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Abstract
While several image-based rendering techniques have

been proposed to successfully render scenes/objects from
a large collection (e.g., thousands) of images without ex-
plicitly recovering 3D structures, the minimum number of
images needed to achieve a satisfactory rendering result re-
mains an open problem. This paper is the first attempt to in-
vestigate the lower bound for the number of samples needed
in the Lumigraph[4]/light field rendering[5].

To simplify the analysis, we consider an ideal scene with
only a point that is between a minimum and a maximum
range. Furthermore, constant-depth assumption and bilin-
ear interpolation are used for rendering. The constant-depth
assumption serves to choose “nearby” rays for interpola-
tion. Our criterion to determine the lower bound is to avoid
horizontal and vertical double images, which are caused by
interpolation using multiple nearby rays. This criterion is
based on the causality requirement in scale-space theory,
i.e., no “spurious details” should be generated while smooth-
ing. Using this criterion, closed-form solutions of lower
bounds are obtained for both 3D plenoptic function (Concen-
tric Mosaics[8]) and 4D plenoptic function (light field). The
bounds are derived completely from the aspect of geometry
and are closely related to the resolution of the camera and
the depth range of the scene. These lower bounds are further
verified by our experimental results.

1 Introduction
A number of image-based rendering techniques have

been proposed to render a novel view from a collection of
densely captured image sequences, without 3D reconstruc-
tion of the scene/object, or explicit feature correspondence.
These techniques collect a set of samples of the plenoptic
function[1], which describes the irradiance perceived from
the observer’s viewpoints. The original plenoptic function is
7-dimensional, defined as the intensity of light rays passing
through the optical center at every location, at every pos-
sible viewing angle, for every wavelength and at any time.
The dimensionality is reduced to five by ignoring time and
wavelength[6]. By restricting the viewpoints or the objects
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inside a box, light field[5] and Lumigraph[4] reduce the di-
mension of sampling to four. Concentric mosaics further
reduces the sampling dimension to three by constraining
the viewpoints inside a 2D planar circle[8]. The simplest
plenoptic function collected at a fixed viewpoint is a two di-
mensional panorama (e.g., [2, 9]).

These light field rendering techniques, however, failed
to analyze how many images need to be captured in order
to render a new view without noticeable artifacts. In other
words, what is the lower bound or the minimum number of
samples needed for light field rendering? Oversampling has
become a common practice in light field capturing. It is im-
portant to study the light field sampling problem. First, the
minimum sampling analysis serves as a guidance on how to
capture the environment, e.g., how densely cameras should
be spaced. The fewer images we capture, the less storage
we need. Second, until the minimum sampling problem is
addressed, compression ratio of light field images/data does
not make much sense. It is possible to remove part of the
redundancy from uniformly oversampled dense sequence of
images by compression. There is, however, a difference be-
tween traditional image/video compression and light field
compression. In light field compression, every new view,
not every original image, needs to be reconstructed. Sam-
pling analysis is tightly coupled with the rendering process
itself.

Light field rendering techniques avoid explicit 3D con-
struction of the environment because it is difficult to recover
3D depth accurately from images. However, using depth
knowledge greatly improves the rendering quality and also
affects minimum sampling rate. In our analysis, constant-
depth assumption and bilinear interpolation are used to im-
prove the quality of rendering. We also consider an ideal
scene with only a single point that is between a minimum
and a maximum depth.

Given the capturing and rendering camera resolutions, our
criterion to determine the lower bound is to avoid horizontal
and vertical double images, which are caused by interpola-
tion using multiple nearby rays. This criterion is based on
the causality requirement in scale-space theory, i.e., no “spu-
rious details” should be generated while smoothing. Details
of minimum sampling analysis is dependent on the captur-



ing and rendering configurations of the light fields. In this
paper, we study two possible configurations: 3D Concentric
Mosaics and 4D light field. But the essential idea is also ap-
plicable to other capturing configurations. The problem of
pruning the samples is left for future work.

The remainder of this paper is organized as follows. In
Section 2, we set up the problem and introduce necessary
assumptions in order to study the sampling problem. In Sec-
tion 3, we present our methodology based on the causality
principle in scale-space theory. Then we apply our analy-
sis to rendering with Concentric Mosaics in Section 4, and
light field in Section 5. Finally we conclude our paper with
a discussion and future work.

2 The problem statement
Our theoretical analysis of minimum sampling for light

field rendering is based on a number of reasonable assump-
tions about scene, camera, and interpolation methods. We
assume that the ideal scene consists of only a point that is
between a maximum distance and a minimum distance, cap-
tured by a camera that has a finite angular resolution �. For
minimum sampling analysis, a point is representative. The
angular dimension of the point is sufficiently small compared
to �, but not zero.

2.1 Camera resolution
In our analysis, a pin-hole camera model is adopted. What

a camera sees is a blurred version of the plenoptic func-
tion because of finite camera resolution. A pixel value is
a weighted integral of the illumination of the light arriving at
the camera plane, or the convolution of the plenoptic func-
tion at the optical center with a low-pass filter. The same
filter is applied to all pixels. The shape of the filter is com-
pactly supported, with the width of support being the angular
resolution �. As a result, the camera is taking samples of ~F ,
the convoluted plenoptic function at the optical center. The
value of a pixel is exactly the value of ~F at the direction
linking the pixel and the optical center.

Throughout this paper, we will use angular resolution,
vertical and horizontal, to facilitate the deduction. And we
assume uniform angular resolution if the field of view of the
capturing camera is small (e.g., a typical video camera has
a fairly small FOV � 40�). We also assume the resolution
of the rendering camera is the same as that of the capturing
camera. We always decouple the sampling into horizontal
and vertical directions, so that the interpolation and illustra-
tion will be simple.

2.2 Bilinear interpolation with constant-depth as-
sumption

In light field rendering, bilinear interpolation and
constant-depth assumption are used to improve the quality
of rendered images. With constant-depth assumption, all the
objects seen by the camera are hypothesized on a simple sur-
face, e.g., a cylinder or a plane. Constant-depth assumption

Figure 1: Bilinear interpolation with constant-depth assump-
tion: the ray from V is interpolated using four rays from
cameras at C1 and C2 that intersect near the point P on the
constant-depth surface.

Figure 2: The intensity distribution of the ideal point changes
from parabolic to wedge-like due to finite resolution of cam-
era and linear interpolation.

is used to choose “nearby” rays in the ray space for render-
ing. In fact, any approach to find “nearby” rays inherently
involves an assumption on depth. For example, interpolation
using parallel rays assumes infinite depth. It has been shown
in [10] that interpolation using constant-depth assumption
yields better rendering results.

Figure 1 illustrates the concept of bilinear interpolation
with constant-depth assumption. Suppose that we want to
render a view at V , and the viewing ray hits the constant-
depth surface at P . C1 and C2 are two nearby positions of
the camera that are closest to V P , and CiDij (i; j = 1; 2)

are nearby rays in camera Ci that are closest to the ray CiP .
The pixel value of V P is bilinearly interpolated, e.g., ac-
cording to the angles 6 DijCiP and 6 CiPV (i; j = 1; 2)

[10].
To better understand sampling and linear interpolation,

we redraw the rays in the camera coordinate, where the hor-
izontal axis represents the angle of the ray shooting from
the optical center. In Figure 2(a), camera C1 is taking pic-
tures of a point L. C1D10 is the nearest sampling ray to
C1L, while C1D11 and C1D12 are two nearby rays. In Fig-
ure 2(b), the vertical line at 0 represents the ray C1L, the
parabola-like curve is the value of ~F , or the intensity distri-
bution of the point L in the continuous case. C1D10 is by
angle " (� �

2
� " < �

2
) apart from C1L, therefore the pixel

value corresponding to the ray C1D10 is just the value of ~F



at ". Since the angles of C1D11 and C1D12, or " � � and
"+ � respectively, are outside of [� �

2
; �
2
), the intensity at the

two corresponding pixels is zero. After linear interpolation,
the intensity distribution of the point L will become 2� wide
and of wedge-shape.

3 Our sampling analysis methodology
3.1 When is rendering acceptable?

We now consider in what cases the rendered image is rea-
sonable and acceptable. Note that bilinear interpolation is
a good filtering choice because it preserves enough details
and yet has sufficient width of support. But if the distance
between successive camera locations is too wide apart, even
bilinear interpolation introduces artifacts, appearing as dou-
ble images. This phenomenon of double images was also
observed by Levoy and Hanrahan [5] in light field render-
ing. Double images are the most salient and visually dis-
turbing artifact when the sampling rate is too low. In our
rendering experience, we even could hardly figure out or de-
tect other types of artifacts with the presence of double im-
ages. Double images are caused by incorrect depth informa-
tion used by corresponding interpolation rays. If the object
is at a constant-depth, there should not be any artifact assum-
ing that the object surface is Lambertian. If the object is near
the constant-depth surface, the rendered image will appear
blurry. When the object is farther away from the constant-
depth surface, double images become more apparent when
the sampling rate is inadequate.

From the point of view of image processing, sampling
is a smoothing process of the plenoptic function because of
the finite resolution of the capturing camera. Interpolation is
another smoothing process. Under Lambertian premise, ig-
noring slight occlusion change, the value of every pixel on
the interpolated image can be computed by weighting sev-
eral pixels on only one of the images chosen for interpola-
tion. The weighting template is pixel-dependent, but it is
still a smoothing procedure. From the causality requirement
in scale-space theory ([7]), i.e., no “spurious detail” should
be generated when smoothing, visible double images should
be avoided and blurring is acceptable. Human perception is
also more tolerant to blurring than to double images.

3.2 How do double images happen?
Double images degrade the visual quality of the rendered

images. Now let’s explain why this happens. As shown in
Figure 3, C1 and C2 are two nearby cameras. CiL intersects
the constant-depth surface S at Pi (i = 1; 2). Around Pi,
there are two wedge-like intensity distributions of point L.
The rays fromC1 do not contribute to the distribution around
P2 if L is not close enough to S, because the rays near C1P2
are zero. Similarly, the rays from C2 do not contribute to the
distribution aroundP1 either. If the two patterns of the inten-
sity distributions do not overlap, then some of the rendering
rays can fall in the gap between the two patterns. As a result,

Figure 3: Double images of L appear on the rendered image:
if C1 and C2 are too far away, or if L is not close to the
constant-depth surface.

Figure 4: Geometry for concentric mosaics.

on the rendered image the double images of L will appear.
Greater details will be shown in Section 4.3.

Therefore, the condition to avoid double images is that
the intensity distributions of the point projected onto the
constant-depth surface must at least meet each other. This
resembles the Rayleigh criterion in the diffraction theory of
optics ([3]), that two objects are said to be just resolved if
the central spot of the diffraction pattern of one object falls
on the first minimum of the diffraction pattern of the other
object. Since we are treating discrete images, the criterion
can be relaxed to the clearly resolved case.

Now we can apply this condition to both 3D plenoptic
function (Concentric Mosaics) and 4D plenoptic function
(light field) in the following sections.

4 3D plenoptic function
4.1 Review of Concentric Mosaics

Concentric Mosaics form a 3D plenoptic function by col-
lecting all rays from a rotating camera on a plane[8]. At
each rotation angle, an image with multiple verticle lines is
captured. The nth concentric mosaic is created by putting
together the nth verticle lines in all the images captured.
Concentric Mosaics index all input image rays naturally in
3 parameters: radius, rotation angle and vertical elevation. It
has been shown that any novel view inside the visible region
can be rendered without any 3D reconstruction. As shown in
Figure 4, a camera swings on the circle S1. And a constant-
depth circle (or cylindrical surface) S2 is assumed for ren-
dering. To render a novel ray (e.g., OP2), first we find its in-
tersection point (P2) with the constant-depth surface. Then
two nearest rays (C1P2 and C2P2) from nearby cameras (C1

and C2) are interpolated to generate the rendering result.



Figure 5: Double images happen when two wedges do not
touch: the angle between successive positions of the camera
is too wide or the point is too far from the constant-depth
surface.

4.2 The minimum sampling condition
We now move from the cylindrical coordinate in Figure 4

to Figure 5 where the horizontal axis represents the angle of
the ray starting from the cylinder center O, the two wedge-
like intensity distributions of the point L might not overlap
if C1 and C2 are not sufficiently close and L is not near S2.
As shown in Figure 5,

1. �i is the position of OPi,

2. �i + "0i is the position of ODi0, where CiDi0 is the
nearest ray (see C1D10 in Figure 2(a)) to CiL viewed
from Ci (to save notation, we assume that Dij (i =

1; 2; j = 0; 1; 2) are on S2), and

3. �i+"0i��
0 are positions ofODi1 andODi2 (seeC1D11

and C1D12 in Figure 2(a)) respectively,

where "0i is the angle between OPi and ODi0, and �0 is the
angle between ODi0 and ODij (j = 1; 2)1.

In this case, if �2 + "02 � �0 > �1 + "01 + �0, when the
viewer is atO and the viewing-rays are indicated by the thick
dashed-lines in Figure 5, the rendered image of the point L
will appear double.

Therefore, to avoid double images, that �2 + "02 � �0 �

�1 + "01 + �0 must be fulfilled, or equivalently

�2 � �1 � "01 � "02 + 2�0: (1)

This is the condition when L is outside S2. If L is inside S2,
it becomes

�1 � �2 � "02 � "01 + 2�0: (2)

Because L is random, both (1) and (2) must be fulfilled.
Furthermore, "01� "02 can take an arbitrary value in [�� 0; �0).
Therefore, the final condition to avoid double images is

j�2 � �1j � �0: (3)

1Note that since � is extremely small and the FOV of the camera is fairly
small, these four angles are nearly equal.

4.3 Lower bound analysis
Referring to Figure 4, suppose in polar coordinate L =

(�; �), C1 = (r; 0), C2 = (r; �), P2 = (R; �), then � satis-
fies:

R sin � � r sin �

� sin�� r sin �
=
R cos � � r cos �

� cos�� r cos �
;

since P2 is on the line C2L. The above equation can be writ-
ten as:

1

r
sin(� � �)�

1

�
sin(� � �) =

1

R
sin(� � �): (4)

Because the angle of the point is between two successive
positions of the camera, the three angles � � �, � � � and
� � � are all small, (4) can be linearized to:

1

r
(� � �)�

1

�
(� � �) �

1

R
(� � �):

Hence

� �
�(R � r)� � r(R � �)�

R(�� r)
: (5)

Therefore, for successive positions of the camera (with same
R, r, � and �),

j��j = j�1 � �2j �

���� �R � 1
�

r
� 1

��

���� : (6)

Next, we set out to find the relationship between � 0 and �.
Referring to Figure 6, for the triangle4OCQ, using the law
of sines, we have

jCQj

sin'0
=

R

sin'
=

r

sin('� '0)
; (7)

Again, because ' is relatively small (typically j'j � �
10

, and
j sin �

10
� �

10
j < 0:0052) and '0 < ', the above relation can

be linearized as

jCQj

'0
�
R

'
�

r

'� '0
;

hence jCQj � R� r. Therefore, the relationship between � 0

and � is

�0 =

_

PQ

R
�
jCQj�

R
�

R� r

R
� = (1�

r

R
)�: (8)

Combining (3), (6) and (8), we obtain:

j��j �

����(�r � 1)( r
R
� 1)

�

R
� 1

���� �:
If the depth of the point L is constrained between A and

B (r < A � � � B and A � R � B), then the maximum

value of
��� �

R
�1

(
�

r
�1)( r

R
�1)

��� is

m =
1

1� r
R

�max

(
�

A
R
� 1

A
r
� 1

;
B
R
� 1

B
r
� 1

)
(9)



Figure 6: The relationship between � and � 0.

Therefore a bound for the number of pictures is:

N1 =

�
2�m

�

�
;

where dxe denotes the smallest integer not less than x.
On the other hand, since the FOV of the camera is lim-

ited, the patches that every picture projected onto the cylin-
der must cover the cylinder, otherwise the bilinear interpo-
lation could not be properly carried out. Accordingly, the
number of pictures should also be larger than:

N2 =

�
2�

�

�
;

where � = 1
2
FOV � arcsin

�
r
R
sin

�
1
2
FOV

��
; using the

second equality in (7).
Finally, the lower bound we attain is

N = maxfN1; N2g: (10)

Note that we are not saying that if the number of pictures
is greater than N then the visual quality will be acceptable.
Rather, if the number of pictures is less than N then even the
simplest scene with only a point could not be properly ren-
dered. The theoretical lower bound should be higher than the
one we have deduced above. However, when the scene be-
comes more complex, one might not notice too much artifact
due to the characteristics of human vision. Consequently, the
actual lower bound will not deviate too much from the one
we estimated.

The above analysis only considers the horizontal resolu-
tion. Our study shows that adding the vertical resolution does
not improve the minimum sampling rate.
4.4 Optimal constant-depth R

Instead of simply choosing constant-depth R = A+B
2

,
Eq.(9) can guide us to find a better constant-depth R, such
that m is minimized, and the number of pictures required
becomes smaller. Such an R satisfies:

�
A
R
� 1

A
r
� 1

=
B
R
� 1

B
r
� 1

R =
2AB � (A+B)r

A+B � 2r
: (11)

One can easily check that A � R � A+B
2

; and the equal-
ities hold only for A = B. This choice of R is reasonable
because closer objects will be distorted more and thus need
more accurate depth information.

One should be cautious to provide relatively accurate
minimum and maximum depths so that the computed op-
timal constant depth can really take effect. Fortunately,
this isn’t a difficult task to measure them. Moreover, since
B > A, R is much less sensitive to B. Therefore, only the
minimum depth needs to be accurate.

It is interesting to rewrite (11) as:

2

R� r
=

1

A� r
+

1

B � r
;

which means that the optimal constant depth is exactly the
harmonic mean of the minimum and maximum depths. It is
also worth noting that such choice of R can make the objects
at the minimum depth and the miximum depth be rendered
equally sharply.
4.5 Validity of the bound

1. If the scene is truly at a constant-depth, e.g., a painted
cylinder, then A = B = R. In this case N = N2,
which is true.

2. If the scene is infinitely far away, let R chosen as (11),
then

m =
r( 1

A
� 1

B
)

2(1� r
A
)(1� r

B
)
: (12)

When A ! 1 and B ! 1, m ! 0. Again N = N2,
which is also true.

3. If r ! 0, then the concentric mosaics will reduce to a
panorama, and the number of pictures needed is N 2. In
this case, m ! 0 and N = N2. The lower bound is
correct again.

4. The above examples are all extreme cases. Our analysis
will proceed with real data. Figure 7 illustrates the top
view of a real scene. The scene is enclosed by an ellipse
and the center of the camera rig is placed near one of the
focal points of the ellipse. The scales are labeled in the
figure. The radius of the rig is 1.7m. The horizontal
FOV of the camera is 43� and each picture taken by the
camera is 360 pixels by 288 pixels. ThenA = 3:4,B =

16:6, r = 1:7, and � = 43
360

� �
180

� �
1500

. To achieve
the best quality, R is chosen as (11), thus R = 4:75.
Then N = 1329. Figure 10 is a panoramic view of part
of the scene. Figure 8 compares the details between the
rendered scenes with two different sampling rates. We
can see that when the number of pictures is 1479, the
scene is rather satisfactory, while clear double images
appear in the scene reconstructed from 986 pictures. In
this experiment, the lower bound we computed is fairly
accurate.



Figure 10: Part of a panoramic view of a real scene.

5 4D plenoptic function
5.1 Lightfield rendering

In light field rendering proposed by Levoy and Hanrahan
[5], a 4D light field is parameterized by light slab representa-
tion, where an oriented line is defined by connecting a point
on the (u; v) plane to a point on the (s; t) plane. Both the
uv and st planes are uniformly discretized. The light field
is captured by placing a camera on the uv plane and making
it face the st plane. Images are taken at each grid on the uv
plane. To ensure that the captured light rays pass the grids on
the st plane, sheared perspective projection and resampling
are employed. To render a novel ray, first its intersection
points with the uv and st planes are computed and then the
nearest 16 (or part of the 16) sampling rays in the light slab
around the novel ray are selected to interpolate the novel ray.
The configuration of uv and st planes is flexible according
to the scene to be rendered. Similar configuration was also
proposed in Lumigraph [4]. Here we will only apply the cri-
terion in Section 3.1 to the light field of “Lion” (Figure 14(d)
in [5]) to analyze the maximum allowable distance between
successive camera locations.

5.2 The maximum camera spacing
In the lion light field, four-slab arrangement is used for

inward-looking views of a lion placed at the origin. Each
slab is a copy of the one shown in Figure 9, rotated by every
90 degrees along the origin O. During rendering, the light
slab is resampled. The resampling process is simply inter-
polating the 4D function from the nearest samples. Quadra-
linear interpolation in both uv and st planes gives improved
visual quality, and therefore is used in our analysis. Again,
we suppose that the scene consists of only one point.

Note that quadra-linear interpolation implicitly assumes
that the scene is of constant-depth: on the st plane. To de-
rive the maximum horizontal displacement of the camera,
we place the point on the base-plane, then the interpolation
becomes bilinear. Without loss of generality, we set up a co-
ordinate as in Figure 11, where L = (x0; y0) is the point
in the scene, C1 and C2 are two nearby places of the cam-
era, C1D10 and C2D20 are two rays in the light slab that are
nearest to C1L1 and C2L2 respectively. A slight difference

is that we assumed a constant-depth plane that is parallel to
but might not be the st plane. The distance between the two
planes is R. We notice that, due to perspective projection,
if the slant of C1L is too small the original intensity distri-
bution of the point L may stride over several intervals on st
plane (Figure 12). The more the intervals, the blurrier the
point becomes.

Let D11 be the first grid on the st plane that is outside and
on the left of the “shadow” of L and D 0

11 is the point that
C1D11 intersects the constant-depth plane. D 0

22 is defined
alike. Following the analysis in the previous section, to avoid
double images, D0

11 must be at the left of D0

22.

It is easy to compute that the x-coordinates of L1 and L2

are:

x1 = �a+
d(x0 + a)

y0 + d
; and x2 = a+

d(x0 � a)

y0 + d

respectively. Suppose Di0 is by "i apart from Li and Dii is
by Ni�

0 away from Di0 (i = 1; 2), where Ni is a positive
integer and �0 is the sample spacing on st plane, then the
x-coordinates of D 0

11 and D0

22 are:

x011 = �a+
�
d(x0+a)

y0+d
+ "1 �N1�

0

��
1 +

R

d

�
;

x022 = a+
�
d(x0�a)

y0+d
+ "2 +N2�

0

��
1 +

R

d

�
:

From x011 � x022, we have

�2a �
(y0 �R)d

(y0 + d)(R + d)
� (N1 +N2)�

0 + ("2 � "1) (13)

Since the position ofL is arbitrary, "2�"1 can vary between
��0 and �0. Therefore the following condition must be satis-
fied:

�2a �
(y0 �R)d

(y0 + d)(R + d)
� (N1 +N2 � 1)�0

The above condition is deduced when y0 < R. If y0 > R,
the corresponding condition is

2a �
(y0 �R)d

(y0 + d)(R + d)
� (N1 +N2 � 1)�0



Figure 7: Top view of a real scene.

Figure 8: A close-up view of the scene reconstructed: from
986 pictures (top) and 1479 pictures (bottom).

Figure 9: Top view of the light slab in the lion light field. The
constant-depth is implicitly assumed to be on the st plane.

Figure 11: Rendering a single point L with light field.

Figure 12: Due to perspective projection, the “shadow” of
a point (curve-shaped) may be much wider than the sample
spacing on st plane.

Summing up, the condition to avoid double images is

2a � (N1 +N2 � 1)�0 �
(y0 + d)(R+ d)

jy0 �Rjd

= (N1 +N2 � 1)� �
(y0 + d)(R + d)

jy0 � Rj

(14)

where � is the horizontal resolution of the camera.
If y0 is between A(� R) and B(� R), then taking the

minimum value of the right hand side of (14) gives the max-
imum allowed distance between two places of the camera,
namely

Dmax = �(R+ d) �min

�
A+ d

R�A
;
B + d

B �R

�
(15)

The coefficient N1 +N2 � 1 vanishes because it equals to 1
when L is near the origin.

The above formula is for horizontal spacing. Similarly,
the formula for vertical spacing is

Dv
max = �v(R+ d) �min

�
A+ d

R�A
;
B + d

B �R

�
(16)

where �v is the vertical resolution of the camera.
By making A+d

R�A
= B+d

B�R
, we can find the optimal

constant-depthR for light field rendering, namely

R =
2AB + (A+B)d

A+B + 2d
:

We see that since jAj � d and jBj � d, it is important that
A + B � 0 so that the st plane is a good constant-depth



plane. Therefore, the object must be placed carefully so that
its center is at the origin, as done in [5].

Again, one can check that the optimal R given above
is also the harmonic mean of the minimum and maximum
depths, provided that the zero-depth plane is moved to the
uv plane.

5.3 An Example
In the “Lion” light field rendering shown in [5], it was

reported that d = 0:5m and picture size is 256 by 256. We
guessed2 dFOV = 26�.

� For side view of the lion, Â = �0:02m, B̂ = 0:02m,
then � = 26

256
� �
180

� �
1800

and Dmax � 2cm.

� For front view of the lion, Â = �0:05m, B̂ = 0:05m,
then Dmax � 8mm.

Therefore, the sampling rates of the lion light field should
be very different for front and side views. In [5], it is reported
that the adopted spacing is 3.125cm, regardless of front and
side views. The authors also revealed that double images
appeared in their experiments, and the situation became the
worst near the head and tail of the lion. It appears that the
computed spacing is comparable to the spacing used in the
capturing rig for the Lion data set.

6 Conclusion and future work
In this paper, we have presented an investigation of the

lower bound for the number of samples required in light
field/Lumigraph rendering. Our analysis serves as a guid-
ance for how to capture light field and for how to effectively
compress a large amount of light field data. Our analysis
is based on the casuality requirement in scale-space theory,
i.e., blurred images are acceptable but double images result-
ing from interpolation must be eliminated. By simplifying
the scene to a point, we infer that the two patterns of in-
tensity distribution of the point, generated by projecting the
point onto the constant-depth surface from two nearby posi-
tions of the camera, must at least meet each other. We have
concluded that a minimum number of images have to be cap-
tured to avoid artifacts from light field rendering, and the
lower bound is closely related to the camera resolution and
the scene depth complexity. In addition, an optimal constant-
depth can be found for the best rendering quality.

We have applied the lower bound analysis to 3D Con-
centric Mosaics and 4D light field. For Concentric Mosaics,
only the horizontal resolution is analyzed to determine the
sampling rate. The lower bound from our analysis agrees
fairly well with the real data in our experiments. For light
field, maximum camera spacing in both horizontal and ver-
tical directions is studied. The lower bound for light field is

2Unfortunately, we do not know the exact values of FOV, A and B in
the Lion data set.

also comparable with that listed in [5] considering the visual
quality reported in the paper.

While the experimental results are encouraging, the lower
bound would be more accurate if we also incorporate fre-
quency distribution of the scene (e.g., textured regions) and
the characteristics of human vision. Our analysis is carried
out completely from the geometric aspect. Variation in the
scene texture will significantly affect the minimum sampling
rate. For example, few data points should be required if the
scene is uniformly textured. Characteristics of human vision
are also important for the sampling analysis.

We are currently working on how to reduce the large
amount of light field data based on the sampling analysis.
From this analysis, we see that without correct depth infor-
mation during interpolation, incorrect rays will be selected,
unless very dense samples are captured. A simple way to
reduce data size is to discard some of the samples in slowly-
varying areas in the scene or ray space. Another way is to es-
timate the approximate scene depth. Estimating depth from
large amount of light field data could be easier than that in
traditional computer vision. We are also working on how ac-
curately the depth should be estimated and which samples
need to be kept with the estimated approximate depth infor-
mation.
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