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ON THE NUMBER OF ZEROS
OF CERTAIN HARMONIC POLYNOMIALS

DMITRY KHAVINSON AND GRZEGORZ ŚWIA̧TEK

(Communicated by Juha M. Heinonen)

Abstract. Using techinques of complex dynamics we prove the conjecture of

Sheil-Small and Wilmshurst that the harmonic polynomial z − p(z), deg p =
n > 1, has at most 3n− 2 complex zeros.

1. Introduction

Let h(z) := p(z)− q(z) be a harmonic polynomial of degree n > 1 where p, q are
analytic polynomials of degree n and m, m < n. The following question was raised
by T. Sheil-Small [6]: what is the upper bound on the number of zeros of h? He
conjectured that the sharp upper bound was n2. His former student A. Wilmshurst
has proved this in his thesis [7] by demonstrating the upper bound using Bézout’s
theorem and also showing by examples that for m = n, n−1 that bound was sharp.
Some of Wilmshurst’s results were independently discovered by Bshouty et al. [1].
However, for m < n − 1 it was suggested in [7] that the upper bound should be
much lower, in particular Wilmshurst conjectured that for m = 1 the number of
zeros of h(z) does not exceed 3n − 2. The purpose of this note is to prove this
result by using certain well-known techniques from complex dynamics. This is not
at all surprising since in that case the zeros of h could be thought of as finite fixed
points of the mapping z → p(z) of the Riemann sphere. It must be mentioned
that the first author’s attention to the problem was drawn by a question posed by
D. Sarason, who jointly with B. Crofoot proved in [5] the 3n − 2 conjecture for
n = 3 (it is trivial for n = 2). Also, Crofoot and Sarason obtained in [5] several
intriguing reformulations of the problem in terms of coercive estimates of some
linear operators on finite-dimensional spaces.

The authors are greatly indebted to D. Sarason for valuable discussions of the
problem, relevant references and for sharing his and Crofoot’s unpublished work
with us. We also thank the referee for a quick report and useful comments.

2. Preliminaries

As was mentioned before, Wilmshurst’s conjecture for m = 1 can be reformulated
in terms of the fixed points. Namely,
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Theorem 1. Let p(z), deg p = n > 1, be an analytic polynomial. Then

#{z ∈ C : p(z) = z} ≤ 3n− 2 .

It is easy to see that the fixed points of p(z) are finitely many, since the latter
are also fixed points of the function Q(z) = p(p(z)) which is an analytic polynomial
of degree n2. In fact, one can also observe (see [7] and [4]) that for any harmonic
function h(z) = p(z) − q(z), 0 < deg q < deg p, all the zeros are isolated. On the
other hand, examples of quadratic polynomials show that the estimate of Theorem 1
is the best possible.

2.1. Facts from complex dynamics. If q(z) is a polynomial, a fixed point z0 ∈
C is attractive, repelling or neutral if, respectively, |q′(z0)| < 1, |q′(z0)| > 1 or
|q′(z0)| = 1. A neutral fixed point is rationally neutral if q′(z0) is a root of unity.
We shall say that a fixed point z0 attracts some point w ∈ C provided that the
sequence qk(w) = q ◦ · · · ◦ q︸ ︷︷ ︸

k

(w) converges to z0. A point ζ is called a critical point

of q if q′(ζ) = 0.

Fact 1. If deg q > 1, z0 is an attracting or rationally neutral fixed point, then z0

attracts some critical point of q.

For the proof, see [2], Ch. III, Thms. 2.2 and 2.3.

2.2. The argument principle. A harmonic function h = f + g, where f and
g are analytic functions, is called sense-preserving at z0 if the Jacobian Jh(z) =
|f ′(z)|2 − |g′(z)|2 > 0 for every z in some punctured neighborhood of z0. We also
say that h is sense-reversing if h is sense-preserving at z0. If h is neither sense-
preserving nor sense-reversing at z0, then z0 is called singular and necessarily (but
not sufficiently) Jh(z0) = 0.

Note that for harmonic functions z − p(z), deg p > 1, a point z0 is sense-
preserving, reversing or singular if and only if |p′(z0)| is less than 1, greater than 1
or equal to 1, respectively.

If Γ is an oriented closed curve and F does not vanish on Γ, then the notation
∆Γ argF (z) means the increment of the argument of F (z) along Γ. We will use the
following argument principle which is taken from [4]. The referee pointed out that
there is a newer and stronger formulation of the principle found in [3].

Fact 2. Let h be a harmonic function in a finitely-connected domain Ω with a
piecewise smooth boundary Γ. Assume that h is continuous in Ω and h 6= 0 on Γ.
Suppose also that h has no singular zeros in Ω and let N be the number of zeros
of h inside Ω, counted with their orders and the positive sign for sense-preserving
zeros and negative for the sense-reversing ones. Then,

1
2π

∆Γ arg h(z) = N .

We will apply Fact 2 with Ω equal to the set of sense-preserving points of h(z) =
z − p(z), and then to the set of sense-reversing points of h intersected with a
suffciently large disk D(0, R), chosen so that Γ ⊂ D(0, R), all zeros of z − p(z) are
in D(0, R) and the argument change of z−p(z) along the circle C(0, R) is −n. Then
1

2π∆C(0,R) arg h(z) = −n, where C(z0, R) denotes the positively oriented circle with
the given center and radius.
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3. Non-repelling fixed points

We will now prove Theorem 1. Let us start with the following proposition which
is of independent interest.

Proposition 1. If p is a polynomial of degree n > 1, then the set of points for
which z = p(z) and |p′(z)| ≤ 1 has cardinality at most n− 1.

We consider the function Q(z) := p(p(z)) which is an analytic polynomial of
degree n2. Notice first that if |p′(z0)| = 1 and p(z0) = z0, then Q′(z0) = 1. This
follows by writing p(z0 + z) = z0+eiθz+O(|z|2) with θ ∈ R and iterating. Thus, all
points mentioned in Proposition 1 are fixed points of Q which are either attracting
or rationally neutral. So, each of them attracts a critical point of Q by Fact 1.

Lemma 1. If p(z0) = z0 and z ∈ C, then (p)k(z)→ z0 iff Qk(z)→ z0.

Proof. The ⇒ implication is obvious. For the opposite one, we observe that Qk =
(p)2k by definition, and (p)2k(z) → z0 implies (p)2k+1(z) → z0 since z0 is a fixed
point. �

Recall that a grand orbit under a transformation F is an equivalence class of the
relation x ∼ y iff F p(x) = F r(y) for some p, q > 0.

Lemma 2. If Q′(c) = 0, then there are at least n+ 1 critical points of Q, counted
with multiplicities, which all belong to the same grand orbit under p.

Proof. Note that if p′(ζ) = 0, then ζ and all its preimages by p are critical points of
Q. If ζ is not a critical value, that gives n+ 1 distinct critical points of Q counted
with multiplicities. If p(ζ1) = ζ and ζ1 is a critical point of p with multiplicity k,
then ζ1 is a critical point of Q with multiplicity at least 2k + 1. In any case the
sum of multiplicities of critical points of Q over the set {ζ} ∪ p−1({ζ}) is at least
n+ 1.

The condition Q′(c) = 0 implies that either p′(c) or p′(p(c)) is 0 and Lemma 2
follows from the remark of the previous paragraph applied to either c or p(c),
respectively. �

Lemma 3. If Q′(c) = 0, p(z0) = z0 and Qk(c)→ z0, then there are n+ 1 critical
points of Q, counted with multiplicities, all attracted to z0 under the iteration of Q.

Proof. These critical points are obtained from Lemma 2. By Lemma 1, (p)k(c)→
z0, and then the same must occur for every point in its grand orbit. �

As already observed, each point z0 which satisfies the conditions of Proposition 1
attracts a critical point of Q, but then it attracts n+ 1 of them. Clearly, different
fixed points attract disjoint sets of critical points. Since the degree of Q is n2, the
total number of its critical points counted with multiplicities is n2−1 = (n+1)(n−1)
which proves the claim of Proposition 1.

4. Proof of the main theorem

For the purpose of this section, we call the polynomial p regular provided that
the conditions |p′(z0)| = 1 and p(z0) = z0 are not satisfied simultaneously for any
z0 ∈ C.
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Lemma 4. If p is regular of degree n > 1, then there are at most 2n− 1 points z
in the complex plane for which both p(z) = z and |p′(z)| > 1 are satisfied.

Proof. Consider the regions Ω+ where z − p(z) is sense-preserving and Ω− where
it is sense-reversing. They are separated by a piecewise oriented analytic curve (a
lemniscate) Γ which is the boundary of Ω+. In addition, make Ω0

− compact by
intersecting Ω− with a large disk D(0, R) chosen so that Γ ⊂ D(0, R), all zeros of
z−p(z) are in D(0, R) and the argument change of z−p(z) along the circle C(0, R)
is −n. By Fact 2 and Proposition 1, ∆Γ(z − p(z)) ≤ 2π(n− 1). Hence,

∆C(0,R) −∆Γ ≥ −2π(2n− 1) .

Since C(0, R) − Γ is the oriented boundary of the region Ω0
−, Fact 2 means that

− 1
2π (∆C(0,R) − ∆Γ) is the number of zeros of z − p(z) in Ω−, which is what the

lemma claims. �

From Proposition 1 and Lemma 4 we see that Theorem 1 holds for regular p.
Moreover, it also holds on the closure of the set of regular polynomials (with the
topology of uniform convergence in the spherical metric). Indeed, a sufficiently
small perturbation will not decrease the number of zeros of z − p(z) in Ω−, hence
Lemma 4 still holds for p in the closure of the set of regular polynomials.

It remains to see that the set of regular polynomials is dense and we show even
more:

Lemma 5. If p(z) is a polynomial of degree greater than 1, then the set of complex
numbers c for which p(z)− c is regular is open and dense in C.

Proof. This lemma may be derived from general considerations about algebraic
sets. Here we give a simple proof due to D. Sarason.

For a given p, consider the set S which is the image under the transformation
z → p(z) − z of the set {z ∈ C : |p′(z)| = 1}. If c /∈ S, then p(z) − c − z 6= 0
whenever |p′(z)| = 1, in other words p(z) − c is a regular polynomial. But S is
compact with empty interior and hence Lemma 5 follows. �

Theorem 1 is now proved.

5. Final remarks

Sharpness of the result. As was mentioned before, easy examples of polynomials
of degree 2 and 3 show that when considered for all n > 1, the estimate of Theorem 1
is sharp. For example, the equation

1
2

(z3 − 3z) + z = 0

has seven roots: 0, ±1, 1
2 (±
√

7± i), with any combinations of the signs in the last
pattern allowed. This realizes the bound 3n− 2. Moreover, there are two roots ±1
at which the function is sense-preserving, and five sense-reversing roots realizing
the estimates of Proposition 1 and Lemma 4.

However, if Theorem 1 is sharp for every n ≥ 2 remains to be seen. Along those
lines B. Crofoot and D. Sarason [5] raised the following important question.

Conjecture 1. For n > 1 there exist n− 1 points z1, . . . , zn−1 and a polynomial p
of degree n such that p(zj) = zj and p′(zj) = 0 for all j.
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If true, this implies that the bound of Proposition 1 is sharp for each n, and then
so are the bounds of Lemma 4 and Theorem 1.

On Proposition 1. An analogue of that proposition with p(z) replacing p(z) has
a cute elementary proof which does not use Fact 1 and is sketched below.

Proposition 2. Let p(z) be a polynomial of degree n > 1. Then, the number of its
fixed points with derivative in the set D(0, 1) \ {1} is at most n− 1.

Let a1, . . . , an be the fixed points of p. Then

p(z) = z + C(z − a1) · · · (z − an) =: z + q(z)

with C ∈ C, C 6= 0. If p′(aj) = 1 for some j, then the claim is obvious, so without
loss of generality all aj are simple fixed points. To see that |p′(aj)| > 1 for some j,
it suffices to show that the points q′(aj) cannot all belong to the closed unit disk
centered at −1 with 0 excepted. To this end, we demonstrate that 0 belongs to the
convex hull of points q′(aj), j = 1, . . . , n. This follows at once since

(1)
n∑
j=1

1
q′(aj)

= C1

n∑
j=1

res
1
q(z)

= 0

where
1

q′(aj)
=

q′(aj)
|q′(aj)|2

and so equality (1) indeed means that 0 can be realized as a convex combination
of q′(aj).

Examples of the form

p(z) = (1 + ε)z + zn, n ≥ 2, 0 < ε <
2

n− 1
,

show that the bound of Proposition 2 is the best possible for any n.

Possible extensions. Wilmshurst has conjectured (see [7]) that for a general
h = p(z) − q(z), deg p = n > m = deg q > 0, the maximal number of zeros is
m(m − 1) + 3n − 2. It is not clear whether the ideas of this paper can be ex-
tended sufficiently to treat his conjecture. Even in the simplest case q(z) = zm,
1 ≤ m ≤ n − 1, it immediately requires a profound study of the dynamics of the

map m

√
p(z) on the Riemann surface. Perhaps, such an investigation will lead to a

beginning of a new tale.
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