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Abstract

Introduction The Monte Carlo technique is widely used and recommended for including uncertainties LCA. Typically, 1000 or

10,000 runs are done, but a clear argument for that number is not available, and with the growing size of LCA databases, an

excessively high number of runs may be a time-consuming thing. We therefore investigate if a large number of runs are useful, or

if it might be unnecessary or even harmful.

Probability theory We review the standard theory or probability distributions for describing stochastic variables, including the

combination of different stochastic variables into a calculation. We also review the standard theory of inferential statistics for

estimating a probability distribution, given a sample of values. For estimating the distribution of a function of probability

distributions, two major techniques are available, analytical, applying probability theory and numerical, using Monte Carlo

simulation. Because the analytical technique is often unavailable, the obvious way-out is Monte Carlo. However, we demonstrate

and illustrate that it leads to overly precise conclusions on the values of estimated parameters, and to incorrect hypothesis tests.

Numerical illustration We demonstrate the effect for two simple cases: one system in a stand-alone analysis and a comparative

analysis of two alternative systems. Both cases illustrate that statistical hypotheses that should not be rejected in fact are rejected

in a highly convincing way, thus pointing out a fundamental flaw.

Discussion and conclusions Apart form the obvious recommendation to use larger samples for estimating input distributions, we

suggest to restrict the number ofMonte Carlo runs to a number not greater than the sample sizes used for the input parameters. As

a final note, when the input parameters are not estimated using samples, but through a procedure, such as the popular pedigree

approach, the Monte Carlo approach should not be used at all.
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1 Introduction

Uncertainty in LCA is pervasive, and it is widely acknowl-

edged that uncertainty analyses should be carried out in LCA

to grant a more rigorous status to the conclusions of a study

(ISO 2006, JRC-IES 2010). The most popular approach for

doing an uncertainty analysis in LCA is the Monte Carlo ap-

proach (Lloyd and Ries 2007), partly because it has been

implemented in many of the major software programs for

LCA, typically as the only way for carrying out uncertainty

analysis (for instance, in SimaPro, GaBi, Brightway2, and in

openLCA).

The Monte Carlo method is a sampling-based method, in

which the calculation is repeated a number of times, in order to

estimate the probability distribution of the result (see, e.g.,

Helton et al. 2006, Burmaster and Anderson 1994). This dis-

tribution is then typically used to inform decision-makers

about characteristics, such as the mean value, the standard

deviation or quantiles (such as the 2.5 and 97.5 percentiles).

In LCA, the results are typically inventory results (e.g., emis-

sions of pollutants) or characterization/normalization results

(e.g., climate change, human health, etc.). In comparative

LCA, such distributions form the basis of paired comparisons

and tests of hypothesis (Mendoza Beltran et al. 2018). Many

programs and studies offer or present visual aids for

interpreting the results, including histograms and boxplots

(Helton et al. 2006; McCleese and LaPuma 2002).
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A disadvantage of the Monte Carlo method is that it can be

computationally expensive. Present-day LCA studies can eas-

ily include 10,000 or more unit process, and calculating such

as system can take some time. Repeating this calculating for a

new configuration then takes the same time, and this is repeat-

ed a large number of times. Finally, the stored results must be

analyzed in terms of means, standard deviations, p values and

visual representations. Altogether, if we use the symbolNrun to

refer to the number of Monte Carlo runs, the symbol Tcal for

the CPU time needed to do one LCA calculation, and Tana for

the time needed to process the Monte Carlo results, the total

time needed, Ttot, is simply

T tot ¼ N run � T cal þ T ana

Usually, Tcal > Tana and certainly Nrun × Tcal ≫ Tana, so that

we can write

T tot≈N run � T cal

and further ignore the aspect of Tana.

The time needed for a Monte Carlo analysis is thus deter-

mined by two factors: Tcal, which is typically in the order of

seconds or minutes, and Nrun. A normal practitioner has little

influence on Tcal, as it is dictated by the combination of algo-

rithm, the hardware, and the size of the database. Typically, it

is between 1 s and 5 min. (This is a personal guess; there is no

literature on comparative timings using a standardized LCA

system). A practitioner has much more influence on the num-

ber ofMonte Carlo runs,Nrun. So, the trick is often to takeNrun

not excessively high, say 100 or 1000. On the other hand, it

has been claimed that this number must be large, for instance

10,000 or even 100,000. For instance, Burmaster and

Anderson (1994) suggest that Bthe analyst should run enough

iterations (commonly ≥10,000),^ and the authoritative Guide

to the Expression of Uncertainty in Measurement (BIPM

2008) writes that Ba value of M = 106 can often be expected

to deliver [a result that] is correct to one or two significant

decimal digits.^ In the LCA literature, we find similar state-

ments, for instance byHongxiang andWei (2013) (Bmore than

2000 simulations should be performed^) and by Xin (2006)

(B[it] should run at least 10,000 times^). Such claims also end

up in reviewer comments: We recently received the comment

BMonte Carlo experiments are normally run 5000 or 10,000

times. In the paper, Monte Carlo experiments are only run

1000 times. Explain why?^. With the pessimistic Tcal =

5 min, using Nrun = 100,000 runs will require almost 1 year.

If we take the short calculation time of Tcal = 1 s, we still need

more than one full day. And, even Brightway2’s (https://

brightwaylca.org/) claim of Bmore than 100 Monte Carlo

iterations/second^ (of which we do not know if this also

applies to today’s huge systems) would take more than

16 min. Such waiting times may be acceptable for Big

Science, investigating fundamental questions on the Higgs

boson or the human genome. But, for a day-by-day LCA

consultancy firm, even 1 h is much too long.

In this study, we investigate the role of Nrun. We will in

particular focus on the original purpose of the Monte Carlo

technique vis-à-vis its use in LCA, and consider the fact that in

LCA, the input probability distributions are often based on

small samples, or on pedigree-style rules-of-thumb, as well

as the fact that in LCA, we are in most cases interested in

making comparative statements (Bproduct A is significantly

better than product B^).

The next section discusses the elements of the analysis:

the mathematical model and its probabilistic form, the de-

scription of probabilistic (Buncertain^) data, the estimation

of input data, and the estimation of output results.

Section 3 provides two numerical examples. Section 4 fi-

nally discusses and concludes.

2 Probability theory

In this section, we discuss a few background topics from

probability theory. The interested reader is referred to general

textbooks, such as Ross (2010) and Gharamani (2005).

2.1 Mathematical models

When a model needs several input variables to compute an

output variable, we can abstractly write the model relation as

y ¼ f x1; x2;…ð Þ

Here, x1, x2, … represent the values of the input variables

(the data, for instance CO2 coefficients and electricity require-

ments) and y is the output (the result, for instance a carbon

footprint). The function f(·) is a specification of the LCA al-

gorithm (Heijungs and Suh 2002). We will assume that this

algorithm is known and fixed, and that it has been implement-

ed in software in a reliable way and therefore does not intro-

duce any uncertainty (however, see Heijungs et al. 2015).

2.2 Probabilistic models

Uncertainty can enter the scene in different ways:

& When the input data is not exactly known (for instance, the

effect of glyphosate on human health is not fully known)

& When the input data displays variability (for instance, the

lifetime of identical light bulbs is not exactly equal)

& When choices must be made by the analyst (for in-

stance, allocation factors can be based on mass or on

economic value)
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Sometimes, additional sources of uncertainty are men-

tioned (Huijbregts 1998), such as model uncertainty. Here,

we restrict the discussion to those types of uncertainty that

can be phrased as inputs (x1, x2, etc.) in the model equation

(f(·)). Our analysis can, however, easily be broadened to cover

such cases. For instance, we can include allocation choices as

an extra input parameter into f(·). (Heijungs et al. 2019).

2.3 Probability distributions of input variables

In a probabilistic model, we can specify the input data as a

probability distribution (continuous or discrete). So, from now

on, we will assume that x1, x2, … are not fixed numbers, but

that they are stochastic (random) numbers, following some

probability distribution. We will use the convention from

probability theory to indicate stochastic variables with capital

letters, like X1, X2, … Further, the symbol ~ indicates that a

stochastic variable is distributed according to some probability

distribution. For instance,

X 1∼N μX 1
;σX 1

� �

X 2∼N μX 2
;σX 2

� �

⋯∼⋯

8

<

:

where N(μ, σ) is the normal (Gaussian) probability distribu-

tion with parameters μ and σ. We might go for other proba-

bility distributions (uniform, log-normal, binomial, etc.) but at

this stage want to keep the discussion simple. The numbers

that specify the numerical details of the probability distribu-

tion (here μ and σ in general, and more specifically μX 1
, μX 2

,

σX 1
, σX 2

, etc.) are referred to as parameters. So, not x1 is a

parameter (as the usual terminology in LCA goes), but rather

μX 1
and σX 1

are parameters of the distribution of X1. Other

types of distributions are usually specified with different types

of parameters (for instance, the uniform distribution with a

parameter for the lower limit and a parameter the upper limit)

or even with another number of parameters (for instance, the

Poisson distribution requires only one parameter, while the

asymmetric triangular distribution requires three parameters).

2.4 Probability distributions of output variables

Recognizing that (some of) the input parameters of the model

f(·) are stochastic, a logical consequence is that the model

output is also stochastic. Thus, we write

Y ¼ f X 1;X 2;…ð Þ

See Heijungs et al. (2019). With this change of y into Y, our

task shifts from calculating the value of y to calculating the

distribution of Y. More specifically, we may want to know:

& The shape of the distribution of Y (i.e., normal, uniform,

log-normal, binomial, etc.)

& The value or values of the parameter or parameters (e.g.,

μY and σY)

Probability theory offers methods to calculate the probabil-

ity distribution of Y when those of X1, X2, … are given, but

only for a few cases of f(·) and only for a few input distribu-

tions. For instance, when Y = f(X1, X2) = X1 + X2 and X1 and X2

are normal, every textbook shows that

Y∼N μX 1
þ μX 2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
X 1

þ σ
2
X 2

q
� �

In words, the sum of two normal variables is itself normally

distributed, and the parameters μY and σY can easily be calcu-

lated from the parameters of the input distributions. Another

case is Y ¼ f X 1;X 2ð Þ ¼ X 2
1 þ X 2

2. This is pretty complicat-

ed, but when we take the special case of μX 1
¼ μX 2

¼ 0 and

σX 1
¼ σX 2

¼ 1, it is a well-known result:

Y∼χ2 2ð Þ

where χ2(ν) is the chi-squared distribution with parameter ν.

In general, most choices of f(·) with less trivial combinations

of X1, X2, … (such as f X 1;X 2ð Þ ¼ X 1X
2
2 þ lnX 1

4þsinX 2
) are not

manageable by the theory of probability. It is therefore impor-

tant to have an alternative way to determine the probability

function of such more complicated functions of stochastic

variables. The same applies also to situations where f(·) is

straightforward, but where the input distributions for X1, X2,

etc. are not normal.

The Monte Carlo approach (Metropolis and Ulam 1949;

Shonkwiler and Mendivil 2009) can be used as an alternative

way for constructing the probability distribution of Y in case

the mathematical approach is too hard. It is based on artificial-

ly sampling values from Y, and using this sample for

reconstructing (the technical term is estimating) the shape

and the parameter values of Y. We will spend the next section

on the topic of estimating a probability distribution from a

sample of values. This is a topic of more general interest than

Monte Carlo simulations, so we will keep the discussion quite

general, also covering the case of estimating the distribution of

input variables like X1 and X2.

2.5 Estimating a probability distribution in general

We will discuss the question of estimating a probability distri-

bution Z (including its parameters), given a sample of data, z1,

z2,…, zn. This task is known as the estimation problem, and it

is one of the central topics of inferential statistics. See, for

instance, Rice (2007) and Casella and Berger (2002) for gen-

eral textbooks.

Suppose we have a sample of data from an unknown sto-

chastic process, Z. Let the sampled values be indicated by zi,

for i = 1, …, n. If we want to estimate the probability
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distribution belonging to the stochastic process that generated

this sample, we must first make an assumption about the type

of distribution. Is it a normal distribution, a uniform distribu-

tion, a log-normal distribution, a Weibull distribution? This

choice is one of the trickiest parts of the entire estimation

process, because there is no clear guidance. Different aspects

can play a role here:

& Evidence: the data (e.g., a histogram or a boxplot) may

suggest a certain distribution.

& Conventions and compatibility with software: the log-

normal distribution has a longer and more widespread

history in LCA than the Erlang distribution.

& Familiarity and simplicity: if the histogram looks approx-

imately bell-shaped, a normal distribution is more natural

than the Cauchy distribution.

& Statistical criteria: we can use statistical tests (such as

those by Kolmogorov-Smirnov and Anderson-Darling)

to assess the goodness-of-fit with a number of probability

distributions.

Clearly, there are also cases where none of the conventional

model distributions provides a satisfactory fit with the empir-

ical data. We will not further discuss such cases, because the

usual procedure in LCA is to model input uncertainties in

terms of just a few distributions: lognormal, normal, uniform,

or triangular (Frischknecht et al. 2004) or perhaps a few more

(gamma and beta PERT; see Muller et al. 2016).

Once we have selected a probability distribution, the next

task is to estimate the parameter value or values of that distri-

bution. Suppose we have selected a normal distribution, so

Z∼N μZ ;σZð Þ

where μZ and σZ are the distribution’s parameters, which are

still unknown at this stage of the analysis. Then, our task is to

estimate the values of μZ and σZ that correspond best with the

sampled data. Different estimation principles are available in

the statistical literature to do this. Two widely used principles

are the method of moments and the method of maximum

likelihood. For the case of a normal distribution, these two

principles yield the same estimate of μZ and σZ, but for some

distributions, there is a difference in the outcome of the esti-

mation procedure. Anyhow, the theory of statistics offers for-

mulas for estimators, which are functions of the observations.

We can use the symbol of the parameter to be estimated with a

hat on top of it to indicate the estimator: μ̂ is an estimator of μ

and σ̂ is an estimator of σ. In the case of a normal distributions,

both estimation principles (method ofmoments and method of

maximum likelihood) suggest

μ̂Z ¼ 1

n
∑
n

i¼1

Z i

and

σ̂Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1

Z i−μ̂ZÞ2
�

s

as estimators for μZ and σZ. When applied to a concrete data

set, z1, z2, …, zn, these estimators produce a concrete value,

because we insert the observed values of zi at the place of the

stochastic variable Zi. These concrete values are the estimates,

which we will indicate hereafter as z and sZ.

Of course, we cannot expect that the estimates will be fully

accurate if the sample size is finite. The estimate z will be

hopefully close to the true value μZ, but probably it will be a

little bit off (that is also why we distinguish the symbols: in

general z≠μZ, but z≈μZ ). The same applies to the estimate sZ
of σZ.

The theory of inferential statistics not only allows to esti-

mate the values, but it also allows us to say something about

the level of precision of such estimates. This is done through

the theory of sampling distributions, standard errors, and con-

fidence intervals.

A sampling distribution is the probability distribution of an

estimator. Let us suppose we have a probability distribution Z∼

N(μZ, σZ), with unknown parameter μZ and known parameter

σZ, from which we sample n observations, and use the estimator

μ̂Z to estimateμZ by the value z. If wewould take another sample

of size n, we can use the same estimator to again estimate μZ, but

we will find a slightly different value z, because the sample will

contain different values. Repeating and repeating, always with

the same sample size n, we will end up with a distribution of z

values. This distribution will be referred to as Z.

The famous central limit theorem states that the distribution

of the estimates of the mean, Z, is normally distributed and that

there is a simple relation between its parameters (μZ and σZ )

and the parameters of the parent distribution Z (μZ and σZ):

Z∼N μZ;

σZ
ffiffiffi

n
p

� �

So, μZ ¼ μZ and σZ ¼ σZ
ffiffi

n
p . This first fact signifies that the

mean of the sample means corresponds to the mean of the

parent distributions. This is a convenient property, because it

allows to use the sample mean (z ) as the best guess of μZ. The

second fact tells us that the width of the distribution of Z (so

σZ ) depends on the width of the distribution of Z (so on σZ)

and on the size of the sample (so on n). In fact, σZ decreases

without limits when n increases. The important consequence

is that the estimate of μZ, z, is more precise when n is large and

that we can determine its value as precisely as we want by just

increasing sample size. The larger the sample, the more pre-

cise the estimate.
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The quantity σZ ¼ σZ
ffiffi

n
p is known as the standard error of the

mean, also known as Bthe^ standard error. For a precise esti-

mation of μZ, we want this σZ to be small. The only way to do

so is to use a large sample size n, because σZ is fixed. The

standard error is related to the concept of a confidence inter-

val. For the case of estimating μZ, the 95% confidence interval

is given by

CIμZ;0:95 ¼ z−1:96σ
Z

; zþ 1:96σ
Z

	 


This means that with 95% confidence, the interval CI will

contain the true value μZ that we are supposed to estimate by z.

Observe that the confidence interval has a width of

2� 1:96σZ ¼ 3:92σZ ¼ 3:92σZ
ffiffi

n
p . If we want this interval to

be smaller, we need to increase sample size n.

Above, we discussed how to estimate the parameter

μ when the parameter σ is known. Estimation of σ and

other parameters, and estimation of μ when σ is

unlnown, are technically more difficult, but conceptually

the idea is the same.

2.6 Estimating the probability distribution of input
variables

When we want to estimate the probability distribution of an

input variable (X1, etc.), we carry out the following steps:

& We sample data (x11, x12,…, x1n) from the phenomenon

(e.g., unit process).

& We choose a convenient probability distribution shape

(e.g., normal).

& We use the formulas for the estimators (μ̂X 1
, σ̂X 1

, etc.) to

find estimates (x1, sX 1
, etc.).

The estimated parameter values (x1, sX 1
, etc.) are Bbest

guesses^ given the available data. However, we cannot

expect that they are perfect estimates, because the confi-

dence interval of these parameters decreases with 1
ffiffi

n
p , and

n is usually limited. Of course, we can increase n by

collecting more primary data, but site visits and measure-

ments are usually expensive and time-consuming. For that

reason, in LCA, as in most other fields of science, n is

usually quite limited. The price we pay for that is a larger

standard error and a wider confidence interval.

2.7 Estimating the probability distribution of output
variables, given perfectly known inputs

Next, we move to the topic of estimating the probability dis-

tribution of an output variable (Y, etc.). Suppose, for

simplicity, we have one stochastic input variable, X, normally

distributed, with known parameters:

X∼N μX ;σXð Þ

Next, we define a very simple function of that variable:

Y ¼ f Xð Þ ¼ X

Of course, the distribution of the output variable Y is trivial:

Y∼N μX ;σXð Þ

and in particular, μY = μX. But, let us pretend we are bad in

probability theory and prefer to use a Monte Carlo approach.

We simulate Nrun instances of X (namely x1; x2;…; xN run
) and

use that to calculate Nrun instances of Y (namely y1 = x1, y2 =

x2, etc.). These values of y are used to estimate μY as follows:

y ¼ 1

N run

∑
i¼1

N run

yi

When the sample has been obtained in a random way,

we can also be sure that the estimate will converge to the

correct value:

lim
N run→∞

y ¼ μY ¼ μX

Likewise, we can estimate the standard deviation of Y, σY.

This can be used to find the standard error of the mean

s
Y

¼ sY
ffiffiffiffiffiffiffiffiffi

N run

p

The noteworthy aspect of this standard error is that it will

go to zero when Nrun grows very large:

lim
N run→∞

s
Y

¼ 0

As a consequence, the estimate of μYwill become arbitrari-

ly precise, if we have enough computer time:

lim
N run→∞

CIμY;0:95 ¼ μY;μY½ � ¼ μX;μX½ �

That is not surprising. If we would have been more

thoughtful, we could have saved the computer expenses and

directly deduce that μY = μX, with infinite precision. The sit-

uation is comparable to computing 1
2
þ 1

4
þ 1

8
þ 1

16
þ…, for a

large number of terms, or being more thoughtful and directly

writing this as
1
2

1−1
2

¼ 1. Both approaches yield approximately

the same result. So, when we want to use a Monte Carlo

approach to estimate the parameters of a probability distribu-

tion, we must use a large sample size Nrun to find a reliable

answer. The recommendations quoted in the introduction

(1000, 10,000, 100,000) are based on the situation described
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here: accurately estimating an output distribution on the basis

of perfect knowledge of the input distributions.

2.8 Estimating the probability distribution of output
variables, given imperfectly known inputs

But now, take the next case, a normal distribution with param-

eters μX and σX, but under the provision that μX itself is

slightly off, because we did not know μX but used its imper-

fect estimate x. So, we consider

X∼N x;σX

� �

Next, we again study the trivial function

Y ¼ f Xð Þ ¼ X

first analytically, using probability theory, and then through a

Monte Carlo simulation.

Analytically, we find

Y∼N x;σX

� �

The essential point to observe is that the mean of Y is not μX
but x, which is likely to be somewhat wrong.

Next, let us try this by a Monte Carlo simulation. We use y

to estimate μY. It will be close to x, rather than close to μX.

Moreover, the standard error of this estimate is still

sY ¼ sY
ffiffiffiffiffiffi

N run

p , so as close to 0 as we like. In fact,

lim
N run→∞

CIμY;0:95 ¼ x; x½ �

Summarizing, using probability theory and using the

Monte Carlo approach, both will give you the wrong value

(x instead of μX) when estimating μY, and the Monte Carlo

approach will in addition suggest that this estimate is very

precise due to a vanishing standard error, at least when

Nrun.is very large.

Observe that this is not a mistake or limitation of the

Monte Carlo approach. In fact, it performs very well. The

mistake is entirely due to the analyst, who uses an imper-

fectly estimated input parameter (x instead of μX) to run

an infinite-precision method. Also, observe that this is a

very ubiquitous situation in LCA: Most LCA data on unit

processes is obtained from limited samples. Even a

sample size of 1 is not uncommon. There is even a widely

used approach, referred to as the pedigree approach and

popularized by the ecoinvent database, of which the pur-

pose is to estimate a probability distribution on limited

data (Frischknecht et al. 2004; Weidema et al. 2013).

We devote a longer discussion to this problem toward

the end of this paper.

3 Numerical illustration

To test and illustrate these ideas, we did two simulation exper-

iments, first for one stand-alone system, and then for two

systems in a comparative analysis.

To illustrate the situation for one system, we made a small

code in R (Fig. 1) and used it to simulate the following case:

& The parent distribution is X ∼N(10, 1).

& We sample n = 16 observations, and estimate μX by x.

& We draw from Y∼N x;σXð Þ a Monte Carlo sample of size

Nrun = 100,000.

& From this sample, we estimate μY by y.

In our simulation, the results were as follows:

& x ¼ 10:31, σX ¼ 0:25, so the 95% confidence interval for

μX is [9.819, 10.799].

& y ¼ 10:31, σY ¼ 0:0031, so the 95% confidence interval

for μY is [10.305, 10.318].

The interpretation of these results are as follows:

& We misestimate μX (10.31 instead of 10.00).

& But, we acknowledge that it may be wrong, and in fact,

our 95% confidence interval contains the correct value (it

suggests a value somewhere between 9.8 and 10.8).

& We misestimate μY (10.31 instead of 10.00).

& But, we deny that it may be wrong, because our 95%

confidence interval is pretty sure about a value somewhere

10.30 and 10.32.

In conclusion, the Monte Carlo approach will yield a very

precise, but inaccurate, result.

Fig. 1 R code for generating a

largeMonte Carlo sample (Nrun =

100,000) from an input

distribution with limited precision
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The precision of an estimate plays an important role in

testing statistical hypotheses. When we would like to test a

statement like μX = 10, the null hypothesis significance testing

procedure would not reject the null hypothesis, because the

hypothesized value of 10 is in the 95% confidence interval

[9.819, 10.799]. On the other hand, the same procedure when

applied to the null hypothesis μY = 10 would lead to a rejec-

tion, because 10 is not in the 95% confidence interval

[10.305, 10.318].

The second example is about two systems, A and B, in a

comparative LCA: Seemingly precise estimates of the impact

of products A and B can lead to the conclusion that A is better

than B, while the real situation is that B is better than A. Or we

find that A is better than B, although they do not differ. To test

and illustrate this phenomenon, we made another computer

experiment (Fig. 2). We generate n = 16 samples from XA ∼

N(10, 1) and XB ∼N(10, 1). From these two samples, we esti-

mateμXA
through xA and μX B

through xB and do a two-sample

t test to test the hypothesis μXA
¼ μX B

. Next, we use Y1 =

f(X1) = X1 and Y2 = f(X2) = X2, and sample Nrun = 100,000

values from YA and YB. From this Monte Carlo sample, we

test the null hypothesis μYA
¼ μYB

. The p value of the first test

was 0.67 providing strong evidence of equality of μXA
and

μX B
. The second test yielded a p value around 10−16, pointing

to overwhelming evidence that μYA
≠μYB

.

This comparative case is even more interesting than the

first example, because decisions about purchases, ecolabels,

etc. are often taken on the basis of comparative assessments: Is

there evidence that one product is significantly better than

another product? Statistical hypothesis testing can provide

an answer to such questions, but the example shows that in-

accurately specified parameters of the parent distributions

may give a seemingly convincing wrong answer, because an

excessive number of Monte Carlo runs will optimize preci-

sion, ignoring inaccurate inputs.

4 Discussion and conclusions

Let us be a bit more explicit on the terminology: An estimate

can be imprecise or it can be inaccurate. The two have been

illustrated in various ways (Fig. 3). In our analysis of exam-

ple 1, we have an inaccurate estimate (y can be off quite a bit

due to small n in determining x ) with arbitrary high precision

(σY is almost zero due to very large Nrun). By reporting a very

small standard error of the mean, we suggest to have done a

high-quality calculation.

The discussion above took a very trivial function, namely

Y = f(X) = X as starting point. The storyline is no different for

more complicated cases, such as Y ¼ f X 1;X 2ð Þ ¼ X 1X
2
2 þ

lnX 1

4þsinX 2
or for functions of hundreds of input distributions Y =

f(X1, X2,…). Likewise, we used a normal distribution with

known standard deviation to start with. If the standard devia-

tion is unknown, or if the parent distribution is of a different

type (log-normal, binomial, ...), the mathematics is more dif-

ficult, but the take home message remains the same: with an

imprecise estimate of the input parameters, we can make a

very precise but probably inaccurate estimate of the output

parameters. Garbage in, garbage out, but the type of garbage

has changed: from imprecise to inaccurate. That is a problem,

because imprecision is visible through a large standard error of

the mean (x ¼ 10:31� 0:25 ), while inaccuracy is not visible

(y ¼ 10:31� 0:0031 ). As a result, the estimate will suggest

to be of high quality where it is not.

Superficially, it sounds better to make precise statements

than imprecise statements. But, when the statements are on

inaccurate values, this is not necessarily true.

In a statistical analysis, we can always draw wrong conclu-

sions (type I errors: not rejecting an incorrect null hypothesis,

type II errors: rejecting a correct null hypothesis), but this is a

completely different type of error: rejecting a null hypothesis

for which we have no appropriate data. The root of the prob-

lem is that we sample from inaccurately specified distribu-

tions. While we would naively expect that this leads to inac-

curate results, the statistical analysis neglects the inaccuracy

and concentrates on the precision. The imprecision declines

with the number of Monte Carlo runs, but the inaccuracy does

not. And, imprecision is visible, while inaccuracy is invisible.

The remedy is to maintain the imprecision in the estimate

of the input parameters. As long as the parameters of the input

distributions are imprecise, we should not be allowed to de-

crease the precision of the output distribution estimates

Fig. 2 R code for testing the

hypothesis of equality of means in

the input data X1 and X2,

generated from small samples

(nX A
¼ nX B

¼ 16 ), and of

equality of means in the output

results Y1 and Y2, generated with a

largeMonte Carlo sample (Nrun =

100,000)
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without limits. How can this be done? One simple way is to

put an upper limit to the number of Monte Carlo runs. If the

estimate of the input parameter μX is based on a sample of n =

16 data points, perhaps we should not do more than Nrun = 16

Monte Carlo runs. While this sounds fair, a complication is

that we need more guidance on the case of more complicated

functions than just Y = X, for instance Y ¼ X 1X
2
2 þ lnX 1

4þsinX 2
. If

X1 has been sampled with nX 1
¼ 16 and X2 with nX 2

¼ 9,

what should we take for the number of Monte Carlo runs,

Nrun? Perhaps the weakest link defines our maximum quality,

so our Monte Carlo run could do with just 9 runs in this case.

The result is a very imprecise estimate of μY, but visibly im-

precise. The solution of taking a small number ofMonte Carlo

runs by the way also solves the problem of overly significant

results (Heijungs et al. 2016).

Another remedy is of course to determine the parameters of

the input distributions with more precision, so using a larger

sample size nX 1
, nX 2

, etc. In practice, this is, however, not

easy. Many of the millions of data in the LCA model come

from general purpose generic databases, and recollecting these

data from multiple sites and at multiple days would be a hor-

rendous task.

A final point is the case of probability distributions with

parameters that have not been estimated from data, but for

which a procedural estimation has been used. An important

example is the earlier-mentioned pedigree approach, where

data quality indicators, for instance for representativeness

and age, define default standard deviations. The popular

ecoinvent database is a major example here (Frischknecht

et al. 2004; Weidema et al. 2013), but the approach is also

becoming popular in other areas (Laner et al. 2016). For such

data, it is often unclear what the sample size of the data is, so it

is not possible to estimate the precision of the mean in terms of

a standard error. But, it will be clear that the parameters of the

input distribution are not at all accurate, so a propagation into

almost infinitely precise Monte Carlo output results is as mis-

leading as the parameter-based procedure on which our main

argument was based. An ultimate consequence is that such

pedigree-based probability distributions are incompatible with

large-scale Monte Carlo simulations. This is an important

take-home message of our analysis, because the pedigree ap-

proach has grown into a major paradigm for estimating stan-

dard deviations of LCA data, andMonte Carlo has become the

default procedure for propagating uncertainties in LCA. The

incompatibility of the two has, as far we know, not been rec-

ognized before, and our analysis does not suggest any way

out. This suggests a major area of research in dealing with

uncertainty in LCA.

References

BIPM (Bureau International des Poids et Mesures) (2008) Evaluation of

measurement data – Supplement 1 to the BGuide to the expression of

uncertainty in measurement^ – Propagation of distributions using a

Monte Carlo method. (https://www.bipm.org/utils/common/

documents/jcgm/JCGM_101_2008_E.pdf)

Burmaster DE, Anderson PD (1994) Principles of good practice for the

use of Monte Carlo techniques in human health and ecological risk

assessments. Risk Anal 14:477–481

Casella R, Berger RL (2002) Statistical inference. Second edition,

Duxbury

Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Heck T, Hellweg S,

Hischier R, Nemecek T, Rebitzer G, SpielmannM (2004) Overview

and methodology. Ecoinvent report no. 1. Swiss Centre for Life

Cycle Inventories

Gharamani S (2005) Fundamentals of probability with stochastic process-

es. Third edition, Pearson

Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of

sampling-based methods for uncertainty and sensitivity analysis.

Rel Eng Sys Saf 91:1175–1209

Heijungs R, Suh S (2002) The computational structure of life cycle as-

sessment. Kluwer Academic Publishers

Heijungs R, de Koning A, Wegener Sleeswijk A (2015) Sustainability

analysis and systems of linear equations in the era of data abun-

dance. J Env Acc Man 3:109–122

Fig. 3 Illustration of the difference between precision and accuracy. The left figure illustrates both; the middle one is an example of low precision and the

right one is an example of low accuracy. Source: https://en.wikipedia.org/wiki/Accuracy_and_precision

Int J Life Cycle Assess (2020) 25:394–402 401

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
https://en.wikipedia.org/wiki/Accuracy_and_precision


Heijungs R, Henriksson PJG, Guinée JB (2016) Measures of difference

and significance in the era of computer simulations, meta-analysis,

and big data. Entropy 18:361

Heijungs R, Guinée JB, Mendoza Beltrán A, Henriksson PJG, Groen E

(2019) Everything is relative and nothing is certain. Toward a theory

and practice of comparative probabilistic LCA. Int J Life Cycle

Assess 24:1573–1579

Hongxiang C, Wei C (2013) Uncertainty analysis by Monte Carlo simu-

lation in a life cycle assessment of water-saving project in green

buildings. Inf Technol J 12:2593–2598

Huijbregts MAJ (1998) Application of uncertainty and variability in

LCA. Part I: a general framework for the analysis of uncertainty

and variability in life cycle assessment. Int J Life Cycle Assess 3:

273–280

ISO (2006) ISO 14044. Environmental Management – Life Cycle

Assessment – Requirements and Guidelines. International

Organization for Standardization

JRC-IES (2010) ILCD Handbook. International Reference Life Cycle

Data System. General Guide for Life Cycle Assessment. Joint

Research Centre

Laner D, Feketitsch J, Rechberger H, Fellner J (2016) A novel approach

to characterize data uncertainty in material flow analysis and its

application to plastics flows in Austria. J Ind Ecol 20:1050–1063

Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing

uncertainty in life-cycle assessment. J Ind Ecol 11:161–181

McCleese DL, LaPuma PT (2002) Using Monte Carlo simulation in life

cycle assessment for electric and internal combustion vehicles. Int J

Life Cycle Assess 7:230–236

Mendoza Beltrán MA, Prado V, Font Vivanco D, Henriksson PJG,

Guinée JB, Heijungs R (2018) Quantified uncertainties in compar-

ative life cycle assessment: what can be concluded? Environ Sci

Technol 52:2152–2161

Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Ass

44:335–341

Muller S, Lesage P, Ciroth A, Mutel C, Weidema BP, Samson R (2016)

The application of the pedigree approach to the distributions fore-

seen in ecoinvent v3. Int J Life Cycle Assess 21:1327–1337

Rice JA (2007) Mathematical statistics and data analysis. Third edition,

Thomson

Ross S (2010) A first course in probability. Eighth edition, Pearson

Shonkwiler RW, Mendivil F (2009) Explorations in Monte Carlo

methods. Springer

Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J,

Vadenbo CO, Wernet G (2013) Overview and methodology. Data

quality guideline for the ecoinvent database version 3. Ecoinvent

Report 1 (v3). The ecoinvent Centre

Xin L (2006) Uncertainty and sensitivity analysis of a simplified

ORWARE model for Jakarta. Stockholm (https://www.diva-portal.

org/smash/get/diva2:411539/FULLTEXT01.pdf)

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

402 Int J Life Cycle Assess (2020) 25:394–402

https://www.diva-portal.org/smash/get/diva2:411539/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:411539/FULLTEXT01.pdf

	On the number of Monte Carlo runs in comparative probabilistic LCA
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Probability theory
	Mathematical models
	Probabilistic models
	Probability distributions of input variables
	Probability distributions of output variables
	Estimating a probability distribution in general
	Estimating the probability distribution of input variables
	Estimating the probability distribution of output variables, given perfectly known inputs
	Estimating the probability distribution of output variables, given imperfectly known inputs

	Numerical illustration
	Discussion and conclusions
	References


