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Abstract. Let E = GF(qm) be the m-dimensional extension of F = GF(q).

We are concerned with the numbers sd(m, q) and sdn{m, q) of self-dual

bases and self-dual normal bases of E over F , respectively. We completely de-

termine sd(m , q), en route giving a very simple proof for the Sempel-Seroussi

theorem which states that sd(m, q) = 0 iff q is odd and m is even. Using

results of Lempel and Weinberger and MacWilliams, we can also determine

sdn(m, p) for primes p .

1. Introduction

Let E — GFiq'") De the w-dimensional extension of F = GFiq), the finite

field with q elements. (See Lidl and Niederreiter [15] for background on finite

fields.) We recall that the trace function Tr.E —► F is defined by

TO- I

(1) Tria) = a + aq + ■ ■ ■ + a"      ;

it is well known that  Tr is a linear mapping from E onto F.   Moreover,

setting

(2) ia,ß) = Triaß)

defines a nondegenerate symmetric bilinear form on E (over F ), called the

trace bilinear form. The elements ax, ... , am e E form a basis of E over F

if and only if

(3) det^=det

f   a,       ...      am   \
a,

m-\

/o.
Vin— I in— i      t

a\ ...    a"m     J
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a — {a {, ... , am} is called a trace-orthogonal basis, iff one has

(4) Tr(otfCtj) = 0,        for /'# j, i,je{l,..., m}.

If additionally

(5) Tr(a. ) = 1       for i = 1,..., m.

then a is called a self-dual basis. Finally, a basis of the form aj = aq

(i = 0, ... , m — 1) for some a 6 £ is called a normal basis. Both self-

dual and normal bases (and, in particular self-dual normal bases) are useful in

applications, e.g. the construction of devices for the arithmetic in finite fields

(multiplication, exponentiation, discrete logarithms; e.g. see [3, 8, and 18]) and

in applications to coding theory, cryptography, and the discrete Fourier trans-

form (see [7, 6, and 4]). Thus it is not surprising that self-dual (normal) bases

have found considerable interest in the literature. The first general result is the

following theorem of Lempel and Seroussi [13]:

Theorem 1.  E has a trace-orthogonal basis over F . Moreover, E has a self-dual

basis over F if and only if either q is even or both q and m are odd.

In spite of a simplification by Imamura [10], the published proofs of Theorem

1 are lengthy and involved. In §2, we shall give a very simple proof for this

result. This will also lead to the following new result (where a is called almost

self-dual if it satisfies (4) and, with possibly one exception, (5)).

Theorem 2.  E has an almost self-dual basis over F .

In §3, we shall establish a formula for the number of self-dual bases of E

over F :

Theorem 3. The number sdim, q) of distinct self-dual bases of E over F is

m—\

sdim,q) = -£- I] («'-*/)>(6)

where

and where

(=i

0 if q is odd and m is even

1 if q is even

2 if q and m are odd

'■-{
1       if i is even

0       if i is odd.

Our proof consists of observing that sdim, q) equals (for sdim, q) ^ 0 )

the order of the orthogonal group 0(W, q) divided by m !. The special case

of even valued q in Theorem 3 was already observed by Imamura [11] using a

direct enumeration.

Recently, a criterion for the existence of a self-dual normal basis of E over

F was obtained.
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Theorem 4.  E has a self-dual normal basis over F if and only if either m is

odd, or q is even and m ^ 0   (mod 4).

The necessity of the condition in Theorem 4 follows, for q odd, trivially from

Theorem 1; for q even, it is due to Imamura and Morii [12]. The sufficiency

of the criterion was recently established by Lempel and Weinberger [14]. Using

a connection between self-dual normal bases and orthogonal circulant matrices,

we can quote results of Mac Williams [17] to prove the following:

Theorem 5. Assume that q is a prime, and that either m is odd, or that q = 2

and m ^ 0 (mod 4). Let fix) denote the reciprocal polynomial of fix). If

irn,q) = \  then let xm - 1 = (x - 1) n'=i #*) ITU, gj(x), where f*(x) =

f(x) and gj(x) = hj(x)h*ix), hj(x) ¿ h*ix), and f,{x), A;(x), ftj(x) are

irreducible over F for all i e {I, ... , t}, j e {t -\- I, ... , u} .

Let dtgfj = 2ci and deg/r = d-. Then the number sdnim, q) of distinct

self-dual normal bases of E over F is given by

-" nU^ +1) n;=,+,(<?"' -1)    if (m, í) = i
sdn(m,q)= (,_1)(i+6)/2

W sdn(s,q) xfm-sq,«

where

and

b =

0 if <7 = 2 and m =á 0 (mod 4)

1 if both q and m are odd,

0 if both q and m are odd

1 if q = 2 and 5 is odd.

2. The existence of self-dual bases

In this section, we prove Theorems 1 and 2.   We shall use the following

well-known lemma; cf. Artin [1]:

Lemma 1. Let F — GF(q). If q is odd, then there are exactly two equivalence

classes of nondegenerate symmetric bilinear forms on Fm , represented by the

matrices I and N = diag(l, ... , 1, n), where n is an arbitrary nonsquare in

F.

Proof of Theorem 1. We distinguish the cases q even and q odd. First, let q be

even; note that then Tr(a) = Tr(a') for all ae E. Since Tr(x) = 1 describes

a hyperplane in the affine geometry AG(m, q), we may select 1 ^ ax e E

with Tr(ax) — 1 . Assume that we have already found a, , ... , ak e E with

Tr(a(.a ) = S¡, for i,j= I, ... ,k, k < m, where we also assume that

ax + ■ ■ ■ + ak. ^ 1 . It is easily verified that a,, ... , a. are linearly independent

over F . We want to select ak+x with Tr(ajak+X) = S¡ k+] for i = I, ... , k+l

and a, H-^ak+\ ^ 1 (except for the case k = m-l when ax-\-r-ak  x — 1).

First assume that the orthogonal complement (ax, ... , ak) is contained in the

hyperplane H = {x: Tr(x) = 0} ; taking orthogonal complements, it is easily

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



26 D. JUNGNICKEL, A. J. MENEZES, AND S. A. VANSTONE

seen that this implies that I e (ax, ... , ak). Write 1

tiplying by a   and taking the trace shows that c = 1 for i = I, ... ,k . Thus

C,Q,+ + ckak ; mul-

■ + ak = 1 , contradicting the inductive hypothesis. Hence (a,a, +• ■

intersects H in a subspace of dimension m — k — 1 ;

contains q'"~ ~   elements. In particular, the coset Hx

thus each coset of H

= {x: Tr(x) = 1} con-

lk+X

If   k

with Tr(ak+x

m - 1  then

=  1   and  a. + • ■ • + a, + a

,)-W
k+l Í   1

= {aj  with

tains an element

where k ^ m - I

a\ +--- + Qm = !•

Now assume that q is odd. As noted in the introduction, the trace bilinear

form on E over F defined by (2) is a nondegenerate symmetric bilinear form.

Note that, in terms of the matrix A defined in (3), the trace bilinear form is

represented by the matrix

(7) B = ATA = (Tr(a,a})),

where â~ = {o,, ... , am) is any basis of E over F . We will have a self-dual

basis of E over F if and only if the trace bilinear form may be represented

by the identity matrix; Lemma 1 shows that this is equivalent to requiring that

det/3 is a square in F (for any given basis a). But clearly det5 = (detyi)

is a square in E, and thus det B is a square in F if and only if det A is an

element of F, i.e. iff (detA)q = det A
,(?) denotes the matrix obtained from

Note that (det .4)" = delA{q], where

A by replacing each entry by its qth

power. Thus

/   «

(det ,4) det A(?) det

V

a,

M
a,

m

„<72

\

m

a.. )

and so A

that

(q) arises from A by a cyclic permutation of the m rows. This shows

(deM) (-lf-'deM,

and therefore det A e F iff m is odd, proving the theorem,   o

We note that for odd q , Lemma 1 always guarantees the existence of a basis

a for which the trace bilinear form is either represented by / or by N. Such

a basis is an almost self-dual basis of E over F, which gives the proof of

Theorem 2.

3. Enumeration of self-dual (normal) bases

Let ct = (a,, ... , am) be any fixed basis of E over F . Then every basis of

E over F may be written in the form ß = (ßx, ... , ßm) with

(8) ßi-ECUaj (/= 1, ... , m),

7 = 1
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where C = (c( ) is an invertible (m x m)-matrix over F. We shall establish

two lemmas which are the key to proving Theorems 3 and 5. The first of these

is as follows:

Lemma 2. Assume that a is a self-dual basis.   Then ß is likewise self-dual if
T T

and only if C is an orthogonal matrix ii.e. CC   —C C — I).

Proof,   ß is self-dual if and only if for all i, j — I, ... , m

ôu = Trißßj) = Tr ( (f>¿AaA) (¿>,fca,) )
^h = \ /    \k=X

m

= ¿2 c,hcjkTr(ahak) = Y,c,kcjk>
h.k=\ k=X

(since a is self-dual), which holds if and only if CC   — I.    D

Corollary 1. Denote by 0(m, q) the group of orthogonal m x m-matrices over

GFiq). Then sdim, q) = (1/ m\)\Oim, q)\, provided that sdim , q) ^ 0.

Using the well-known formulae for the order of <9(m, q) then results in

Theorem 3. The required result may be found in the tables of Hirschfeld [9];

an elementary derivation was given by MacWilliams [16]. (We remark that

one may similarly count the number of almost self-dual bases for q odd, m

even; the result will be ((<? - l)/2m!)|0(m, q)\.) We now prove our second key

lemma:

Lemma 3. Assume that a is a normal basis. Then ß is likewise normal if and

only if C is a circulant matrix ( i.e. ci+x +1 = c¡¡ for all i and j, where indices

are computed modulo m).

Proof. By hypothesis we may write a  = a9 (J = 1, ... , m). Then

7=1

q
a

and therefore

tf-Ev¡i
7=1

Thus we have ßj+x = ßq for i = 1,... , m (making ß a normal basis) if and

only if

¿2 c,,aq     = ßi+, = J2 c,+1.y  = ¿2 c<+1.7
7=1 7=1 7=1

q
+ xa

for i =  1, ... , m.   Clearly this holds if and only if c{¡ = c/+1 /+1   for all

i, j = I, ... , m , i.e. iff C is circulant.    D
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Corollary 2. The number of normal bases of E over F is (l/m)|C(m, q)\,

where Cim,q) denotes the group of invertible circulant im x m)-matrices over

GFiq).

Of course, the number of normal bases is well known (see e.g. Lidl and

Niederreiter [ 15] or Berlekamp [2]), and we refrain from restating it. Combining

Lemmas 2 and 3, we get our principal result:

Corollary 3. Assume sdnim, q) ^ 0 icf Theorem 4). Then sdnim, q) =

(1 ¡m)\OCim, q)\, where OCim, q) denotes the group of orthogonal circulant

im x m)-matrices over GFiq).

MacWilliams [17] has determined the order of OCim, q) and described a

way of generating the matrices in question, provided that q is prime. Using

her results in Corollary 3 then gives Theorem 5.

4. Conclusions

Self-dual and self-dual normal bases of GFiq'") over GFiq) are important

in a variety of applications. Using only simple techniques from linear algebra

and basic facts about finite fields, we have obtained a new short proof for the

existence criterion for self-dual bases. We have also enumerated such bases

completely, and we enumerated self-dual normal bases if the ground field GFiq)

has prime order. Beth and Geiselmann [5] have recently extended MacWilliams'

formulae to determine the order of OCim, q), where q is any prime power,

thus completing the enumeration of self-dual normal bases.
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