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Abstract

It is proven that if a and b are distinct nonzero integers then the
simultaneous Diophantine equations

x2 − az2 = 1, y2 − bz2 = 1

possess at most three solutions in positive integers (x, y, z). Since there
exist infinite families of pairs (a, b) for which the above equations have
at least two solutions, this result is not too far from the truth. If,
further, u and v are nonzero integers with av − bu nonzero, then the
more general equations

x2 − az2 = u, y2 − bz2 = v

are shown to have ≪ 2min{ω(u),ω(v)} log (|u| + |v|) solutions in integers,
where ω(m) denotes the number of distinct prime factors of m and the
implied constant is absolute. These results follow from a combination
of techniques including simultaneous Padé approximation to binomial
functions, the theory of linear forms in two logarithms and some gap
principles, both new and familiar. Some connections to elliptic curves
and related problems are briefly discussed.

1 Introduction

In this paper, we study positive integer solutions (x, y, z) of the simultaneous
Diophantine equations

(1) x2 − az2 = u, y2 − bz2 = v

where a, b, u and v are nonzero integers with av 6= bu. Individually, these Pell
equations possess either no solutions or infinitely many, corresponding to units
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in related quadratic fields. Taken together, they define an affine variety which,
as the intersection of a pair of quadric surfaces in R3, is generically a curve
of genus one. By the work of Thue [26] and Siegel [25], this curve contains at
most finitely many integer points. Setting w = xy and considering (1) as a
hyperelliptic equation w2 = (az2+u)(bz2+v), we may apply the theory of linear
forms in logarithms (see e.g. [4]) to effectively bound all solutions (x, y, z) to
(1), though the dependence on the given coefficients (a, b, u, v) is a strong
one (note here that the conditions on the coefficients guarantees the absence
of repeated roots). Approaches similar to this, combining bounds for linear
forms in logarithms of algebraic numbers with techniques from computational
Diophantine approximation, have been successfully applied to the problem of
explicitly determining all solutions to (1), for some fixed a, b, u and v (see
e.g. [1], [5], [8], [14] and [21]). Indeed, Anglin [2] devotes Section 4.6 of
his textbook to the decription of an algorithm for solving (1). A variety of
classical algebraic and elementary approaches to this and similar problems can
be found in the papers of Arwin [3], Boutin and Teilhet [7], Gloden [13] and
Ljunggren [17] (where the last cited combines Skolem’s p-adic method with
information from related quadratic and quartic fields). For an elementary
proof of the nonexistence of solutions to certain cases of (1), the reader is
directed to the forthcoming paper of Walsh [28]. This result is in some sense
an explicit characterization of Brauer-Manin obstruction for the intersections
of particular quadric surfaces. A detailed and very general discussion of such
obstruction to the Hasse principle, as it relates to these and other surfaces,
may be found in [11] and [12].

We primarily focus our attention on the more specific equations

(2) x2 − az2 = 1, y2 − bz2 = 1

where a and b are distinct positive integers. General results of Schlickewei [23]
on S-unit equations and of Schlickewei and Schmidt [24] on common terms in
recurrence sequences provide absolute (if large) bounds upon the number of
solutions to such equations (to quote Masser and Rickert [18] : “it appears
difficult to avoid numbers like 2280

”). Anglin [1], however, has shown that these
equations admit at most one positive solution (x, y, z) whenever max{a, b} ≤
200, so it might be hoped that one could derive a rather small bound upon
the number of solutions to (2) for arbitrary a and b (with a and b distinct and
nonzero). Such a bound was recently achieved by Masser and Rickert [18] who
applied the method of simultaneous Padé approximation to hypergeometric
functions, in conjunction with suitable gap principles (to ensure that solutions
to (2) are spread apart), to prove
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Theorem (Masser-Rickert) If a and b are distinct nonzero integers, then the
simultaneous equations (2) possess at most 16 solutions (x, y, z) in positive
integers.

In what follows, we take an approach which is fundamentally similar to that
of Masser and Rickert, but introduce a new gap principle which is powerful
enough to allow application of recent bounds from the theory of linear forms
in the logarithms of (two) algebraic numbers. Our main result is

Theorem 1.1 If a and b are distinct nonzero integers, then the simultaneous
equations (2) possess at most three solutions (x, y, z) in positive integers.

As noted in [18] (see Section 5 for details), there exist infinite parametrized
families of distinct positive integers a and b for which (2) has at least two
positive solutions, so the above is not too far from best possible.

A fruitful way of viewing equations (1) and (2) is via a connection to elliptic
curves. Indeed, since the study of rational solutions to (2) is equivalent to
Euler’s problem of concordant forms (see e.g. the paper of Ono [20]), this
correspondence is analogous to that discovered by Tunnell [27] for congruent
numbers. To be precise, as noted in [18] and [20], the affine variety defined by
(2) may be birationally mapped to the elliptic curve

Y 2 = X (X + a) (X + b)

and a similar relationship connects the variety (1) with the curve

Y 2 = X (uX + a) (vX + b)

(with both of these maps extending to isomorphisms between their respective
projective models). We may therefore derive information about rational points
on certain elliptic curves from rational solutions to (1) or (2), and vice versa.
In particular, Masser and Rickert used an argument similar to the proof of the
“Taxicab” theorem (on representations of integers as sums of two cubes) to
show that given a positive integer n, we can find integers u and v for which
the equations

x2 − 2z2 = u, y2 − 3z2 = v

possess at least n solutions in positive (x, y, z). In fact, defining the number of
integer solutions (x, y, z) to (1) to be N(a, b, u, v), their approach implies that

sup
u,v

N(2, 3, u, v) ≫ log1/3 (|u| + |v|)
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where the supremum is taken over nonzero integers u and v with 2v 6= 3u.
Similarly, using the fact that the elliptic curve

Y 2 = X (X + 3) (X + 783)

has rank two, one can show that

sup
u,v

N(3, 783, u, v) ≫ log1/2 (|u| + |v|) .

In the other direction, defining ω(m) to be the number of distinct prime factors
of m, we prove

Theorem 1.2 If a, b, u and v are nonzero integers with av 6= bu, then

N(a, b, u, v) ≪ 2min{ω(u),ω(v)} log (|u| + |v|)

where the implied constant is absolute.

For further discussion of the connections between simultaneous Pell equations
and elliptic curves, one may see [20], [21] and [29]. In the first of these, for
example, this relationship is used to describe a number of infinite families of
integers (a, b) for which (2) possesses no nontrivial integral solutions.

2 Some Gap Principles

Here and in the sequel, we will suppose, without loss of generality, that b >
a ≥ 2 are integers and consider simultaneous equations of the form (2). In
this section, we prove a pair of results that ensure that solutions to (2) cannot
lie too “close together”. Suppose, for i an integer, that (xi, yi, zi) is a positive
solution to (2). From the theory of Pellian equations, it follows that

(3) zi =
αji − α−ji

2
√

a
=

βki − β−ki

2
√

b

where α and β are the fundamental solutions to the equations x2−az2 = 1 and
y2 − bz2 = 1 respectively (i.e. the fundamental units in Q(

√
a) or Q(

√
b), or

their squares) and ji and ki are positive integers. If we assume that zi+1 > zi,
then (3) implies that

zi+1

zi

=
βki+1 − β−ki+1

βki − β−ki
> βki+1−ki ≥ β > 2

√
b.
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Lemma 2.1 If (xi, yi, zi) are positive solutions to (2) for 1 ≤ i ≤ 3, with
z3 > z2 > z1, then for ki as in (3), we have k3 ≥ k2 + 3k1 − 1.

Proof : We follow Masser and Rickert [18] in considering the determinant

∆ =

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

x1 −
√

az1 y1 −
√

bz1 z1

x2 −
√

az2 y2 −
√

bz2 z2

x3 −
√

az3 y3 −
√

bz3 z3

∣

∣

∣

∣

∣

∣

∣

.

Define, for 1 ≤ i ≤ j ≤ 3,

Di =
(

xi −
√

ayi

)2 −
(

yi −
√

bzi

)2

and

Eij =
(

xi −
√

azi

)2 (

yj −
√

bzj

)2 −
(

xj −
√

azj

)2 (

yi −
√

bzi

)2
.

Expanding along the third column of ∆ and using that

(

xi −
√

azi

)

=
1

2
√

azi

(

1 −
(

xi −
√

azi

)2
)

and
(

yi −
√

bzi

)

=
1

2
√

bzi

(

1 −
(

yi −
√

bzi

)2
)

,

we have

∆ =
(z1z2z3)

−1

4
√

ab

(

z2
1 (D3 − D2 + E23) + z2

2 (D1 − D3 − E13) + z2
3 (D2 − D1 + E12)

)

.

Now the inequalities zi+1 > 2
√

bzi and b > a ≥ 2 yield

|Eij| <
1

576az2
i

and
0.2

z2
i

(

1

a
− 1

b

)

< Di <
0.3

z2
i

(

1

a
− 1

b

)

.

Applying these, we may conclude (again using zi+1 > 2
√

bzi) that

z3

24a
√

abz3
1z2

< |∆| <
z3

12a
√

abz3
1z2

.
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Since ∆ is an integer, it follows that

(4) z3 > 12a
√

abz3
1z2.

Now suppose k3 ≤ k2 + 3k1 − 2. Since β ≥ 2 +
√

3, we have from (3) that

z3

z3
1 z2

< 12 b
√

b βk3−k2−3k1 ≤ 12 b
√

b β−2.

The inequality β > 2
√

b therefore implies z3 < 3
√

bz3
1z2, contradicting (4). ✷

We note that (4) may be sharpened by replacing 12 with 16 − δ where
δ = δ(b) is positive and satisfies limb→∞ δ(b) = 0. For our purposes, the above
formulation is adequate and is of some use in proving the following much
stronger gap principle, suggested to the author by C.L. Stewart:

Lemma 2.2 If (xi, yi, zi) are positive solutions to (2) for 1 ≤ i ≤ 3, with
z3 > z2 > z1, then for α, ji and ki as in (3), we have

(k3 − k2) (k2 − k1) > α2j1.

Proof : Suppose that instead

(5) (k3 − k2) (k2 − k1) ≤ α2j1.

From (3), we have that the quantity
∣

∣

∣αji+1−ji − βki+1−ki

∣

∣

∣ is bounded above by

max

{∣

∣

∣

∣

∣

αji+1−3ji − α−ji+1−ji

1 − α−2ji

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

βki+1−3ki − β−ki+1−ki

1 − β−2ki

∣

∣

∣

∣

∣

}

for 1 ≤ i ≤ 2. From the aforementioned work of Anglin [1], we may assume
that b > max{a, 200} and hence β ≥ 15 +

√
224 (and α ≥ 2 +

√
3). It follows

that

(6)
∣

∣

∣αji+1−ji − βki+1−ki

∣

∣

∣ < min

{

1.078 αji+1−3ji , 1.004
b

a
βki+1−3ki

}

whence

(7) 0 <

∣

∣

∣

∣

∣

log β

log α
− ji+1 − ji

ki+1 − ki

∣

∣

∣

∣

∣

<
1.004 b

a log α (ki+1 − ki)
β−2ki

for 1 ≤ i ≤ 2. To see the first of these inequalities, note that if αji+1−ji =
βki+1−ki then the equality

αji+1 − α−ji+1

αji − α−ji
=

βki+1 − β−ki+1

βki − β−ki
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implies that
α−2ji − α−2ji+1

1 − α−2ji
=

β−2ki − β−2ki+1

1 − β−2ki

and so (again using αji+1−ji = βki+1−ki)

α−2ji

1 − α−2ji
=

β−2ki

1 − β−2ki
.

It follows that αji = βki, contradicting (3) (since a 6= b).
Since α ≥ 2 +

√
3, we have

(8)
a

b
β2k1 < α2j1 < 1.161

a

b
β2k1.

Applying Lemma 2.1, it follows that k3−k2 ≥ 3k1−1 ≥ 2 and thus (5) implies

k2 − k1 < 0.581
a

b
β2k1.

Since α ≥ 2 +
√

3 and k2 ≥ k1 + 1, we have

∣

∣

∣

∣

∣

log β

log α
− ji+1 − ji

ki+1 − ki

∣

∣

∣

∣

∣

<
1

2 (ki+1 − ki)
2 (1 ≤ i ≤ 2)

and so both j2−j1
k2−k1

and j3−j2
k3−k2

are convergents to log β
log α

. If these are distinct this

implies (see e.g. [15]) that either

∣

∣

∣

∣

∣

log β

log α
− j2 − j1

k2 − k1

∣

∣

∣

∣

∣

>
1

(k3 − k1) (k2 − k1)

or
∣

∣

∣

∣

∣

log β

log α
− j3 − j2

k3 − k2

∣

∣

∣

∣

∣

>
1

(k3 − k1) (k3 − k2)

depending on which of the two convergents provides a better approximant to
log β
log α

. In each case, we have

k3 − k1 >
a log α β2k1

1.004 b
.

On the other hand, (5) and (8) imply that

k3 − k1 ≤ α2j1 + 1 < 1.161
a

b
β2k1 + 1
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which yields the desired contradiction (since a
b

β2k1 > 4a ≥ 8).
It remains to consider when

(9)
j2 − j1

k2 − k1

=
j3 − j2

k3 − k2

.

In this situation, the proof is rather delicate and we must tread warily. Since
b > a, from (3) we have that αj1 < βk1. Now, by calculus, it is readily checked
that the function

xk2/k1 − x−k2/k1

x − x−1

is strictly increasing on the interval
[

αj1, βk1

]

(where we use that α2j1 >
a
b

β2k1 > k2+k1

k2−k1
) and so the equality

αj2 − α−j2

αj1 − α−j1
=

βk2 − β−k2

βk1 − β−k1

implies that j2 > j1k2/k1 and thus

(10) k1j2 ≥ j1k2 + 1.

Define
Φ = (z2/z1)

k3−k2 , Ψ = (z3/z2)
k2−k1

and Ω = Φ − Ψ. We derive upper and lower bounds upon Ω in two different
ways and then use (9) and (10) to deduce a contradiction. First, note that
from (3), we may express Φ as

Φ = β(k2−k1)(k3−k2)
k3−k2
∑

r=0

(

k3 − k2

r

)(

β−2k1 − β−2k2

1 − β−2k1

)r

.

Since β ≥ 15 +
√

224 and (from Lemma 2.1) k3 − k2 ≥ 2, inequalities (5) and
(8) imply that

Φ < β(k2−k1)(k3−k2)
(

1 + (k3 − k2) β−2k1 + (k3 − k2)
2 β−4k1

)

.

Similarly, we have

Ψ = β(k2−k1)(k3−k2)
k2−k1
∑

r=0

(

k2 − k1

r

)(

β−2k2 − β−2k3

1 − β−2k2

)r

and so
Ψ > β(k2−k1)(k3−k2).
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It follows that

(11) Ω < β(k2−k1)(k3−k2)
(

(k3 − k2) β−2k1 + (k3 − k2)
2 β−4k1

)

.

We next derive a lower bound upon Ω. From (3), we have

Φ = α(j2−j1)(k3−k2)
k3−k2
∑

r=0

(

k3 − k2

r

)(

α−2j1 − α−2j2

1 − α−2j1

)r

so that
Φ > α(j2−j1)(k3−k2)

(

1 + (k3 − k2)
(

α−2j1 − α−2j2
))

.

Now

Ψ = α(j3−j2)(k2−k1)
k2−k1
∑

r=0

(

k2 − k1

r

)(

α−2j2 − α−2j3

1 − α−2j2

)r

and thus (5), (8) and α ≥ 2 +
√

3 give

Ψ < α(j3−j2)(k2−k1)
(

1 + 1.002 (k2 − k1) α−2j2
)

.

We therefore have, from (9), that

(12) Ω > α(j2−j1)(k3−k2)
(

(k3 − k2) α−2j1 − c1α
−2j2

)

where c1 = (k3 − k2) + 1.002 (k2 − k1). Combining (6) and (11) and noting
that Lemma 2.1 implies (k3 − k2) (k2 − k1) ≥ 2k1, we have

Ω < (k3 − k2) (αj2−j1 (1 + θ))
k3−k2−

2k1
k2−k1 +

(k3 − k2)
2 (αj2−j1 (1 + θ))

k3−k2−
2k1

k2−k1 (αj2−j1 (1 − θ))
−

2k1
k2−k1

where θ = 1.078 α−2j1. In conjunction with (12), this yields

(13)
c1

k3 − k2
α−2(j2−j1) + c2 c3 α

2j1−2k1

(

j2−j1
k2−k1

)

> 1

with

c2 = 1 + (k3 − k2)
(

αj2−j1 (1 − θ)
)−

2k1
k2−k1

and

c3 = (1 + θ)
k3−k2−

2k1
k2−k1 .

Now since α2j1 > a
b

β2k1 > 4a β2(k1−1), it follows from β ≥ 15 +
√

224 that

(1 − θ)
−

2k1
k2−k1 ≤

(

1 − 1.078 α−2
)−2

< 1.2.
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Applying (5), we therefore have

c2 < 1 +
1.2

k2 − k1
α

2j1−2k1

(

j2−j1
k2−k1

)

and

c3 < (1 + θ)
α2j1

k2−k1 < 3
1

k2−k1 .

From (10), j1 < k1

(

j2−j1
k2−k1

)

, so that

c2 c3 α
2j1−2k1

(

j2−j1
k2−k1

)

<
(

α
− 2

k2−k1 +
1.2

k2 − k1
α
− 4

k2−k1

)

3
1

k2−k1 .

If k2 − k1 ≤ 2, since k3 − k2 ≥ 2, it follows that the left hand side of (13)
is less than

2

α
+

4

α2
< 1.

If, however, k2 − k1 ≥ 3, we have

1 +
1.2

k2 − k1
α
− 2

k2−k1 < 1 +
1.2

k2 − k1

and (since α ≥ 2 +
√

3)

(

3/α2
) 1

k2−k1 < 1 − 1.2

k2 − k1

and so to conclude as stated, we need only show that

c1

k3 − k2
α−2(j2−j1) <

1

(k2 − k1)
2 ,

contradicting (13). But (6) and the inequality k3 − k2 ≥ 2 imply

c1

k3 − k2
α−2(j2−j1) < (k2 − k1) β−2(k2−k1)

which, since β ≥ 15 +
√

224, is smaller than (k2 − k1)
−2. ✷

As we shall observe, this lemma is the key ingredient in our sharpening
of the work of Masser and Rickert not only because it provides a doubly
exponential rather than polynomial gap principle but also because its precise
form permits use of bounds from the theory of linear forms in logarithms.
Unfortunately, it does not appear that a similar result may be readily obtained
for more general choices of u and v in (1), primarily since one requires an
analogous bound to (10).
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3 Application of the Hypergeometric Method

We next prove a result which provides a bound upon all solutions (x, y, z)
to (2) solely in terms of a single “suitably large” solution, what one might
term an “anti-gap principle”. The argument here is fundamentally identical
to that of Masser and Rickert [18] though we require a slightly more flexible
version of their related Proposition. For more details on the technique of Padé
approximation to hypergeoemtric functions, the reader is directed to [6], [10]
and [22].

In [6], following Rickert [22], we considered the problem of obtaining si-
multaneous approximations to functions of the form

(1 + a0x)s/n, . . . , (1 + amx)s/n

where the ai’s are distinct integers with aj = 0 for some j, |ai| < |x|−1 for
0 ≤ i ≤ m and s and n positive, relatively prime integers with s < n. We
derived our approximants from the contour integral

Ii(x) =
1

2πi

∫

γ

(1 + zx)k(1 + zx)s/n

(z − ai)(A(z))k
dz (0 ≤ i ≤ m)

where k is a positive integer,

A(z) =
m
∏

i=0

(z − ai)

and γ a closed, counter-clockwise contour enclosing the poles of the integrand.
Cauchy’s theorem implies that

Ii(x) =
m
∑

j=0

pij(x)(1 + ajx)s/n (0 ≤ i ≤ m)

where pij(x) ∈ Q[x] with degree at most k and by evaluating these polyno-
mials at x = 1/N , we may deduce lower bounds for simultaneous rational
approximation to the numbers

(1 + a0/N)s/n, . . . , (1 + am/N)s/n

through application of the following lemma (a slight variant of Lemma 2.1 of
[22]):

Lemma 3.1 Let θ1, . . . θm be arbitrary real numbers and θ0 = 1. Suppose
there exist positive real numbers l, p, L and P (L > 1) such that for each
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positive integer k, we can find integers pijk (0 ≤ i, j ≤ m) with nonzero
determinant,

|pijk| ≤ pP k (0 ≤ i, j ≤ m)

and
∣

∣

∣

∣

∣

∣

m
∑

j=0

pijkθj

∣

∣

∣

∣

∣

∣

≤ lL−k (0 ≤ i ≤ m).

Then we may conclude that

max

{∣

∣

∣

∣

∣

θ1 −
p1

q

∣

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

θm − pm

q

∣

∣

∣

∣

∣

}

> c q−λ

for all integers p1, . . . , pm and q, where

λ = 1 +
log(P )

log(L)

and
c−1 = 2mpP (max(1, 2l))λ−1.

In our particular situation, we take s = 1, n = m = 2, a0 < a1 < a2 with
aj = 0 for some 0 ≤ j ≤ 2, N > M9, where

M = max
0≤i≤2

{|ai|}

and note that by Lemma 3.3 of [22], we may find Ck with Ck pij(1/N) ∈ Z

and

Ck ≤


4 N
∏

0≤i<j≤2

(aj − ai)
2





k

.

Further, we have, for 0 ≤ i ≤ 2,

∣

∣

∣

∣

Ii

(

1

N

)∣

∣

∣

∣

=
1

πN3k

∫ ∞

0

xk+ 1

2 dx
(

x + 1 + ai

N

)

B(x)k

where

B(x) =
2
∏

j=0

(

x + 1 +
aj

N

)

.

It follows that

∣

∣

∣

∣

Ii

(

1

N

)∣

∣

∣

∣

<

(

1 − M
N

)−2k−1

πN3k

∫ ∞

0

xk+ 1

2 dx

(x + 1)3k+1 < 0.43
(

6.74N3
)−k
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where the latter inequality follows from N > M9 and induction upon k.
It remains to find an upper bound upon |pij(1/N)|. Our argument is es-

sentially the same as that in [18] (to which the reader is directed for more
details). First, note that we may write

pij(x) (1 + ajx)1/2 =
1

2πi

∫

Γj

(1 + zx)k(1 + zx)1/2

(z − ai) (A(z))k dz (0 ≤ i, j ≤ 2)

where Γj is defined by

|z − aj| = min
i6=j

{

|aj − ai|
2

}

oriented positively. We therefore have that

∣

∣

∣

∣

pij

(

1

N

)∣

∣

∣

∣

(

1 +
aj

N

)1/2

≤ max
z∈Γj

∣

∣

∣

∣

∣

∣

∣

∣

(

1 + z
N

)k+ 1

2

(A(z))k

∣

∣

∣

∣

∣

∣

∣

∣

.

Minimizing the function
∣

∣

∣

∣

∣

A(z)

z − aj

∣

∣

∣

∣

∣

on the contour Γj, using that N > M9 and considering the cases with a1

negative, zero and positive separately, we may conclude that

|pij(x)| < 1.01

(

8.01

ζ

)k

where

ζ =







(a1 − a0)
2 (2a2 − a0 − a1) if a2 − a1 ≥ a1 − a0

(a2 − a1)
2 (a1 + a2 − 2a0) if a2 − a1 < a1 − a0.

Applying Lemma 3.1, since Lemma 3.4 of [22] ensures that det (pij(1/N)) does
not vanish, we therefore have

Theorem 3.2 If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 < a2,
aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9, where

M = max
0≤i≤2

{|ai|},

then we have

max
0≤i≤2

{∣

∣

∣

∣

∣

√

1 +
ai

N
− pi

q

∣

∣

∣

∣

∣

}

> (130 N Υ)−1 q−λ
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where

λ = 1 +
log (33NΥ)

log
(

1.7N2
∏

0≤i<j≤2 (ai − aj)
−2
)

and

Υ =







(a2−a0)2(a2−a1)2

2a2−a0−a1
if a2 − a1 ≥ a1 − a0

(a2−a0)2(a1−a0)2

a1+a2−2a0
if a2 − a1 < a1 − a0.

From this result, we have

Corollary 3.3 If (xi, yi, zi) are positive solutions to (2) for 1 ≤ i ≤ 2, and if
ki is as defined in (3), then k1 ≥ 9 implies that

k2 <

(

7k2
1 + 17k1 − 32

k2
1 − 9k1 + 8

)

k1 ≤ 86k1.

Proof : We apply the previous theorem with a0 = 0, a1 = a, a2 = b, N = abz2
1 ,

q = abz1z2, p1 = ay1y2 and p2 = bx1x2. Since

(14) z1 =
βk1 − β−k1

2
√

b
>
(

2
√

b
)k1−1 ≥ 28 b4

the inequality N > M9 obtains. It follows that

√

1 +
a1

N
− p1

q
=

y1

bz1

(√
b − y2

z2

)

and
√

1 +
a2

N
− p2

q
=

x1

az1

(√
a − x2

z2

)

.

Since (x1, y1, z1) and (x2, y2, z2) are both solutions to (2), we therefore have

max

{∣

∣

∣

∣

∣

√

1 +
a1

N
− p1

q

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

√

1 +
a2

N
− p2

q

∣

∣

∣

∣

∣

}

< z−2
2 .

By calculus, NΥ ≤ 1
2
b5z2

1 and N2(ab(b − a))−2 > b−2z4
1 and so (14) implies

that

λ <
3k1

2k1 − 4
.

It follows from Theorem 3.2 and k1 ≥ 9 that

zk1−8
2 ≤ 652k1−4 a3k1 b13k1−20 z7k1−8

1

14



and applying b > a and inequality (14) therefore yields

z2 < z

7k2
1
+17k1−32

k2
1
−9k1+8

1 .

Noting that k2 ≥ σk1 implies, for σ a positive constant exceeding unity, that

z2

zσ
1

> βk2−σk1

(

2
√

b
)σ−1

> 1,

the first part of the corollary follows. The second inequality is a consequence

of the fact that
7k2

1
+17k1−32

k2
1
−9k1+8

is decreasing in k1 and equal to 86 for k1 = 9. ✷

We now have all the necessary machinery in place to show that (2) has at
most four positive solutions. From Lemma 2.2, we have

(k3 − k2) (k2 − k1) > α2j1 ≥ 7 + 4
√

3

which implies that k3 ≥ 9 in all cases. Further, if we have five solutions to (2),
say (xi, yi, zi) for 1 ≤ i ≤ 5, then from (3) and Lemma 2.2,

(k5 − k4) (k4 − k3) > α2j3 >
a

b
β2k3 > 2aβ2(k3−1).

Since β ≥ 2 +
√

3 and k3 ≥ 9, this implies that k5 > 86k3, contradicting
Corollary 3.3.

As a comment on Theorem 3.2, we note that the result may be sharpened
somewhat through use of precise asymptotics for the contour integrals that
occur in the proof, say via application of the saddle point method (see e.g. [6]
for details). It does not appear, however, that such a sharpening is of use in
the case at hand. To show that, in fact, there are at most three solutions in
positive integers to (2), we require a result from the theory of linear forms in
logarithms.

4 Linear Forms in Two Logarithms

In this section, we will suppose that we have four positive solutions (xi, yi, zi)
(1 ≤ i ≤ 4) to (2) with α, β, ji and ki as in (3) and zi+1 > zi for 1 ≤ i ≤ 3.
We further suppose that k3 > 106, an assumption we will justify in the next
section. Also, we have k2 ≤ 8, since otherwise we may argue as at the end of
the last section to deduce that there are at most three solutions to (2). From
the recent work of Laurent, Mignotte and Nesterenko [16], we infer

15



Lemma 4.1 Let α and β be the fundamental solutions to

x2 − ay2 = 1 and y2 − bz2 = 1,

respectively, where b > a ≥ 2 are integers, and, for j and k positive integers,
define

Λ = j log α − k log β.

Then if

h = max

{

12, 4 log

(

k

log α
+

j

log β

)

− 1.8

}

,

either one has Λ = 0 or

log |Λ| ≥ −61.2 log α log β h2 − 24.3 (log α + log β)h − 2h

−48.1 (log α log β)1/2 h3/2 − log (log α log β h2) − 7.3.

Proof : This is easily deduced from Théorème 2 of [16], taking α1 = α, α2 = β,
b1 = k, b2 = j, D = 4 and ρ = 11 and noting that the result follows readily if
log α and log β are Q-linearly dependent with Λ nonzero. ✷

We apply this lemma with j = j4 − j3 and k = k4 − k3. The inequalities in
(7) imply the nonvanishing of Λ and, further, that

(15) log |Λ| < −2 (k3 − 1) log β.

To combine this bound with Lemma 4.1, we again depend upon Lemma 2.2
which, crucially for this argument, guarantees that the exponents ki grow in
terms of the fundamental units α and β, a property we have not explicitly
used thus far.

It is convenient at this stage to make the following observation. If α =
m + s

√
a is the fundamental solution to x2 − az2 = 1, then s divides z for any

solution (x, y, z) to this equation. It follows that solutions to x2 − az2 = 1 are
in one-to-one correspondence with those to x2 − (m2 − 1) z2

1 = 1. A similar
result holds for the equation y2− bz2 = 1 and iterating this argument, if a and
b are distinct positive integers such that (2) possesses positive solutions, then
these correspond to solutions of a system of equations of the form

(16) X2 − AY 2 = 1 and Y 2 − BZ2 = 1

where A = m2 − 1 and B = n2 − 1 for integers m and n. Therefore, if we can
prove that simultaneous equations of the form (16) have at most three positive
solutions, then the same is true for (2) in general. We will thus assume that

16



a and b are each one less than squares and, in particular, that α < β (since
a < b) and j1 = k1 = 1.

If h = 12 in Lemma 4.1, then applying

(17) β ≥ max
{

α, 15 +
√

224
}

yields the inequality

log |Λ| > − (8812.8 logα + 2594.1) log β.

Further, Lemma 2.2 implies, with k2 ≤ 8, that

(18) k3 >
1

7
α2j1 =

1

7
α2.

Together with (15), we therefore have

k3 < 2203.2 log k3 + 5585.3

which contradicts the choice of k3 > 106. Next suppose that

h = 4 log

(

k

log α
+

j

log β

)

− 1.8.

From (6) and the inequality α ≥ 2+
√

3, we have that h < 4 log k. Application
of Lemma 4.1 gives

(19) log |Λ| > −
(

979.2 logα log2 k + 384.8 log3/2 k + 197.0 log k + 3.7
)

log β

where we have again used (17). Applying Corollary 3.3 and k3 > 106, we
therefore have

k = k4 − k3 < 6.01k3

and so (15), (18) and (19) yield

k3 < 356.5 log3 k3 + 231.1 log3/2 k3 + 111.3 log k3 + 2.9,

contradicting k3 > 106.

5 A Class of Examples

In this section, we deal with a number of cases for which the associated funda-
mental units are small and discuss families of (a, b) for which (2) has at least
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two positive solutions (x, y, z). As observed in the previous section, we may
assume that

a = m2 − 1, b = n2 − 1, α = m +
√

m2 − 1 and β = n +
√

n2 − 1

where n > m ≥ 2 are integers. To complete the proof of Theorem 1.1, we
must show that (2) has at most three positive solutions if ki (as defined in (3))
satisfies k3 ≤ 106 and 2 ≤ k2 ≤ 8. If we assume the existence of four positive
solutions, then Lemma 2.2 implies that the associated ki satisfy

(20) (k4 − k3) (k3 − k2) > α2j2 >
a

b
β2k2 > 4aβ2(k2−1).

Now k3 ≥ 9 implies, via Corollary 3.3, that k4 < 86k3. Together with (20)
and the fact that β ≥ 15 +

√
224, we have that k3 ≥ 12. Iterating this

argument (using (20) and Corollary 3.3), we conclude that k3 ≥ 35 and so
(from Corollary 3.3) k4 < 10k3. Since we are assuming that k3 ≤ 106, this,
with (20), implies

(21)
√

a βk2−1 < 1.5 × 106.

Let us define integers zm,i by the recurrence relation

zm.i+1 = 2mzm,i − zm,i−1

where zm,0 = 0 and zm,1 = 1. It follows that the positive integers z for which
the equation x2 − az2 = 1 has solutions are exactly those with z = zm,i for
i ≥ 1 (remembering that a = m2 − 1). Since we have m ≥ 2 and n ≥ 15,
inequality (21) shows that 2 ≤ k2 ≤ 5. We treat each of these possibilities in
turn.

If k2 = 5, then (21) implies that m = 2 and n = 15, whence z2 = 807301.
On the other hand, z2,11 < 807301 < z2,12, so that this fails to be a solution to
x2 − 3z2 = 1. Suppose next that k2 = 4. If m ≥ 6, then, from (21), we have
n ≤ 31 and so

zn,4 = 8n3 − 4n ≤ 238204.

However, zm,6 ≥ z6,6 = 241956 and, since zm,5 is odd, we may thus assume
that 2 ≤ m ≤ 5. Now, m ≥ 2, n ≥ 15 and (21) imply that 15 ≤ n ≤ 47 and
hence

26940 ≤ zn,4 ≤ 830396.

We conclude, for k2 = 4, by noting that the only values of zm,i in this interval
with 2 ≤ m ≤ 5, zm,i ≡ 0 (mod 4) and i > 4 are z2,10 = 151316, z3,8 = 235416
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and z4,6 = 30744, all of which are distinct from zn,4 for 15 ≤ n ≤ 47. If k2 = 3,
we argue similarly. Since zm,i ≡ 3 (mod 4) exactly when i ≡ 3 (mod 4), we
may restrict our attention to the equation zm,i = zn,3 with i ≡ 3 (mod 4) and
i ≥ 7. If m ≥ 5, then (21) gives n ≤ 276 and so

zn,3 = 4n2 − 1 ≤ 304703

while zm,7 ≥ z5,7 = 950599. For m ≥ 2, (21) yields the inequality n ≤ 465,
whence

889 ≤ zn,3 ≤ 864899.

The only zm,i in this interval with 2 ≤ m ≤ 4, i ≡ 3 (mod 4) and i ≥ 7 are
z2,7 = 2911, z2,11 = 564719, z3,7 = 40391 and z4,7 = 242047, none of which are
of the form 4n2 − 1.

It remains to consider when k2 = 2. Since zn,2 = 2n and zm,i is even
precisely when i is even, it follows that pairs (a, b) with a = m2 −1, b = n2 −1
and n > m ≥ 2 for which (2) possesses solutions with k1 = 1 and k2 = 2 are
exactly those satisfying

(22) n =
1

2
zm,2j =

(

m +
√

m2 − 1
)2j −

(

m −
√

m2 − 1
)2j

4
√

m2 − 1

for some j ≥ 2. The “smallest” member of one of these families corresponds
to the equations

x2 − 3z2 = 1, y2 − 783z2 = 1

with solutions (x, y, z) = (2, 28, 1) and (97, 1567, 56) (as noted in [18]). Simi-
larly, the equations

x2 − 2z2 = 1, y2 − 3001556z2 = 1

possess the solutions (x, y, z) = (3, 3465, 2) and (19601, 24012449, 13860) (de-
rived from m = 3 and n = 3465). The author knows of no pair (a, b) for
which (2) has even two positive solutions which is not induced by the above
parameterized families (nor of any pair (a, b) for which (2) has three positive
solutions).

To complete the proof of Theorem 1.1, we note that if m ≥ 21, then (21)
implies that n ≤ 35754, but

1

2
zm,2j ≥

1

2
zm,4 = 4m3 − 2m ≥ 37002.

Similarly, (21) allows us to restrict our attention to n = 1
2

zm,4 for 2 ≤ m ≤ 20,
n = 1

2
zm,6 for 2 ≤ m ≤ 5, n = 1

2
zm,8 for 2 ≤ m ≤ 3 and n = 1

2
z2,10. For

19



each of these 26 cases, we compute the initial terms in the continued fraction
expansion to log β

log α
. Arguing as in Section 2, we have, analogous to (7),

(23)

∣

∣

∣

∣

∣

log β

log α
− j4 − j3

k4 − k3

∣

∣

∣

∣

∣

<
1.001 b

a log α (k4 − k3)
β−2k3.

Now β ≥ 28 +
√

783 so (21) implies that k3 ≥ 65, whence from Corollary 3.3,
we have k4 − k3 < 8k3 < 107. Inequality (23) therefore yields

∣

∣

∣

∣

∣

log β

log α
− j4 − j3

k4 − k3

∣

∣

∣

∣

∣

<
1

10224 (k4 − k3)
<

1

10217 (k4 − k3)
2

which implies the existence of a partial quotient ai+1 to log β
log α

satisfying ai+1 >

10216 for a corresponding convergent pi/qi with qi < 107 (see e.g. [15]). For
each of the 26 cases we are concerned with, the 17th convergent has denomina-
tor exceeding 107 and the largest of the first 18 partial quotients we encounter
is a16 = 17145 for m = 2 and n = 5432. This concludes the proof of Theorem
1.1.

As a final comment in this section, we note that a result of Nemes and
Pethő [19] allows us to strengthen Theorem 1.1 in the following sense:

Theorem 5.1 If a and b are positive integers then there exists an effective
constant b0 = b0(a) such that if b ≥ b0 then either (a, b) is equivalent to a pair
(m2−1, n2−1) of the form described in (22) or equation (2) possesses at most
two solutions (x, y, z) in positive integers.

Proof : Let a = m2 − 1 and b = n2 − 1 for n > m ≥ 2 and, for fixed m and
k2 ≥ 3, consider the equation zm,i = zn,k2

, where zm,i is as defined in Section 5.
Viewing zn,k2

as a polynomial in n of degree k2 − 1, Theorem 3 of [19] may be
applied to show that this equation possesses at most finitely many solutions
in integers i and n and, through the theory of linear forms in logarithms, to
effectively bound their size (note that, in the terminology of Theorem 3 of [19],
we have q = −1/(4m2 − 1) < 0). Now, if k2 ≥ 106, the arguments of Section 4
(this time applied to the linear form Λ = (j3 − j2) log α− (k3 − k2) log β) may
be used to derive a contradiction. The theorem follows, therefore, by taking
b0 = n2

0 − 1, where solutions to zm,i = zn,k2
for 3 ≤ k2 < 106 satisfy n < n0. ✷

6 The More General Situation

Let us now turn our attention to the simultaneous equations described in
(1) (and hence Theorem 1.2) where a, b, u and v are nonzero integers with,
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additionally, av− bu nonzero. The theory of Pellian equations guarantees that
if each of the equations in (1) possesses a solution, then a positive solution
(xi, yi, zi) to (1) satisfies

(24) zi =
αjiµ − α−jiµ

2
√

a
=

βkiν − β−kiν

2
√

b

where α and β are the fundamental solutions to x2−az2 = 1 and y2− bz2 = 1,
respectively, µ and ν are “base” solutions to x2−az2 = u and y2−bz2 = v and µ
and ν are their conjugates (by a base solution to an equation like x2−az2 = u,
we mean a minimal positive solution (if such a solution exists) corresponding
to an integer l with l2 ≡ a (mod u) and 0 ≤ l < |u|. For an explanation
of these terms, the reader is directed to [9]. The only fact we will require
regarding these “base” solutions is that there are at most 2ω(u) of them where,
again, ω(u) denotes the number of distinct prime factors of u.). It follows that
two positive solutions (x1, y1, z1) and (x2, y2, z2) with z2 > z1, corresponding
to a fixed pair of base solutions µ and ν, satisfy

z2

z1
= βk2−k1

(

1 +
ν

ν

(

β−2k1 − β−2k2

1 − β−2k1 ν
ν

))

> 0.9β

where we use that |ν/ν| < 1. The number of positive integer solutions (x, y, z)
to the simultaneous equations (1) with z < max{|u|, |v|}c, for a fixed positive
constant c is thus ≪ 2min{ω(u),ω(v)} log (|u| + |v|). We will show that for c
suitably large, the number of solutions to (1) with z exceeding max{|u|, |v|}c

is, for a fixed pair of base solutions to (1), absolutely bounded.
For convenience, set

M1 = max {|a|, |b|} , M2 = max {|u|, |v|} and M3 = max {M1, M2} .

We have

Lemma 6.1 If (xi, yi, zi) are positive solutions to (1) for 1 ≤ i ≤ 3, belonging
to a fixed pair of base solutions and satisfying z3 > z2 > z1 > M3

2 , then
z3 > z3

1 .

Proof : We consider, again, the determinant ∆ defined in the proof of Lemma
2.1, where this time the three solutions are to (1). We once again restrict our
attention to a fixed pair of base solutions µ and ν to (1). As previously, we
expand along the third column, define αi = xi +

√
azi and βi = yi +

√
bzi and

find
∆ =

uv

4
√

abz1z2z3

∑

1≤i≤3

zi δi
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where

δ1 = u
(

α−2
3 − α−2

2

)

+ v
(

β−2
2 − β−2

3

)

+ uv
(

(α2β3)
−2 − (α3β2)

−2
)

and similarly for δ2 and δ3. From b > a ≥ 2 and z3 > z2 > z1, it follows that

|δi| <
M2

2z2
1

+
M2

2

36z4
1

and thus z1 > M3
2 implies that

|∆| <
M3

2 z3

z4
1

<
z3

z3
1

.

If ∆ = 0, however, arguing as in [18], then the solutions (xi, yi, zi) lie in a
proper subspace of R3, contradicting Bezout’s theorem (since the (proper)
intersection between this subspace and the affine variety defined by the equa-
tions in (1) would thus contain more than four points – namely ±(xi, yi, zi)
for 1 ≤ i ≤ 3). Since ∆ is an integer, it follows that z3 > z3

1 as desired. ✷

We can now appeal to Theorem 3.2 to find a bound for large solutions in
terms of a single one of suitable size:

Lemma 6.2 If (xi, yi, zi) are positive solutions to (1) for 1 ≤ i ≤ 2, belonging
to a fixed pair of base solutions and satisfying z1 > 15 × M10

3 , then z2 < z80
1 .

Proof : We apply Theorem 3.2 with a0 = 0, a1 = av, a2 = bu and N, q, p1 and
p2 as in the proof of Corollary 3.3. Arguing as in this proof, we obtain

max

{∣

∣

∣

∣

∣

√

1 +
a1

N
− p1

q

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

√

1 +
a2

N
− p2

q

∣

∣

∣

∣

∣

}

< M2 z−2
2 .

Also, NΥ ≤ M5
1 M3

2 z2
1 and

N2
∏

0≤i<j≤2

(ai − aj)
−2 ≥ M−4

1 M−6
2 z4

1

and so z1 > 15 × M10
3 implies that λ < 29/15. It follows from Theorem 3.2

that
z2 < 13015M133

1 M60
2 z59

1 < z80
1

where, again, the last inequality comes from z1 > 15 × M10
3 and M3 ≥ 3. ✷

Since this Lemma, together with Lemma 6.1, guarantees at most finitely
many positive solutions (x, y, z) to (1), corresponding to µ and ν, with z ≫
max{|u|, |v|}10, this completes the proof of Theorem 1.2.
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7 Concluding Remarks

The techniques described in this paper may be modified somewhat to treat
a number of similar problems connected to common values in recurrence se-
quences and produce strong bounds where applicable (though in rather less
generality than [24]). For example, we can, through a result analogous to
Lemma 2.2, prove

Theorem 7.1 If a and b are distinct nonzero integers, then the simultaneous
Diophantine equations

x2 − ay2 = 1, y2 − bz2 = 1

possess at most three solutions (x, y, z) in positive integers.

This provides a quantitative version of a theorem of Ljunggren [17] (see also
[3] for further work on simultaneous Pell equations of this type).

A question of some interest is whether the “correct” bound in Theorem
1.2 is two or three (positive solutions to (2) – or, if one likes, 20 or 28 integer
solutions). As previously mentioned, the author does not know of any pairs
(a, b) for which (2) possesses three positive solutions or of any with even two
which are not essentially members of the families defined by equation (22).
There does not appear to be particularly compelling evidence one way or the
other and a conjecture at this stage might be a trifle rash. One may further
note that each positive solution to (2) corresponds (see [20]) to a rational point
of infinite order on the elliptic curve

Y 2 = X (X + a) (X + b) .

In fact, the pairs (a, b) defined by (22) may be readily shown to induce a family
of elliptic curves with rank at least two.

Finally, it seems very likely that Theorem 1.2 may be improved, through
a treatment of the simultaneous equations

P (x, y, z) = Q(x, y, z) = 1

where P and Q are ternary quadratic forms. The upper bound upon the
number of solutions should, in all likelihood, depend only upon the number of
prime factors of the integers u and v.
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