On the Number of Open Sets of Finite Topologies

RICHARD P. STANLEY

Department of Mathematics, Harvard University,

Cambridge, Massachusetts 02138

Communicated by Gian-Carlo Rota

Received March 26, 1969

ABSTRACT

Recent papers of Sharp [4] and Stephen [5] have shown that any finite topology with n points which is not discrete contains $\leq (3/4)2^n$ open sets, and that this inequality is best possible. We use the correspondence between finite T_0 -topologies and partial orders to find all non-homeomorphic topologies with n points and $\geq (7/16)2^n$ open sets. We determine which of these topologies are T_0 , and in the opposite direction we find finite T_0 and non- T_0 topologies with a small number of open sets. The corresponding results for topologies on a finite set are also given.

If X is a finite topological space, then X is determined by the minimal open sets U_x containing each of its points x. X is a T_0 -space if and only if $U_x = U_y$ implies x = y for all points x, y in X. If X is not T_0 , the space \hat{X} obtained by identifying all points x, $y \in X$ such that $U_x = U_y$, is a T_0 -space with the same lattice of open sets as X. Topological properties of the operation $X \to \hat{X}$ are discussed by McCord [3]. Thus for the present we restrict ourselves to T_0 -spaces.

If X is a finite T_0 -space, define $x \le y$ for $x, y \in X$ whenever $U_x \subseteq U_y$. This defines a partial ordering on X. Conversely, if P is any partially ordered set, we obtain a T_0 -topology on P by defining $U_x = \{y/y \le x\}$ for $x \in P$. The open sets of this topology are the *ideals* (also called semi-ideals) of P, i.e., subsets Q of P such that $x \in Q$, $y \le x$ implies $y \in Q$.

Let P be a finite partially ordered set of order p, and define $\omega(P) = j(P) \, 2^{-p}$, where j(P) is the number of ideals of P. If Q is another finite partially ordered set, let P + Q denote the disjoint union (direct sum) of P and Q. Then j(P + Q) = j(P)j(Q) and $\omega(P + Q) = \omega(P)\omega(Q)$. Let H_p denote the partially ordered set consisting of p disjoint points, so $\omega(H_p) = 1$.

THEOREM 1. If $n \ge 5$, then up to homeomorphism there is one T_0 -space with n points and 2^n open sets, one with (3/4) 2^n open sets, two with (5/8) 2^n open sets, three with (9/16) 2^n , two with (17/32) 2^n , two with (1/2) 2^n , two with (15/32) 2^n , five with (7/16) 2^n , and for each m = 6, 7,..., n, two with $(2^{m-1}+1)$ 2^{n-m} . All other T_0 -spaces with n points have <(7/16) 2^n open sets, giving a total of 2n + 8 with $\ge (7/16)$ 2^n open sets.

PROOF. Consider the 18 partially ordered sets $P_1, ..., P_{18}$ of order 5 in Figure 1. Any partial order P weaker than some P_i (meaning P_i can be

j(P ₁) = 32	j(P ₇) ≈ 18	j (P ₁₃) = 15
j (P ₂) = 24	j (P ₈) =17	j (P ₁₄) = 14
j (P ₃) = 20	j (P ₉) = 17	j (P ₁₅) = 14
∫ (P ₄) = 20	j (P ₁₀) = 16	j (P ₁₆) = 14
j (P ₅) = 18) (P ₁₁) = 16	j (P ₁₇) = 14
j(P ₆) ≈18	j (P ₁₂) =15	j (P ₁₈) = 14

Fig. 1. Five-element partially ordered sets with maximal j(P).

obtained from P by imposing additional relations $x \leq y$) is itself one of the P_i . Each P_i satisfies $\omega(P_i) \geq 7/16$. Suppose Q is obtained from P by adjoining more points to P and imposing additional relations. Then $\omega(Q) \leq \omega(P)$ with equality if and only if $Q = P + H_m$ for some m. By inspection of all possibilities it can be verified that:

- (1) if P is obtained from one of $P_1, ..., P_{18}$ by imposing any additional relations $x \leq y$, then $\omega(P) < 7/16$, unless P is again one of $P_1, ..., P_{18}$,
- (2) if P is obtained from one of $P_1, ..., P_{18}$ by adjoining one additional point and imposing any additional relations $x \leq y$ which do not give

76 STANLEY

 $P_i + H_1$ for some j = 1,..., 18, then $\omega(P) < 7/16$, with the exception of adjoining a point above the minimal element of P_8 or below the maximal element of P_9 , and

(3) if P is obtained by adjoining two points x, y to one of P_1 ,..., P_{18} and the additional relation $x \le y$ imposed, then $\omega(P) < 7/16$ unless $P = P_j + H_2$ for some j = 1,..., 18.

If any of the procedures (1), (2), (3) is iteratively applied to the two exceptions in (2), the resulting partially ordered sets P always satisfy $\omega(P) < 7/16$ unless P is the partial order obtained by adjoining either a minimal element or a maximal element to H_{m-1} . In this case $\omega(P) = (2^{m-1} + 1) 2^{-m}$. Thus any partially ordered set P of order $p \ge 5$ satisfying $\omega(P) \ge 7/16$ must be of the form $P_i + H_{p-5}$, i = 1,..., 18, or $\overline{H}_{m-1} + H_{p-m}$, where \overline{H}_{m-1} is H_{m-1} with a minimal or maximal element adjoined. The proof of Theorem 1 now follows.

If X is not necessarily a T_0 -space, of order n, and if the " T_0 -quotient" \hat{X} has order $m \leq n$, then X and \hat{X} have the same number of open sets. From this observation we can deduce:

THEOREM 2. If $n \ge 3$, then up to homeomorphism there is one "non- T_0 " space with n points and (1/2) 2^n open sets, three with (3/8) 2^n open sets, and all the rest have (3/8) 2^n open sets.

We omit the details of the proof. It is not difficult to use the partial orders of Figure 1 to refine Theorem 2, but we will not do this here. Theorem 2 suggests the following question: Given a T_0 -space X of order n, how many spaces Y, up to homeomorphism, are there of order n+r, $r \ge 0$, satisfying $\hat{Y} = X$? The solution follows from a straightforward application of Pólya's theorem [1, Ch. 5, especially p. 174]; again we omit the details.

THEOREM 3. Let X be a T_0 -space of order n. Let $Z_X(x_1, x_2,...)$ be the cycle index polynomial [1, Ch. 5] of Aut X, the group of homeomorphisms $X \to X$, regarded as a permutation group on X. Then the number of non-homeomorphic spaces Y of order n + r satisfying $\hat{Y} = X$ is equal to the coefficient of x^r in the expansion of $Z_X(1/(1-x), 1/(1-x^2),...)$.

EXAMPLES. (1) Let X be the three point T_0 -space whose corresponding partial order is obtained by adjoining a minimal element to H_2 . Then $Z_X(x_1, x_2, ...) = \frac{1}{2}(x_1^3 + x_1x_2)$, and

$$Z_X(1/(1-x), 1/(1-x^2),...) = \sum_{r=0}^{\infty} (1/8)(2r^2 + 8r + 7 + (-1)^r) x^r.$$

(2) If the open sets of Y are totally ordered by inclusion, then Y is called a *chain-topology* [5]. Suppose $X = \hat{Y}$ has order m, so that Y has m non-empty open sets. Then $Z_X(x_1, x_2, ...) = x_1^m$ and

$$Z_X(1/(1-x), 1/(1-x^2),...) = \sum_{r=0}^{\infty} {r+m-1 \choose r} x^r.$$

The total number of non-homeomorphic chain topologies with n points is

$$\sum_{m=1}^{n} {n-m+m-1 \choose n-m} = 2^{n-1}.$$

The question of which T_0 -spaces of order n have the least number of open sets can be treated similarly. If P is a partially ordered set with p points, then $\omega(P)$ is a minimum when P is a chain, in which case $\omega(P)=(p+1)\,2^{-p}$. The next smallest value of $\omega(P)$ occurs when only one pair of points x,y of P are unrelated. The remaining p-2 points can be arranged so that m of them form a chain below x,y and p-m-2 of them a chain above x,y, for any m=0,1,...,p-2. For each of these $P,\omega(P)=(p+2)\,2^{-p}$. The next smallest value of $\omega(P)$ must occur when P has two pairs of incomparable points. This can occur in one of two ways:

- (1) x < y, with z unrelated to both x and y. The remaining p-3 points can be arranged so m_1 of them form a chain above y and z and m_2 below x and z, with $m_1 + m_2 = p 3$. For p > 1, this yields a total of p-2 such P's with $\omega(P) = (p+3) 2^{-p}$.
- (2) x and y unrelated, z and w unrelated, but each of x and y lying below each of z and w. The remaining p-4 points can be arranged so m_1 of them form a chain below x and y, m_2 above x and y but below z and w, and m_3 above z and w, with $m_1+m_2+m_3=p-4$. For p>1, this yields a total of $\frac{1}{2}(p-2)(p-3)$ such P's, again with $\omega(P)=(p+3) 2^{-p}$. This proves:

THEOREM 4. If $n \ge 2$, then up to homeomorphism there is one T_0 -space with n points and n+1 open sets, n-1 with n+2 open sets, $\frac{1}{2}(n-1)(n-2)$ with n+3 open sets, and all the rest have > n+3 open sets.

The analog of Theorem 4 for non- T_0 spaces is obtained by applying Theorem 3 to partially ordered sets P with minimal j(P).

THEOREM 5. If $n \ge 5$, $r \ge 0$, then up to homeomorphism there is one "non- T_0 " space with n + r points and two open sets, r + 1 with three open

78 STANLEY

sets, $\frac{1}{4}(2r+3+(-1)^r)+\binom{r+2}{2}$ with four open sets, $\frac{1}{4}(2r^2+8r+7+(-1)^r)+\binom{r+3}{3}$ with five open sets, and all the rest have >5 open sets.

Instead of considering finite spaces up to homeomorphism, we could consider *labeled* finite spaces, i.e., finite spaces on a given set. If X is an n-point space with Aut X of order g, then there are n!/g ways of putting a topology on a set of order n homeomorphic to X. This observation allows us to state analogs of Theorems 1-5 for labeled spaces. We omit the proofs. We use the notation $(n)_k = n(n-1) \cdots (n-k+1)$.

THEOREM 1'. If $n \ge 5$, then there is one labeled T_0 -topology with n points and 2^n open sets, $(n)_2$ with (3/4) 2^n open sets, $(n)_3$ with (5/8) 2^n open sets, $(5/6)(n)_4$ with (9/16) 2^n , $(1/12)(n)_5$ with (17/32) 2^n , $(n)_3 + (n)_4$ with (1/2) 2^n , $(n)_5$ with (15/32) 2^n , $(9/4)(n)_4 + (n)_5$ with (7/16) 2^n , and for each m = 6, $7, \ldots, n$, $2(n)_m/(m-1)!$ with $(2^{m-1}+1)$ 2^{n-m} . All the rest have <(7/16) 2^n open sets.

THEOREM 2'. If $n \ge 3$, then there are $(1/2)(n)_2$ labeled "non- T_0 " topologies with n points and (1/2) 2^n open sets, $(1/2)(n)_4 + (n)_3$ with (3/8) 2^n open sets, and all the rest have < (3/8) 2^n open sets.

THEOREM 3'. Let X be a T_0 -space of order m, with Aut X of order g. The number of labeled topologies Y of order n such that \hat{Y} is homeomorphic to X is the coefficient of $x^n/n!$ in the expansion of $(1/g)(e^x - 1)^m$.

EXAMPLES. (1') Let X be the space of Example (1). Then m = 3, g = 2, and

$$\frac{1}{2}(e^x-1)^3=\sum_{n=3}^{\infty}\frac{1}{2}(3^n-3\cdot 2^n+3)(x^n/n!).$$

(2') Let Y be a chain topology, with Y having m points. Here g = 1, and the number of labeled chain topologies with n points and m non-empty open sets is the coefficient of $x^n/n!$ in the expansion of $(e^x - 1)^m$, an observation of Stephen [5]. The total number of labeled chain topologies with n points is the coefficient of $x^n/n!$ in the expansion of

$$\sum_{m=0}^{\infty} (e^x - 1)^m = 1/(2 - e^x).$$

A labeled chain topology may also be regarded as an *ordered set partition* or *preferential arrangement*. Preferential arrangements are discussed by Gross [2].

THEOREM 4'. If $n \ge 2$, then there are n! labeled T_0 -topologies with n points and n+1 open sets, (1/2)(n-1)n! with n+2 open sets, (1/8)(n-2)(n+5)n! with n+3 open sets, and all the rest have >n+3 open sets.

THEOREM 5'. If $n \ge 4$, then there is one labeled "non- T_0 " topology with n points and two open sets, $2^n - 2$ with three open sets, $(1/2)(2 \cdot 3^n - 5 \cdot 2^n + 4)$ with four open sets, $4^n - 3 \cdot 3^n + 2^n - 3$ with five open sets, and all the rest have > 5 open sets.

REFERENCES

- E. F. BECKENBACH, Ed., Applied Combinatorial Mathematics, Wiley, New York, 1964.
- 2. O. A. Gross, Preferential Arrangements, Amer. Math. Monthly 69 (1962), 4-8.
- 3. M. C. McCord, Singular Homology Groups and Homotopy Groups of Finite Topological Spaces, *Duke Math. J.* 33 (1966), 465-474.
- 4. H. SHARP, Jr., Cardinality of Finite Topologies, J. Combinatorial Theory 5 (1968), 82-86.
- 5. D. STEPHEN, Topology on Finite Sets, Amer. Math. Monthly 75 (1968), 739-741.