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On the number of real roots of a solvable polynomial

by

C. U. Jensen (Copenhagen)

1. Introduction and Loewy’s theorem. By a classical theorem the
number of real roots of an irreducible polynomial f(X) of odd prime degree
p over a real number field K is either 1 or p if the Galois group of f(X) over
K is solvable. This result was generalized by A. Loewy in the following way:

For a polynomial f(X) we let r(f) denote the number of real roots of
f(X).

Loewy’s theorem. Let K be a real number field and f(X) an irre-
ducible polynomial in K[X] of odd degree n. If p is the smallest prime divi-
sor of n and the Galois group of f(X) over K is solvable, then r(f) = 1 or
n or satisfies the inequalities p ≤ r(f) ≤ n− p+ 1.

When the degree of f(X) is a prime number the above theorem is an
immediate corollary to the following

Galois’ theorem. Let f(X) be an irreducible separable polynomial
over a field K having a solvable Galois group over K. If the degree of f(X)
is a prime number , then any two roots of f(X) generate the splitting field
of f(X) over K.

Galois’ theorem, which is basically a group-theoretic result, cannot be
generalized to yield a proof of Loewy’s theorem. Indeed, for any odd prime
number p and any t, 1 ≤ t ≤ p, there exists an irreducible polynomial f(X)
in Q[X] of degree p2 with solvable Galois group having t roots α1, . . . , αt
such that no other root of f(X) lies in the field Q(α1, . . . , αt).

Loewy’s theorem was published in [3], a journal which is not easily avail-
able (1). Loewy’s (rather long) proof does not use Galois theory. It might
then be of some interest to give a proof using Galois theory and also yielding
a sharpening of Loewy’s theorem. We shall do this in Section 2. In Section 3
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(1) The author is grateful to Helmut Koch for providing him a copy of that paper.
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we, in particular, prove that Loewy’s theorem is in some sense best possible.
For these purposes it is convenient to introduce the following notation.

For a real number field K and a positive odd integer n we define

CK(n) = {r(f) | f is an irreducible polynomial of degree n in K[X]

with a solvable Galois group}
and define C(n) as the union of the CK(n)’s, K running through all real
number fields. In other words a positive integer N belongs to C(n) if and
only if there exists a real number field K and an irreducible polynomial f(X)
in K[X] having degree n and solvable Galois group such that r(f) = N .

By induction on the degree Loewy’s theorem is an immediate conse-
quence of the following

Theorem 1. For any positive odd integer n > 1 we have the following
inclusion:

(♦) C(n) ⊆
⋃
C(d′)〈d〉,

where d and d′ run through the divisors of n such that dd′ | n and d′ 6= n.
Here for a set A of integers A〈d〉 denotes the set of numbers that can be
written as a sum of d numbers in A.

The inclusion (♦) in Theorem 1 is an equality if the degree n is a power
ph of an odd prime p. Indeed—as we shall prove in Section 3—if K is a real
number field then there exists an irreducible solvable polynomial in K[X]
of degree ph with r real roots if and only if r ≤ ph and r is ≡ 1 mod (p− 1).
In the above terminology this is expressed in

Theorem 2. For every real number field K and every power n = ph

of an odd prime number p, the set CK(n) consists exactly of the natural
numbers ≤ ph which are ≡ 1 mod (p− 1).

By these results knowledge of the number of real roots of an irreducible
polynomial may yield some information about the Galois group of the poly-
nomial. For instance, if the number of real roots of an irreducible polynomial
of degree ph is 6≡ 1 mod (p− 1) the Galois group of the polynomial is not
solvable.

2. Proof of Theorem 1. The proof of Theorem 1 is based on four
lemmas. We omit the proofs of Lemmas 1 and 2 since they are just easy
exercises in standard Galois theory.

Lemma 1. Let L/K be a finite Galois extension with Galois group G
and let f(X) be a monic irreducible polynomial in K[X] of degree n. All
irreducible polynomials in L[X] that divide f(X) have the same degree. If
g(X) is a monic divisor of f(X) and irreducible in L[X] then f(X) is the
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product of the distinct automorphic images of g(X) under G. The number
of irreducible factors of f(X) in L[X] is a divisor of n and of [L : K].

Lemma 2. Let K be a real number field and L/K a finite abelian ex-
tension. If β is a real number in L, then σβ is also a real number in L
for all σ ∈ Gal(L/K). If f(X) is an irreducible polynomial in K[X] with at
least one real root , then every irreducible monic polynomial in L[X] dividing
f(X) has real coefficients.

Lemma 3. Let K be a number field which is invariant under complex
conjugation and c a real number in K. Assume K contains a primitive pth
root of unity ζp, where p is an odd prime. Let L = K( p

√
c), p
√
c being the

real root of xp − c. If β is a real number in L \K, then σβ is non-real for
σ ∈ Gal(L/K) \idL.

Proof. We may assume that p
√
c 6∈ K. The number β can be uniquely

written as β =
∑p−1
i=0 ai(

p
√
c)i, where ai ∈ K and ai 6= 0 for at least one i,

1 ≤ i ≤ p− 1.
In the following x denotes the complex conjugate of a number x. Since

β =
∑p−1
i=0 ai(

p
√
c)i and ai ∈ K and β is real, we conclude that ai is real for

all i’s.
For the non-trivial automorphism σ in Gal(L/K) we may assume that

σ( p
√
c) = ( p

√
c)ζp. Now,

σβ =
p−1∑

i=0

ai( p
√
c ζp)i, σβ =

p−1∑

i=0

ai( p
√
c ζp)

i.

If σβ were real, then σβ = σβ and thus aiζip = aiζ
−i
p for all i’s. But there

exists an i, 1 ≤ i ≤ p − 1, such that ai 6= 0. But since p is odd, ζip 6= ζ−ip .
This gives the desired contradiction.

Lemma 4. Let K be a number field which is invariant under complex
conjugation and contains a primitive pth root of unity ζp, p being an odd
prime number. Let α be a number in K such that the real value of p

√
c lies

in K, where c = |α|2 = αα. Then if β is a real number in the field extension
L = K( p

√
α), all automorphic images σβ, σ ∈ Gal(L/K), are real.

Proof. Clearly, we may assume that α 6∈ Kp. If β is an arbitrary number
in L, we may write

β =
p−1∑

i=0

ai( p
√
α)i, ai ∈ K.

If we as before let x denote the complex conjugate of x we get:

p
√
α p
√
α = p

√
c, ( p

√
α)i =

( p
√
c)i

α
( p
√
α)p−i
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hence

β =
p−1∑

i=0

ai ( p
√
α)i =

p−1∑

i=0

ai
( p
√
c)i

α
( p
√
α)p−i.

Since K is invariant under complex conjugation we have:

β real ⇔ β = β ⇔ a0 = a0 and ap−i = ai
( p
√
c)i

α
, 1 ≤ i ≤ p− 1.

Now let β be a real number in L. If σ is a non-trivial automorphism
in Gal(L/K) then σβ =

∑p−1
i=0 aiζ

i( p
√
α)i, ζ being some primitive pth root

of unity. Since β is real we conclude that a0 = a0 and ap−i = ai( p
√
c)i/α,

0 ≤ i ≤ p− 1, which in turn implies

ap−iζ
p−i = aiζi

( p
√
c)i

α
, 1 ≤ i ≤ p− 1.

Consequently σβ = σβ, i.e. σβ is real.

We are now in a position to prove Theorem 1. Let f(X) be an irreducible
polynomial in K[X] of odd degree n, where K is a real number field and the
Galois group of f(X) over K is solvable. f(X) has at least one real root.

Let ζ be an arbitrary root of unity. If f(X) is reducible in K(ζ) by Lem-
ma 1 all irreducible factors of f(X) in K(ζ) have the same degree, which
must be a proper divisor d′ of n. Since the number of factors d = n/d′ is
odd and possible factors with non-real coefficients must appear in pairs of
complex conjugates there must be at least one factor with real coefficients.
Hence f(X) becomes reducible in (K(ζ) ∩ R)[X].

Since K(ζ)/K is abelian the extension (K(ζ)∩R)/K is Galois; therefore
by Lemma 1 all irreducible factors of f(X) in K(ζ)[X] lie in (K(ζ)∩R)[X].
Hence r(f) ∈ C(d′)〈d〉, where d′ 6= n. Thus (♦) in Theorem 1 is verified in
this case.

We may therefore assume that f(X) is irreducible in K(ζ)[X] for every
root of unity ζ. Let γ be a real root of f(X) and consider a radical extension
of K containing γ. Clearly we may assume that the radical extension is built
up by simple radical extensions of prime degrees. We let t be the product
of all the prime numbers appearing in the degrees of the simple radical
extensions. ζt denotes a primitive tth root of unity.

Now, let

(?) K0 = K(ζt), K1 = K0( p1
√
α1), α1 ∈ K0, . . . ,

Ks = Ks−1( ps
√
αs), αs ∈ Ks−1,

be a radical extension of K containing γ, the degrees p1, . . . , ps being prime
numbers.
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We replace (?) by the following radical extension:

(??) K ′1 = K0( p1
√
α1α1), K ′′1 = K ′1( p1

√
α1), . . . ,

K ′s = K ′′s−1( ps
√
αsαs), K ′′s = K ′s( ps

√
αs),

which will also contain γ.
We note that all the fields in (??) are invariant under complex conjuga-

tion.
We consider the first field in the series (??) in which f(X) is reducible.

We distinguish between two cases:

(1) The first such field is K ′i = K ′′i−1( pi
√
αiαi) for some i, 1 ≤ i ≤ s

(where we set K ′′0 = K0).
(2) The first such field is K ′′i = K ′i( pi

√
αi) for some i, 1 ≤ i ≤ s.

(1) Here f(X) is irreducible in K ′′i−1[X], but reducible in K ′i[X] =
K ′′i−1( pi

√
αiαi)[X]. Because of Lemma 1, pi must be odd. The minimal poly-

nomial g(X) of γ over K ′i is a divisor of f(X) in K ′i[X] and the degree of
g(X) is n/pi, since K ′i/K

′′
i−1 is a Kummer extension of degree pi.

g(X) has real coefficients; otherwise γ would also be a root of the com-
plex conjugate polynomial g(X). Since f(X) has real coefficients and g(X)
divides f(X) so would g(X). Clearly g(X) and g(X) are relatively prime.
Consequently g(X)g(X) would divide f(X) and thus γ would be a multiple
root of f(X).

Since f(X) is irreducible in K ′′i−1[X] at least one coefficient in g(X) is
not in K ′′i−1. Since this coefficient is real Lemma 3 implies that σg(X) has
at least one non-real coefficient for every σ ∈ Gal(K ′i/K

′′
i−1), σ 6= idK′i . By

Lemma 1 every monic irreducible polynomial in K ′i[X] which is 6= g(X) and
divides f(X) has at least one non-real coefficient. Since K ′i is invariant under
complex conjugation each of these non-real factors must occur in pairs of
complex conjugates. As before we see that none of these factors has a real
root. Hence all real roots of f(X) are roots of g(X).

Therefore r(f) = r(g) and hence r(f) ∈ C(n/pi) (= C(n/pi)〈1〉), where
the degree n/pi of g(x) is a proper divisor of n. Thus the inclusion (♦) is
verified in this case.

(2) Here f(X) is irreducible in K ′i[X] but reducible in

K ′′i [X] = K ′i( pi
√
αi)[X].

By the construction of (??) the field K ′i contains pi
√
αiαi.

The minimal polynomial g(X) of γ over K ′′i divides f(X) and has de-
gree n/pi. Just as in case (1) it follows that g(X) has real coefficients. By
Lemma 1 the monic irreducible polynomials in K ′′i [X] that divide f(X) are
automorphic images of g(X) under the action of Gal(K ′′i /K

′
i). By Lemma 4

each of these polynomials has real coefficients. There are pi such factors of
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f(X) in K ′′i [X]. Each of these factors has coefficients in the real number
field K ′′i ∩ R and is irreducible over this field. Hence r(f) is a number in
C(n/pi)〈pi〉 and the inclusion (♦) is also verified in this case. The proof of
Theorem 1 is now complete.

3. Proof of Theorem 2 and construction of solvable polynomials
with prescribed number of real roots. In this section we first show that
the bounds given in the original formulation of Loewy’s theorem are best
possible, and next in the case where the degree of the polynomial is an odd
prime power we give the precise numbers of real roots that can occur.

For this we need the following well known slight sharpening of Hilbert’s
irreducibility theorem:

Theorem 3. Let K be an algebraic number field and F (X,T1, . . . , Tu)
an irreducible polynomial in K[X,T1, . . . , Tu]. The rational u-tuples (q1, . . .
. . . , qu) for which F (X, q1, . . . , qu) is irreducible in K[X] are everywhere
dense in the Euclidean space Ru.

Proof (sketch). By [2, Prop. 3.3, p. 236] the assertion is reduced to the
case where K = Q. By iterative use of Kronecker specializations (cf. [2,
Prop. 3.1, p. 234]) it is reduced to the case where u = 1. The theorem then
follows from [2, Cor. 2.5, p. 231].

We first prove that for any odd natural number n and any prime di-
visor p of n there exist—over an arbitrarily prescribed real number field
K—irreducible polynomials f1(X) and f2(X) having degree n and solvable
Galois groups such that r(f1) = p and r(f2) = n− p+ 1.

Since there exist cyclic extensions of any degree over any number field
the existence of f1(X) is just a special case of the following

Theorem 4. Let n be an odd natural number and d a divisor of n. Then
for any real number field K we have the inclusion

CK(d) ⊆ CK(n).

Proof. Let f(X) be a monic irreducible polynomial in K[X] of degree d
having a solvable Galois group over K. We have to construct an irreducible
polynomial g(X) in K[X] of degree n having a solvable Galois group over K
and the same number of real roots as f(X) has. The polynomial f(Xn/d+T )
is irreducible in K[X,T ]. Indeed, f(T ) is irreducible in K[X,T ], hence so is
f(Xn/d+T ). Clearly, f(Xn/d) and f(X) have the same number of real roots
(which are simple). Hence f(Xn/d + q) and f(X) have the same number of
real roots for every sufficiently small (in absolute value) rational number q.
By Theorem 3 we can choose such a q so that f(Xn/d + q) is irreducible
in K[X]. Clearly, f(Xn/d + q) has solvable Galois group and thus has the
desired properties.
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The existence of f2(X) is a consequence of the following

Theorem 5. For any two odd natural numbers m and d and any real
number field K we have

CK(md) ⊇ {d, d+ (m− 1), d+ 2(m− 1), . . . , d+ d(m− 1)}
= {d+ t(m− 1) | 0 ≤ t ≤ d}.

For the proof we use the existence of aDm-generic polynomial, where Dm

is the dihedral group of order 2m,m being an odd integer> 1 (cf. [1, Chap. 5]
or [4, Section 3]). This means that there is a polynomial f(X,T1, . . . , Tν) ∈
Q[X,T1, . . . , Tν ] of degree m with respect to X with the following properties:

(i) The Galois group of f(X,T1, . . . , Tν), viewed as a polynomial in X
over the function field Q(T1, . . . , Tν), is Dm.

(ii) For every field K of characteristic 0 and every Galois extension M of
K with Dm as Galois group there exist elements k1, . . . , kν in K such
that M is the splitting field over K for the specialized polynomial
f(X, k1, . . . , kν).

Now let L be a cyclic extension of degree d over K. Any quadratic
extension of L can be embedded into a Dm-extension of L. Let π be a
number in L such that π 6∈ γL2 for every γ in every proper subfield of L. (For
instance, let π be the generator of a principal prime ideal in the ring OL of
integers in L, such that the prime ideal Zp in Z determined by Zp = OLπ∩Z
splits completely in [L : Q] distinct prime ideals in OL.)

Let β1, . . . , βν be numbers in L such that the splitting field over L for the
specialized generic Dm-polynomial f(X,β1, . . . , βν) is a Galois extension of
L containing

√
π and having Dm as Galois group. Then f(X,β1, . . . , βν) is

necessarily irreducible in L[X] and—by the construction of π—no proper
subfield of L contains all its coefficients. This implies that the product
F (X,β1, . . . , βν) of the polynomials σf(X,β1, . . . , βν), σ running through
the automorphisms in the Galois group of L/K, is an irreducible polyno-
mial in K[X].

Let α be a primitive element for L/K, i.e. L = K(α). We write

β1 =
d−1∑

µ=0

k1µα
µ, . . . , βν =

d−1∑

µ=0

kνµα
µ

where the k’s are numbers in K.
If α = α1, α2, . . . , αd are the conjugates of α with respect to K, the

above polynomial F (X,β1, . . . , βν) can be written

d∏

i=1

f
(
X,

d−1∑

µ=0

k1µα
µ
i , . . . ,

d−1∑

µ=0

kνµα
µ
i

)
.
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The polynomial obtained by replacing the k’s by variables, i.e.

F (X,U10, . . . , Uν,d−1) :=
d∏

i=1

f
(
X,

d−1∑

µ=0

U1µα
µ
i , . . . ,

d−1∑

µ=0

Uνµα
µ
i

)
,

is an irreducible polynomial in K[X,U10, . . . , Uν,d−1].
Since there exist Dm-extensions of Q whose unique quadratic subfield

is imaginary quadratic, and Dm-extensions of Q whose unique quadratic
subfield is real quadratic, there are rational numbers a1, . . . , aν such that
f(X, a1, . . . , aν) has exactly m real roots and rational numbers b1, . . . , bν
such that f(X, b1, . . . , bν) has exactly one real root. Moreover, the roots of
these polynomials are simple.

For an integer t, 1 ≤ t ≤ d, we consider the following ν systems of linear
equations:

aj =
d−1∑

µ=0

xjµα
µ
i , 1 ≤ j ≤ ν, 1 ≤ i ≤ t,

bj =
d−1∑

µ=0

xjµα
µ
i , 1 ≤ j ≤ ν, t+ 1 ≤ i ≤ d.

Since the determinant of the matrix {αµi } (1 ≤ i ≤ d, 0 ≤ µ ≤ d− 1) is 6= 0,
the above systems have a solution xjµ inside L.

The polynomials f(X,
∑d−1
µ=0 x1µα

µ
i , . . . ,

∑d−1
µ=0 xνµα

µ
i ) have exactly m

real roots for 1 ≤ i ≤ t, and exactly one real root for t+ 1 ≤ i ≤ d.
If the above numbers xjµ are replaced by rational numbers qjµ sufficiently

close to xjµ the new polynomials will have the same number of real roots
as the original polynomials. The product

d∏

i=1

f
(
X,

d−1∑

µ=0

q1µα
µ
i , . . . ,

d−1∑

µ=0

qνµα
µ
i

)

will then have tm+ (d− t) = d+ t(m− 1) real roots.
Since F (X,U10, . . . , Uν,d−1) is irreducible in K[X,U10, . . . , Uν,d−1] it fol-

lows from Theorem 3 that the qjµ’s can be chosen so that moreover the
specialized polynomial F (X, q10, . . . , qν,d−1) is irreducible in K[X]. Obvi-
ously F (X, q10, . . . , qν,d−1) has solvable Galois group.

We are now able to prove Theorem 2: If n is a power ph of an odd prime
number p, it is immediate to check that every number in the set

⋃
CK(d′)〈d〉

appearing in Theorem 1 is ≡ 1 mod (p− 1). Conversely, by application
of Theorems 4 and 5 setting m = p and successively d = p, d = p2, . . . ,
d = ph−1, we see that every natural number ≤ ph which is ≡ 1 mod (p− 1)
lies in CK(ph).
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4. Concluding remarks. It would be natural to ask for a description
of the set CK(n) when n is an odd positive integer not necessarily a prime
power. The main obstacle to give a complete answer is that it is unknown (to
the author) whether the inclusion (♦) in Theorem 1 is actually an equality.
Even if this were true a precise description would be rather complicated.

So far we only have fragmentary results. For certain numbers n (for
every K) the set CK(n) is just the set of odd numbers from 1 to n. This
holds if n = 3t ·u, where 3 -u and 3t ≥ u−2. For instance if n = 15, CK(15)
consists of all odd numbers from 1 to 15, while for n = 21, CK(21) consists
of all odd numbers from 1 to 21 except 5. [Hence an irreducible polynomial
of degree 21 with exactly 5 real roots cannot have a solvable Galois group.]

As the referee has kindly pointed out, Theorems 1, 4 and 5 easily imply
that (for every K) CK(pq) = {1 + a(p− 1) + b(q− 1) | 0 ≤ a ≤ q, 0 ≤ b ≤ p,
min(a, b) ≤ 1} for any two distinct odd primes p and q. However, if n
is divisible by more than two distinct primes, the methods in this paper
probably do not allow a precise description of CK(n).

Finally we remark that the results in Section 2 will be valid for an arbi-
trary ordered field K if R is replaced by the corresponding real closure of K.
As for the results from Section 3 it is likely that they may be carried over
to any ordered field K if one moreover assumes that K is a Hilbertian field.
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