak version of
an Erdös–Rényi type law for Ln.

Theorem 2.3. Let Ln be the number of leaves in a random recursive tree Tn, then

Ln

n/2
P→ 1. (2.3)

Furthermore, using the size-bias method for a concentration inequality, we can
obtain the following large deviation principle for Ln.

Theorem 2.4. Let Ln be the number of leaves in a random recursive tree Tn, for
any x > 0, we have

P

(
Ln

n
− 1

2
≥ x

)
≤ exp

{
− nx2

1 + x

}
, (2.4)

and

P

(
Ln

n
− 1

2
≤ −x

)
≤ exp

{−x2n
}
. (2.5)

3 Proofs

Before proving Theorem 2.2, we need a lemma, which makes the computation or
bounding of Var(E[Ls

n − Ln | Ln]) much easier, because in practice, it is quite
challenging to give an explicit expression of the conditional expectation E[Ls

n −
Ln | Ln].

Lemma 3.1. If X is a random variable and F,F ′ are two σ -fields, satisfying
F ′ ⊆ F , then

Var
(
E

[
X | F ′]) ≤ Var

(
E[X | F]).
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Proof. In order to prove Var(E[X | F ′]) ≤ Var(E[X | F]), we need only to show
that E[(E[X | F ′])2] ≤ E[(E[X | F])2] is true. For this, using Jensen’s inequality
and the convexity of f (x) = x2, we have(

E
[
X | F ′])2 = (

E
[
E[X | F] | F ′])2

≤ E
[(
E[X | F])2 | F ′].

Taking expectation values on both side of this inequality, the desired result fol-
lows. �

Now, we are ready for the proof of Theorem 2.2.

Proof of Theorem 2.2. In order to apply Theorem 1.2, first we need to construct
the size-biased coupling Ls

n with respect to Ln. Using the strategy mentioned in
Remark 1.1, we choose an index I uniformly at random from the set {1, . . . , n −
2}, then size-bias I [σI > σI+1] by letting it equal to one, and take the remaining
summands conditional on I [σI > σI+1] = 1. We can realize I [σI > σI+1] = 1 by
adjusting the order of σI and σI+1 such that σI > σI+1, and Ls

n denotes the number
of descents in σ after adjusting the order of σI and σI+1.

Next, we need to compute Var(E[Ls
n − Ln | Ln]) and E[(Ls

n − Ln)
2]. It is clear

that if the index 2 ≤ I ≤ n − 3, then

Ls
n − Ln = (

I [σI−1 > σI+1] + 1 + I [σI > σI+2]
− I [σI−1 > σI ] − I [σI+1 > σI+2])I [σI < σI+1] (3.1)

= I [σI < σI+1] − (
I [σI < σI−1 < σI+1] + I [σI < σI+2 < σI+1]).

If I = 1, then

Ls
n − Ln = (

1 + I [σ1 > σ3] − I [σ2 > σ3])I [σ1 < σ2]
(3.2)

= I [σ1 < σ2] − I [σ1 < σ3 < σ2].
If I = n − 2, then

Ls
n − Ln = (

1 + I [σn−3 > σn−1] − I [σn−3 > σn−2])I [σn−2 < σn−1]
(3.3)

= I [σn−2 < σn−1] − I [σn−2 < σn−3 < σn−1].
Set C := σ(I [σ1 > σ2], . . . , I [σn−2 > σn−1]), then σ(Ln) ⊆ C.

From Lemma 3.1, we have Var(E[Ls
n − Ln | Ln]) ≤ Var(E[Ls

n − Ln | C]) and

Var
(
E

[
Ls

n − Ln | C])
= 1

(n − 2)2 Var

{
I [σ1 < σ2] − I [σ1 < σ3 < σ2]
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+
n−3∑
i=2

[
I [σi < σi+1]

− (
I [σi < σi−1 < σi+1] + I [σi < σi+2 < σi+1])]

+ I [σn−2 < σn−1] − I [σn−2 < σn−3 < σn−1]
}

(3.4)

= 1

(n − 2)2 Var

(
n−2∑
i=1

I [σi < σi+1] +
n−3∑
i=1

I [σi < σi+2 < σi+1]

+
n−2∑
i=2

I [σi < σi−1 < σi+1]
)

≤ 3

(n − 2)2

{
Var

(
n−2∑
i=1

I [σi < σi+1]
)

+ Var

(
n−3∑
i=1

I [σi < σi+2 < σi+1]
)

+ Var

(
n−2∑
i=2

I [σi < σi−1 < σi+1]
)}

=: 3

(n − 2)2 (S1 + S2 + S3).

Let us examine the three sums on the right-hand side of (3.4). First, we easily
find that

S1 = n

12
, (3.5)

since
∑n−2

i=1 I [σi < σi+1] = n − 1 − Ln.
For S2, we first calculate

E

[(
n−3∑
i=1

I [σi < σi+2 < σi+1]
)2]

= E

[
n−3∑
i=1

I [σi < σi+2 < σi+1]

+ ∑
i �=j

I [σi < σi+2 < σi+1]I [σj < σj+2 < σj+1]
]

≤ n − 3

6
+ (n − 4)(n − 5)

36
= n2 − 3n + 2

36
,
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the inequality is obtained by the fact that

P
(
I [σi < σi+2 < σi+1]I [σj < σj+2 < σj+1] = 1

) {= 0 if |i − j | = 1,
≤ 1

36 if |i − j | > 1,

for all i, j ∈ {1, . . . , n − 3}.
Since E[∑n−3

i=1 I [σi < σi+2 < σi+1]] = (n − 3)/6, we get

S2 ≤ 3n − 7

36
. (3.6)

We can derive a bound for S3 in the same manner as for S2 and we get that it is
also bounded by (3n − 7)/36, namely

S3 ≤ 3n − 7

36
. (3.7)

Next, inserting these three terms into (3.4), we then obtain that

Var
(
E

[
Ls

n − Ln | σ ]) ≤ 9n − 14

12(n − 2)2 . (3.8)

Finally, the last term we need to bound is E[(Ls
n − Ln)

2].
Since E[(Ls

n − Ln)
2] = E[E[(Ls

n − Ln)
2 | C]], and

E
[
E

[(
Ls

n − Ln

)2 | C]]
= 1

n − 2
E

[(
I [σ1 < σ2] − I [σ1 < σ3 < σ2])2

+
n−3∑
i=2

(
I [σi < σi+1]

(3.9)

− (
I [σi < σi−1 < σi+1] + I [σi < σi+2 < σi+1]))2

+ (
I [σn−2 < σn−1] − I [σn−2 < σn−3 < σn−1])2

]

≤ 1,

where the last inequality follows from the fact that |(3.1)|, |(3.2)| and |(3.3)| are
less than or equal to 1. Now combining (3.8), (3.9) with (1.1), we obtain the desired
result. �

Before proving Theorem 2.3, let us first recall the concept of Kolmogorov dis-
tance between distribution functions. For random variables X and Y , the Kol-
mogorov distance between their distributions is defined as

dK(X,Y ) = sup
x

∣∣P(X ≤ x) − P(Y ≤ x)
∣∣.
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We know that if a random variable X has Lebesgue density bounded by C, then
for any random variable Y , the Wasserstein distance and the Kolmogorov distance
between X, Y satisfy the following relationship

dK(X,Y ) ≤ √
2CdW(X,Y ). (3.10)

From Theorem 2.2 and the fact that 1√
2π

e−x2/2 ≤ 1√
2π

, ∀x ∈ R, we have

dK(W,Z) ≤
√√√√√

2

π

(
C1

√
n

n − 2
+ C2√

n

)
=: Dk(n). (3.11)

Now let us turn to prove Theorem 2.3. We use �(x) for the standard normal
distribution function.

Proof of Theorem 2.3. Obviously, if x ≤ 0, then P(Ln ≤ nx
2 ) = 0. Thus, it re-

mains to deal with the case that x > 0. Since

P

(
Ln ≤ nx

2

)
= P

(
Ln − n/2√

n/12
≤ n(x − 1)

2
√

n/12

)
,

and by the definition of Kolmogorov distance between the distributions of two
random variables and (3.11), we can conclude∣∣∣∣P

(
W ≤ n(x − 1)

2
√

n/12

)
− �

(
n(x − 1)

2
√

n/12

)∣∣∣∣ ≤ Dk(n),

thus

P

(
W ≤ n(x − 1)

2
√

n/12

)
≤ �

(
n(x − 1)

2
√

n/12

)
+ Dk(n).

If 0 < x < 1, then

�

(
n(x − 1)

2
√

n/12

)
→ 0 as n → ∞.

If x > 1, we have

�

(
n(x − 1)

2
√

n/12

)
→ 1 as n → ∞.

Noticing that Dk(n) = O(n−1/4), thus we obtain

lim
n→∞P

(
Ln ≤ nx

2

)
=

{
1, x > 1,
0, x < 1,

which immediately leads to the desired result of Theorem 2.3. �

We need the following two lemmas about concentration inequalities for the
proof of Theorem 2.4. Both of these two lemmas can be obtained by using the
size-biased coupling method.
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Lemma 3.2 (Ghosh and Goldstein (2011), Theorem 1.1). Let Y be a nonneg-
ative random variable with E[Y ] = μ < ∞ and Var(Y ) = σ 2 < ∞. Suppose Y s

has the size-biased distribution with respect to Y which satisfies |Y s − Y | ≤ C for
some constant C > 0. If E[eθY ] < ∞ for θ = 2/C, then

P

(
Y − μ

σ
≥ t

)
≤ exp

{ −t2

2(Cμ/σ 2 + Ct/(2σ))

}
, (3.12)

for all t > 0.

Lemma 3.2 enables us to derive the upper bound of (2.4). In order to obtain an
upper bound on P(

Y−μ
σ

≤ −t), which leads to the desired result of (2.5), we need
to establish the following new lemma.

Lemma 3.3. Let Y be a nonnegative random variable with finite mean μ and
variance σ 2. Suppose Y s has the size-biased distribution with respect to Y . If |Y s −
Y | ≤ C for some constant C > 0, then

P

(
Y − μ

σ
≤ −t

)
≤ exp

{ −t2

2(Cμ/σ 2)

}
, (3.13)

for all t > 0.

Proof. Let m(θ) := E[eθY ], then the definition of size-biased distribution implies

m′(θ) = E
[
YeθY ] = μE

[
eθY s ]

. (3.14)

For θ < 0, we can make use of Markov’s inequality to obtain

P

(
Y − μ

σ
≤ −t

)
= P

(
eθ(Y−μ)/σ ≥ e−θt ) ≤ E[eθ(Y−μ)/σ ]

e−θt

(3.15)

= exp
{

logm

(
θ

σ

)
− μθ

σ
+ θt

}
.

Moreover, we need the following inequality, which follows by the convexity of the
exponential function in the manner that for any different x, y ∈ R we have

ex − ey

x − y
=

∫ 1

0
ety+(1−t)x dt ≤

∫ 1

0
tey + (1 − t)ex dt = ex + ey

2
. (3.16)

Using the fact that θ < 0 and Y s st Y (here st stands for the usual stochastic
ordering), and putting x = θY and y = θY s in (3.16) and then taking expectations,
we get

E
[
eθY ] −E

[
eθY s ] ≤ −Cθ

2

(
E

[
eθY ] +E

[
eθY s ])

. (3.17)
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Since θ < 0, (3.17) can be rewritten as

E
[
eθY s ] ≥ 1 + Cθ/2

1 − Cθ/2
E

[
eθY ]

. (3.18)

From (3.14) and (3.18), we have

m′(θ)

m(θ)
− μ ≥ Cθμ

1 − Cθ/2
,

or put otherwise

log
(
m(θ)

) − μθ = −
∫ 0

θ

m′(s)
m(s)

− μds ≤ −
∫ 0

θ

Cμs

1 − Cs/2
ds

(3.19)

≤ −
∫ 0

θ
Cμs ds = Cμθ2

2
,

thus

E
[
eθ(Y−μ)/σ ] = exp

{
logm

(
θ

σ

)
− μθ

σ

}
(3.20)

≤ exp
{
Cμθ2

2σ 2

}
.

We can apply (3.15) to find that

P

(
Y − μ

σ
≤ −t

)
≤ exp

{
Cμθ2

2σ 2 + θt

}
. (3.21)

The right-hand side of (3.21) is minimized at θ = −tσ 2

Cμ
, and substituting this value

into (3.21) yields the desired bound. �

Proof of Theorem 2.4. First, we know that |Ln − Ls
n| ≤ 1 from the expressions

of (3.1), (3.2) and (3.3). Next, we represent

P

(
Ln

n
− 1

2
≥ x

)
= P

(
Ln − n/2√

n/12
≥ xn√

n/12

)
.

Set t = xn√
n/12

, and substitute this value into (3.12), we get (2.4); similarly,

P

(
Ln

n
− 1

2
≤ −x

)
= P

(
Ln − n/2√

n/12
≤ −xn√

n/12

)
.

Set t = xn√
n/12

, and substitute this value into (3.13), we obtain (2.5). �
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