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ON THE NUMBER OF SOLUTIONS OF SYSTEMS

OF RANDOM EQUATIONS

By DAVID R. BRILLINGER

University 0/ California, Berkeley

Let {f(x, w); x ERn, wEn } be an n vector-valued stochastic process

defined over a probability space (n , ....W': p). Let N(f IA , y) denote the

number of elements in the set A n f-I(y ), that is the number of distinct

solutions ofthe system ofequationsf(x, w)=y for x, y ERn. We develop

express ions for E {N(f IA , y)} and certain higher-order moments of

N([ IA, y) under regularity conditions.

1. Introduction. A variety of statistical properties have been developed for

the number of solutions of an equation

(1.1 ) /(x) = Y

in the case that x, y E Rand / is a random function. See, for example, Kac

(1943), Rice (1945), Cramer and Leadbetter (1967) . Properties have also been

developed in the case that x, y E C and / is a random analytic function, see

Paley and Wiener (1934, page 178), Littlewood and Offord (1948), Offord

(1965), Offord (1967). In this case (1.1) is equivalent with two real random

equations in two real unknowns . Here we determine the expected value and

the factorial moments of the number of solutions of n real random equations

in n real unknowns under regularity conditions. The results obtained have

application to the investigation of the number of extreme points of a random

surface defined over R», for the extreme points are the solutions of the n

equations resulting from setting the first derivatives of the surface to zero .

We note that Longuett-Higgins (1957) has investigated the expected number

of extreme points for certain random surfaces.

The proofs of the lemmas and theorems of Sections 2 and 3 of the paper

have been collected in Section 4.

2. The non-stochastic case. In this section we develop an expression for the

number of solutions of a system of n fixed equations in n unknowns. The

expression provides a generalization of one due to Kac (1943). In what

follows; if y = (YI'" ',Yn)ERn, the region IYII, "', IYnl < e is denoted

lyl < c. If A c s-, and I maps Rn into s», the restriction of/ to A is denoted

/ 1A. Iffi R: _ Rn is Lipschitz, see Federer (1969), its Jacobian determinant

existing almost everywhere is denoted Jj. The number of elements in the set

A n / -I(y), Y E s -, A c s-, is denoted N(f I A, y). This is the desired number

of distinct solutions of (1.1) in the set A.
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For s > 0, vERn set

535

(2.1 )

Also set

N,(f l A, y) = (2s)-n ~ l v l < ' N(f l A, y + v)dv .

(2.2) ¢ ,(v) = 1

=0

for Ivl < s,

otherwise.

Then we have,

LEMMA 2.1 . Let A be a measurable subset of R" and f : A ~ R» be Lipschitz.

Then

(2.3) N,(f I A, y) = (2s)-n ~ A ¢ ,[f(x) - y] !Jf(x)!dx.

If in addition

(2.4)

then

L IJf (x )ldx < 00 ,

(2.5) N(f I A, y) = lim,-.o (2s)-n ~ A ¢ , [ f ( x ) - y] IJf(x)[dx

for almost all y and indeed

(2.6) lim,-.o ~ IN(f I A, y) - N,(f I A, Y)ldy = 0 .

Finally if N(fl A, u) is continuous u = y, then (2.5) folds for that y.

Expression (2.5) is the promised formula for the number of solutions of in

terest. The next lemma indicates one set of conditions under which N(f l A, u) is

continuous at u = y. We say that a continuously differentiable f: Rn -~ Rn is

normal above y E Rn if Jf(x) "* 0 for x Ef-l(y), (see Whitney (1957), page 145).

LEMMA 2.2 . Let A be an open bounded subset of R" and let f : A -~ R: be

normal over y . Then N(f IA, u) is continuous at u = y.

This lemma, together with Lemma 2.1, indicates that (2.5) holds for given

y if f is normal above y.

3. The stochastic case. We now turn to a determination of the mean number

of solutions of a random equation f(x , w) = y falling in a set A in the case

that f(x, w) is a vector-valued stochastic process. We have,

THEOREM 3.1. Let A be a measurable subset ofR» , Let {f(x, «i); x ERn; W E O}

be an n vector-valued stochastic process defined over a probability space (0, .J¥; p.).

Let f(x, w) be Lipschitz with probability one for x EA. Let the variates a =

f(x, w), (j = Jf(x, w) havejointdensity p(a; (j; x), a ERn, (j E R, XE A, satisfying

(3.1) ~ ~ ~ A I { j l p ( a ; J 3 ; x ) d a d { j d x < 00.

Then

(3.2) E{N(f IA, y)} = ~ L l{jlp (y ; {j; x)d{jdx

for almost all y E R» ,
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Expression (3.2) was set down by Rice (1945 ) in the case n = 1. We remark

that if pt«; x) denotes the density of a = fix, w), then an alternate form for

(3.2), involving a conditional expected value, is

(3.3) E{N(fl A , y)} = Lp(y; x)E( IJf(x) I:f(x) = y}dx.

The solutions of f(x, w) = y determine a multidimensional point process in

R n . (These are discussed in Srinivasavan (1969 ).) If A is taken to be a small

parallelipiped of volume IAI and x E A, then from (3.2)

(3.4) E{N(f / A , y)} = IAI ~ 1/1 /p (y ; /1 ; x)d/1 ,

showing that the intensity parameter of this point process is ~ 1/1 1p(y; /1; x)d/1.

One application of (3.2) is to provide a bound for crossing probabilities of

the form Prob [f(x, w) = y for some x E A]. Clearly this probability is less

than or equal to E{N(f l A , y )}. We may conclude, for example, that the

probability is zero if (3.2) holds and p(y; /1; x) = 0 for almost all/1 ERn, x E A.

Theorem 3.1 provides the expected number of solutions for almost all y E

R n. If some particular value of y is of interest, then the following result may

be of use.

COROLLARY 3.1. Under the conditions of the theorem and if (i) N(f l A, u) is

continuous at u = y with probability one , (ii) E{N(f l A, u)l+O} < 00 for some

o> 0 and for u in a neighborhood ofy, (iii) ~ L 1/1l p (u; /1; x)d/1dx is continuous

at u = y , then (3.2) holds.

We remark that it follows from Lemma 2.2 that (i ) holds if the sample

paths f (x; w) are normal over y for almost all o»,

We next turn to the investigation of a function related to the higher order

moments of the number of solutions. Given measurable subsets AI' "', A k of

R n and f : R" _ s» consider the number of solutions of the system of equations

(3.5 ) f(x l ) = Yl> ... , f (xk) = Yk

for Yu ... 'Yk E R n with xi E Ai' Xi =t= Xi' 1 s;, i < j < k. In the case that the

Ai are disjoint, the number of solutions is

(3.6) N(f l AUYI) '" N(f l Ak'Yk)'

In the case that Ai = A, Y i = y, N = N(f IA, y) the number of solutions is

(3.7 ) N(N- 1) ... (N + k + 1).

Letting B = {(Xl' ... , xk) : Xi E Ai' Xi =t= Xi' 1 < i < j < k}, denoting the map

of (3.5) by I: R nk - R nk and letting N(f l B, Yu .. " Yk) denote the number of

solutions of (3.5) falling in B we have,

THEOREM 3.2. Let Au .. " A k be measurable subsets of s -. Let {f(x, w);

X E R»; w E O} be an n vector-valued stochastic process defined over the probability

space (0, .J¥; fl ). Let f(x , w) be Lipschitz with probability one for X E Al ... Ak·
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Let the variates a j = f(x j, w), f3j = Jf(xj, w), j = 1, "', k have joint density

p(al' .. " ak; 131' .. " 13k; Xl' .. " Xk) for distinct Xj' Xj E A j with

(3.8) ~ ... ~ ~ A l ... ~ A k 11311 ... If3klp(al, .. " ak; 131' .. " 13k; Xl' .. " Xk)

X In (da jdf3jdxj)

finite. Then

E{N(/I E, Yl' .. " Yk)} = ~ ... ~ L
l

••• ~ A k 11311 ••• If3kl

(3.9) X P(Yl' .. " Yk; 131' .. " 13k; Xl' ... , Xk)

X In (df3 jdxj )

(3.10)

for almost all Yl' ... , Yk E R",

As one implication of this theorem, we mention that if A!, .. " Ak are

small disjoint parallelipipeds of volumes IAll, .. " IAkl and x j E A j , then

E{N(f I AI' Yl) N(f 1 Ak, Yk)}

= JAIl IAkl ~ ... ~ 11311 ••• If3kl

and so

(3.11) ~ ... ~ l f 3 I I " ' l f 3 k l p ( y l ' ""Yk;f3l' ···,f3k;Xl, ... ,xk)df3l··· df3k

may be interpreted as a product density of order k (see Srinivasavan (1969))

of the multidimensional point process resulting from the solutions of (3.5).

If one is interested in the factorial moment of order k of N = N(f 1 A , y )

for some prespecified Y one has,

COROLLARY3.2 . Under the conditions of the theorem and if (i) N(/ IE, Ul, .. "

Uk) is continuous at (U1 • • " Uk) = (y, ... , Y ) with probability one, (ii) E{N(/ IE,

Ul' .. " uk)l+ O} < 00 for some 0 > 0 and f or Ul' .. " Uk in a neighborhood of

(Y, .. " y), (iii) ~ ... ~ ~ A ... ~ A 11311 ••• If3klp(ul, .. " Uk; 131' .. " 13k; Xl •• " Xk)
df3l ... df3kdxl ... dx; is continuous at (ul, .. " Uk) = (y, ... ,y), then

E{N(N - 1) (N - k +1)}

(3.12) = ~ ~ L ... L 11311 ••• If3kl

X p(y, .. " y; 131' .. " 13k; Xl' •• " xk)df3l ... df3kdxl ... dx; .

We mention that / will be normal above (y, . . " y ) whenfis normal above

Y and so following Lemma 2.2 (i) above will hold in the case that A!, ... , Ak
are open and bounded andfis normal above Y with probability one. Expression

(3.12) was set down by Cramer and Leadbetter (1967) in the case of Gaussian

f(x, w) and n = 1.

4. Proofs. We begin with a proof of Lemma 2.1.

PROOF OF LEMMA 2.1. Kirszbaum's Theorem (see Federer (1969), page 201)
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indicates the existence of a Lipschitz extension of fwith domain Rr, Theorem

3.2.5 of Federer (1969) (or Theorem 2, page 374 in Rado and Reichelderfer

(1955)) then applies to give

(4.1) L g[f(x)] IJf (x )ldx = ~ Rn g(u)N(f l A, u)du

for measurable g: R» - ~ R. Taking g(u) = (2c)-nep,(u - y) in (4.1) gives (2 .3)

after a change in variable.

Taking g(u) = 1, shows that

(4.2) ~ N(f l A, u)du = L IJf (x )ldx

and so N(f IA , u) is integrable in view of (2.4) . The conclusions of the lemma

now follow from a standard convergence theorem (see, for example, Theorems

1.1.1,1.3 .2 in Bochner (1960).)

PROOF OF LEMMA 2.2. Under the stated conditions the set of solutions can

have no limit points for the Jacobian would then vanish at some solution.

The solutions are therefore isolated and finite in number. The Inverse Function

Theorem then applies to give the existence of a continuously differentiable

inverse in the neighborhood of each solution. If y is altered by a sufficiently

small amount, it follows that the number of solutions is unchanged and so N

is continuous.

PROOF OF THEOREM 3.1. We begin by noting, from (2.1), (4.2), that

(4.3) ~ N(f l A, u)du. ~ N,(f l A, u)du = L IJf(x) ldx

and therefore, in view of (3.1) ,

(4.4) EO N(f l A, u)du} , EO N,(f l A , u)du} < 00 •

In consequence, it follows from bounded convergence, Fubini's Theorem and

(2.6) that

lim,_o ~ IE{N(fl A, u)} - E{N,(f l A, u)}ldu

(4.5) = lim,_o EO IN(fl A, u) - N,(f IA, u)ldu}

=0

At the same time, we have from (2.3),

(4.6) E{N,(f l A, y)} = (2c)-n SSL 1-',( 0: - y) It9 lp(a ; t9 ; x)dadt9dx

and so

(4.7) lim,_o ~ IE{JV, (fl A, y)} - ~ L 1t9l p(y ; t9 ; x)dt9dxldy = 0

(by Theorem 1.3.2 of Bochner (1960).) Expressions (4.5) and (4.6) together

now give

(4.8) ~ IE{N(f l A, y)} - ~ ~ A 1t9l p(y ; t9; x)dt9dxldy = 0

and thence the conclusion of the theorem.
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PROOF OF COROLLARY 3.1. Under the sta ted conditions

E{N(f l A , y )} = E{lim u ~ lIN (f l A , un
= lim u ~ lI E{N(f l A, u)}

= SSA1,Bl p(y ; f3 ; x )d,Bdx .
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PROOF OF THEOREM 3.2. B is a measurable subset of Rr", The Jacobian of

the map! is given by Jj(x1) • • • Jf(x k ) . The conclusion of the theorem now

follows directly from Theorem 3.1 taking n to be nk, A to be Band fto be f.

PROOF OF COROLLARY 3.2 . This result follows directly from Corollary 3.1

in the above manner.

5. Concluding remarks. We note here that the results obtained are easily

modified, in the manner of Leadbetter (1966), to yield the moments of the

number of solutions of the equation

(5.1) f (x ) = g(x)

for a fixed measurable n vector-valued function g.

The reader will have noted that the results obtained required expression

(4.1) in an essential manner. In fact Federer, Theorem 3.2.5 develops ex

pression (4.1) in the more general setting of maps f: Rm_ R'" with m S n

using Hausdorf m-measure. This suggests the possibility of extending the

Theorems of this paper to apply to n vector-valued stochastic processes

ftx , ill) , x e R", m S n,

In another direction we mention that if A is a bounded open set, f: A _ R'"

is continuously differentiable and p(f IA , y ) is the topological index of the

mapping f with domain A at the point y (see Rado and Reichelderfer (1955),

page 125), then as an analog of (4.1) one has

(5.2) L g[f(x)]Jf(x)dx = Sg(u)p(f IA, u)du

(ibid. page 374) and so one has , for example, under the conditions of Theorem

3.1

(5.3) E{p(f l A, y )} = SSAf3p( y ; f3 ; x )d,Bdx.

I would like to thank Professor M. W. Hirsch for suggesting Lemma 2.2 to

me.
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