ON THE NUMBER OF SUCCESSES IN INDEPENDENT TRIALS!

By S. M. SAMUELS

Purdue Universz’ty

1. Summary. The distribution of the number of successes in independent trials
is shown to be bell-shaped of every order. The most likely number of successes is
“almost uniquely”’ determined from the mean number and from the mean plus
the largest and smallest probability of success on any trial. Bounds on the dis-
tribution function of the number of successes are obtained and extended to an
infinite number of trials, including the Poisson distribution.

2. The shape of the distribution. We consider n independent trials with prob-
abilities p; of success on the sth trial. We shall always assume 0 < p; < 1; the
generalization to p; = 0 or 1 being immediate, though sometimes, (e.g. in (5)
and Theorem 1), burdensome to formulate. We let

f(k) = probability of k successes
fi(k) = probability of k successes in all but the sth trial.

Then
(2) Z‘,Hf(k)z = I[:- (1 = pi + pa2).

An inequality of Newton, proved in [3], p. 104, states that if a;, -+, @
are any non-zero real numbers (positive or negative) and if by, by, -+, bs
are defined by

(3) i (b = TIia (1 + a),
then,
(4) bl > brabpn fork=1,---,n—1,

unless all the a/’s are equal, in which case equality holds.
From (2), it follows that

(6) (f(B)/(2))" > [f(k — 1)/GEDNfk +1)/Gh)] fork =1, -+, n— 1,

unless all the p,’s are equal, in which case equality holds. This inequality has
also been derived in [5], p. 88. From (5), we have the weaker inequality

(6) k) > fk — 1)f(k+1) fork=1,---,n—1,
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(i.e. f is log concave). Hence f is unimodal, first increasing, then decreasing, and
the mode is either unique or shared by two adjacent integers.
This result can be extended, as follows: Let

Do(k) = (k)
D.(k) = D,_y(k) — D,—y(k — 1) forr=1,2, ...
Then
2 D(k) = (1 —2) ][t (1 — pi + p2z) forr=0,1, -
Hence, by (4)
(DAK)/ (")) > Dk — 1)/GENDIDAk + 1)/(H7)]
forr=20,1,---,andk =1, ---,n+r — 1.

The weaker versions of these inequalities, namely, D,*(k) > D,(k — 1)D,(k + 1),
imply that D,,; can have at most one strict sign change between successive strict
sign changes of D, ; hence D, has at most r strict sign changes (i.e. f is “bell-
shaped of order r” for every r).

This result, for r = 1, 2, was given by Darroch ([1], Theorems 1 and 2).

3. The most likely number of successes. If p1 = .-+ = p, = p, then the
most likely number of successes is well-known to be the integer &£ (or pair of ad-
jacent integers) such that

k/(n+1) =p=(k+1)/(n+1).

Equivalently, if for some k, k < np < k + 1, then the mode is k(k + 1) if np
is < (2)k+ (n — k)/(n + 1). An analogous result for unequal p,’s follows
immediately from two simple lemmas. The first, given in [2], states that

(7) f(k + 1)/f(k) is strictly increasing in each p; fork = 0,1,---,n — 1,
since
(d/dp) (f(k + 1)/f(k)) = [f}(k) — fulk — V)fu(k + 1)I/f*(k)
which is positive by (6). The second states that
(8) kf(k) = >ty pfi(k — 1) for any k,

which follows by differentiating (2) with respect to z and identifying coeflicients.
TuEOREM 1. If k is an integer such that

k< 2lapi Sk +1,
and if py = min (P, **+ , Pn)y Pn = MaX (P1, **+, Dn), then
(9) fik) > fi(k — 1),
(10) fa(k) > falk + 1),
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unless p1 = p, = k/n ot (k + 1)/n in which cases equality holdsin (9) or (10)
respectively.
Proor. By hypothesis and by (8), there are indices r and s such that

(11) fr(k — 1) = f(k),
(12) fu(k) 2 J(k + 1).
Hence, by (1),

(13) fr(k = 1) = fi(k),
(14) fo(k) = fo(k + 1).

If p1 + .-+ + p. > Fk, then strict inequality can be obtained in (11), hence in
(13) and therefore, by (7), forr = 1.If pr + --+ + p. = k, p1 < Pa, then (7)
again implies strict inequality in (13) for r = 1. If p; = p. = k/n, then
- filk) = CEDY R/ — (k/n))"
= ) /) A = (k/n)"* = filk — 1).

A similar argument at the other end-point completes the proof.
As immediate corollaries to the theorem, we have:

(15) Pt Srape > k= fk) > fk — 1),
(16) Do+ 2omaps <k + 1= k) > f(k + 1).

Hence, if the hypotheses of both (15) and (16) hold for some k, then k is the
unique mode of f. Moreover,

(17) k< 2tap Sk+1=fk—1) <fk); fk+1)>fk+2),

so if the mean number of successes is between k and k£ 4 1, then the most likely
number of successes is k or £ + 1.

An improvement on (17)—in fact a complete characterization of the mode in
terms of the mean—was obtained by Darroch ([1], Theorem 4) by using the
following result: If ¢ is any function defined on 0,1, :--,n, and if
o+ -+ + p. = np, then
(18)  minr—o1--. a1 2k~ g(k)f(k | np, 1, s) < Eg = 2 im0 g(k)j(k)

O St
< MaX,—1 - ma-p1 2ie=o §(K)f(k | np, 7, 5),

8=01,"-+,[np]
where

(19) f(k|np,1,8)
= (&) ((np —8)/(n—r1 — &) ((n—r —np)/(n —r — )"

and [z] denotes the integer part of x. This result was obtained by Tchebicheff
[7] for a special function, g, but without making use of the special form of that g.
It was also obtained by Hoeffding [4] from a more detailed theorem.

Itk <np <k-+4+1and
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glz) =1 if z=k+1
= —1 if 2=k
=0 otherwise,
then Eg = f(k + 1) — f(k), which, by (18), is always (i.e., no matter how the
ps’s are chosen, subject to the constraint p; + -+ + P, = np) negative if

E<np<k+1/(k+ 2),always positiveif t +1 — 1/(n — k + 1) < np <
kE+1, and can be of either sign if 14+ 1/(k+2) <np<k+1-—
1/(n — k + 1). Since this holds for all k, we have the following:

TueoreM 2 (Darroch). If, for some integer k,

k—1/(n —k+2) <2kip <k +1/(k+2),
then k s the (unique) most likely number of successes. If, on the other hand,
E+1/(k+2) < Xiip:<k+1—1/(n—k+1),

for some k, then the mode may be either k or k + 1 depending on how the p/’s are
chosen. : '

We should remark that, while some improvement of these results may be pos-
sible using other simple functions of the p.’s, there is no rational function of the
pi’s which uniquely determines the mode. This is so even when n = 2.

4. Bounds on the distribution function. We define F (k) to be the probability
of at most & successes in the n independent trials:
F(k) = 25~ f()
F(k|np,7,5) = 250 f(j | np, 1, 5)
= 250 (") ((mp — 8)/(n —r — 8))"*

“((n —r —np)/(n —r — s))"_'_j.
If we let
g(z) =1 ifz <k

=0 if z>Fk

then Eg = F(k) so that (18) gives upper and lower bounds on this distribution
function in terms of the mean. Hoeffding [4] has shown that these bounds can be
simplified as follows:

Liemma 1 (Hoeffding).

ming, ...4p,=np F(k) = F(k |, np, 0, 0) ifnp <k
= min,_01,-.,na-p F(k |np,7,0) & k <np <k+1
=0 ¥ np2k+1
MAXp,+---+p,=np F (k) = F(k|np, 0, 0) if np=k+1

= MaX,—0,1,..-,1np] F (k| np, 0, 8) f kE<nmp<k+1
= 1 if np < k.
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Similarly, we can obtain a lower bound on the probability of less than k suc-
cesses minus the probability of more than k successes, in terms of the mean:
LEMMA 2.

MiNpte..tpymnp {F(k — 1) + F(k)}

= F(k — 1| np,0,0) + F(k | np, 0,0) if np = a(k)

= Minpgy,...,na-p {F(k — 1| np,7,0) + F(k | np,r,0)} i a(k) <np <k
= min,.o,l,::::E:g]_,)] {F(k—1|np,r,s)+ F(k|np,r,8)} fk<np<k+1

=0 if np=k+1,
where
a(k) = (k(k — 1))(n — 1)/{(k(k — 1)) + ((n — k)(n — k — 1))*.

The method of proof is essentially the same as that used by Hoeffding in de-
riving Lemma 1.

Lemma 2 complements the Simmons inequality, derived in [6], which states
that

(20) F(k—1|np,0,0) >1— F(k|mnp,0,0) if p=k/n

unless p = k/n = 3}, in which case equality holds.

A bound on F which complements Lemma 1 is presented by the following
lemma:

Lemma 3.

(21) F(k|np,0,0) 2 [1 — p/(k+1—kp)"™* if np<k+1.
Proor. Equality holds fork = 0,7;p = 0,1. Weassume 1 <k <n — 1. Let
b(p) = F(k|np,0,0) — [l — p/(k + 1 — kp)I"™.

IIA
)
-

Then
(d/dp)bi(p) = —n ()P (1 — p)"7F
+ {(n — k)(k 4+ 1)/(k + 1 — kp)}[1 — p/(k + 1 — kp)]"" ",
which has the same sign as
(n — k)(k + 1)"*/n("s") — p*(k + 1 — kp)"™™* = A(k) — B(k; p),
where
Ak)>1 for 1 k<n-—1,
An—1) =1,
B(k;0) = 0,
B(k;1) =1,
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(d/dp)B(k;p) >0 for p < (k + 1)/(n + 1),
<0 for p> (k+ 1)/(n + 1).

Hence (21) istruefork = n — land for 1 < k < n — 1 it is sufficient to verify
(21) fornp = k 4+ 1,

We do so by induction. Letting the superscripts below denote the number of
trials, we have, for n = k,

(22) B™((k+ 1)/n) — b/ (n — 1)
=F™&|k+1,0,0) — F* (k — 1]k, 0,0),
since, for ;1 = (k + 1)/n, p. = k/(n — 1),
1 —p/(k+1—kp)"™ = [1 — po/(k — (k — 1)py)] "0~
=[1—-1/(n— K™
Now
F*Y(k — 1]k 0,0) = F”(k|k + 1,0, 1);

hence, by Lemma 1, (22) is non-negative. Since (21) holds for ¥ = 0, the lemma
is proved.
Combining (20) and (21) with Lemmas 1 and 2, we have, in particular,

(23) Fky2[1 —p/(k+1—kp)I"™ if pr4 -+ +pa=np Sk,
(24) F(k—1) 21— F(k) if ppo+ - +pa=np=a(k);k/n =}

The Inequalities (20) and (21) can be immediately extended to the Poisson
distribution, in which case we have:

(25) O > i (W/ile™ it NSk,
(26) DELN/DE z M i NS k41,
which imply, in particular,

(27) Dk o (KiNe ™ > 1 (k an integer),
(28) Eo(N/iNer > et i A<k 41,

as shown by Teicher [8].
The generalization of (23) and (24) to an infinite number of trials is likewise
immediate and similar.
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