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On the number of unstable modes of an equilibrium
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Summary. The number of unstable modes of an equilibrium may, in a variety
of cases of astrophysical interest, be deduced from topological properties of
continuous series of equilibria without having to solve an eigenvalue equation.

1 Introduction

Poincaré invented a powerful method for separating stable from unstable equilibria. It is
based on series of equilibrium configurations. The method has been used by Poincaré (1885)
and many others (from Jeans 1932, new edition 1961, to Ledoux 1958), to find stable
equilibria of rotating liquid masses and rotating systems of rigid bodies. Wheeler (in Harrisson
et al. 1965) rederived some of Poincaré’s results and found stable configurations of star
models at zero temperature (see also Thorne 1966). Bardeen, Thorne & Meltzer (1966)
described a method, similar to that of Wheeler, and which applies to hot isentropic stellar
models. Lynden-Bell & Wood (1968) found stable configurations of isothermal spheres by
applying the method to thermodynamic systems.

All these examples come from astronomy and astrophysics. The method is, however,
applicable to very different types of physical systems (see e.g. Thompson & Hunt 1977).

In brief, the method works as follows: a change of stability may occur only where two or
more series of equilibria have one equilibrium configuration in common or where two or
more series merge into each others. When this happens, stable equilibria may turn into
unstable ones; reciprocally, unstable ones may become either stable or more unstable. The
nature of this change in stability or instability is usually known by solving an eigenvalue
equation. There are, however, known exceptions where the eigenvalue equation need not
be solved. For instance, Wheeler (in Harrisson et al. 1965) has noted that for zero tempera-
ture stars the series of equilibria configurations gives also the number of unstable modes of
each equilibrium. A similar situation exists for hot isentropic stellar models (Bardeen,
Thorne & Meltzer 1966).

We want to point out that in many more cases than these two, the number of unstable
modes may be deduced solely from the topological properties of series of equilibria. General
conditions under which this is possible are given below. The method is illustrated with two
new examples.
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2 Parameters and conjugate parameters of linear series

We shall very briefly review the basis of Poincaré’s analysis so as to formulate our problem
precisely. Let the system be described by » variables x* (i,j only =1, 2, ..., n). Let Fbe a
function of the forces such that if the system is in equilibrium, F is at an extremum:

3F =0, (1)
and that an equilibrium is stable if this extremum is a maximum:
9;;F 8x' 8x7 < 0, 6x arbitrary. (2)

Suppose F contains a real parameter, say s, so that all equilibrium configurations are
functions of 5. Let

x'=Xis), a,bonly=1,2,...,N, 3)

be the multiplicity of solutions of equation (1). The following conditions of continuity will
be enough for our purpose (i) the function F and its derivatives of order 1 and 2 are con-
tinuous functions of x’ and s; (ii) the solutions X are continuous functions of s. These
Xi(s) generate V ‘linear series” or MV lines in the (n + 2)-dimensional space with coordinates
(F,s,x"). Some of these lines may cross each other and have a common point; this is a point
of bifurcation. Lines may also merge into each other at some point which is then called a
limit point.

We shall now assume that (—9;;F), has a non-degenerate spectrum of eigenvalues, say
kia<kag<...<kpa<...<kp, In that case one and only one eigenvalue at a time, e.g.
kna, may be equal to zero.-A change of stability corresponds to a change of sign of kj,. -
It may be shown (see Thompson 1977 and references therein) that a change of stability
can only happen at a point of bifurcation or at a limit point.

What we shall show is, that in certain cases, the sign of kj,(s), in the vicinity of s =5,
where kj,(so) = 0, may be deduced from the form of the projection of the line Xi(s) on the
plane (F, s). The equation of this projection is

Fo(s) = F[X4(s),s]. (4)

F, is a continuous function whose physical relevance will become clear in the examples
given below. Let F,(s), the derivative of (4), define a conjugate parameter of s, with respect
to a given series a. Our conditions of continuity on F and X’ imply that

Fo(s)=(3:,F), for s+s,. (5)
Thus Fa is a continuous function. Its derivative

Fo(s) = (355F)y + (35;F), X for s +#5,, (6)

is also continuous but £, may, hke X! itself, be discontinuous at s = So, as may the left and
right derivatives of F be different at s, when they exist. If we take (— 9;;F), to be diagonal,
which we may almost always do, equation (6) may be put in the following form with the
help of (1):

Fa(s) = (355F)q + Z (BsiF)alkia(s) for s+ s,. @)
i=1

Both (84sF ), and (8y:F), are continuous functions of s by our assumptions. Equation (7)

shows that if there is a bifurcation or a limit point at 5o, where kp,(so) = 0, the slope of

F, a(80) may, but will not necessarily be, infinite. If it is infinite, the value of £, in the vicinity

of 5o is essentially that of the dominant term from the sum of equation (7); it is of the form
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Figure 1. Possible forms of Fa(s) near a bifurcation point for the case where the linear series ¢ has a
vertical tangent. The line b, which cuts ¢ at point O is not drawn. The sign of the eigenvalue kj,,(s), which
is equal to zero at point O, is indicated by a+ and ¢ — on each branch of a. More general situations may
exist in which only one branch &’ or " has a vertical tangent.
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Figure 2. Possible forms of Fa(s) near a limit point for the case where two linear series ¢ and b have a
vertical tangent at point O where they merge into each other. The sign of kj,(s), which goes to zero at
point O, is indicated by a+ and a— along ¢ and b. Cases (ii) and (iii) have two subcases. A more general
situation may exist in which either a or b alone has a vertical tangent at point O.

A%kp,. In that case, the sign of kp,(s) is thus the sign of the slope of the conjugate
parameter of equilibrium £, in the vicinity of its vertical tangent. Various possible forms of
F,(s) near sq are given in Fig. 1 for a bifurcation and in Fig. 2 for a limit point. The signs of
knq(s) are also indicated on the graphs.

3 Examples of application: isothermal spheres

Isothermal spheres with identical particles have been discussed many times; for our purpose
a useful reference is Lynden-Bell & Wood (1968). There are three parameters in this system:
the energy F, the total mass M and the volume V. The potential of the forces is here the
entropy S. We consider only spherically symmetric configurations of regular mean fields.
The eigenvalue spectrum of the quadratic form (2) is given by a one-dimensional differential
equation, related to radial perturbations of the equilibria and all one-dimensional differential
equations with regular eigenfunctions have non-degenerate spectra. (One may ask what the
x" variables are in the present case. The entropy may be expressed as a functional of some
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field variable W(x, y, z) (see Horwitz & Katz 1977.) Each value of W at each point (x, y, z)
is one variable x’ and may vary independently between * oo, There is thus an infinite con-
tinuous set of x"’s.) Since V is finite, the support of the eigenfunctions is compact and the
spectrum of eigenvalues is then discrete. Our previous considerations are thus applicable in
the present case.

Let us take the energy F as parameter s; one may as well take M or V in the present
example. The parameter conjugate to E is, as we know, the inverse temperature T

Fy(s)=(0S/0E ) =T with Boltzmann k=1. (8)

The diagram of T7' as a function of £ may be obtained from the curves published in
Lynden-Bell & Wood (1968). It is represented in Fig. 3 and is parametrized in terms of the
so-called density contrast, i.e. the ratio, say A, between the density in the centre and the
density on the boundary of V. The value of A increases as the curve spirals inwards. For high
temperatures, 7! >0, the system behaves like a collisionless gas which is stable. Thus, the
branch of the curve between # =1 (at infinity) and A = 709 is a branch of stable configura-
tions. By comparing Fig. 3 with cases (i) and (iv) of Fig. 2, we see that between z = 709 and
4.5 x 10% the lowest eigenvalue is negative; then between & = 4.5 x 10 and 6.3 x 10° the two
lowest eigenvalues are negative. As the curve spirals inwards, more and more eigenvalues
become negative. Thus, stable configurations exist only for 1 <4 < 709. Lynden-Bell & Wood
have found that the system indeed becomes unstable at # = 709. The limit 709 was also
found by Antonov (1962) with a more complicated technique. What we have shown here is
that no stable configuration may exist with 2 >709. A similar result may be derived by a
steepest descent calculation in statistical mechanics (Horwitz & Katz 1978). The technique,
which is much more sophisticated than the present one, has the advantage of being applic-
able to every case, including where the present method fails to work.

Fig. 3 gives us also the limit of stability when the system is in a heat bath rather than
being isolated. In this case, the parameters are T~!, M and V. The relevant potential is the
Massieu function corresponding to Helmholtz’ free energy H, that is F = (— T"'H) and with
s=T7!, the conjugate variable £,=(—E). The function (—E) of T™! is given by Fig. 3
rotated clockwise by 90°. We see that one stable branch exists for # between 1 and 32.1,

T-l

h—}

0 E

Figure 3. Form of the function T7'(E) for isothermal si)ieres of fixed'mass and volume, according to
Lynden-Bell & Wood (1968). Parametrization is in terms of density contrasts 2. The values of # are taken
from Horwitz & Katz (1978).
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as already shown by Lynden-Bell & Wood. We find now that isothermal spheres in a heat
bath are unstable for any density contrast 2 > 32.1. A second mode of instability sets in at
h=5.2x10*and a third one at 4 = 5.4 x 10°.

4 Conclusions

The present technique for finding limits of stability and the number of unstable modes is
remarkably simple and of wide applicability. Our examples and those described in Thorne
(1966), show that the method may also be useful. The limitations of this technique are,
however, clear. (i) One needs to calculate a number of equilibrium configurations and this
is not always easy to do. (ii) Bifurcations, as well as limit points, have to show up through
a vertical tangent of the conjugate parameter; this is of course not always the case. (iii) One
stable equilibrium has to be known. This may often be the case, but for instance in spherical
clusters with an energy cut-off, it is not obvious whether any equilibrium configuration is
a priori stable or not (see Katz & Horwitz 1978). (iv) The spectrum has to be discrete and
non-degenerate. This will normally not be the case in thermodynamic systems that are not
gravitationally self-bound.
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