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Abstract. This paper deals with the analytic continuation of periodic orbits of conservative dynamical systems
with three degrees of freedom. For variations of any parameter (or integral), it relies on numerical analysis in order
to implement a predictor-corrector algorithm to compute the initial conditions of the periodic orbits pertaining to
the family. The method proposed here is not restricted to symmetric problems and, since the procedure involves
the computation of the variational equations, a side effect is the trivial computation of the linear stability of
the periodic orbits. As an illustration of the robustness of the method, several families of periodic orbits of the
Restricted Three-Body Problem are computed.
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1. Introduction

In this paper we propose an algorithm for the numerical
computation of families of periodic orbits of conservative
dynamical systems with three degrees of freedom. Initial
conditions for specific periodic orbits pertaining to a fam-
ily, which is defined by the variation of a parameter, are
obtained by means of an intrinsic, three dimensional, dif-
ferential, predictor-corrector algorithm.

The use of differential correction algorithms for the nu-
merical computation of either two or three dimensional pe-
riodic orbits is not a new result. The contributions (Deprit
& Henrard 1967; Henrard & Lemaitre 1986; Caranicolas
1994) in reference to systems with two degrees of freedom,
or (Howell 1984; Karimov & Sokolsky 1989; Belbruno et al.
1994; Contopoulos & Barbanis 1994; Scheeres 1999) with
respect to systems with three degrees of freedom, can be
mentioned among many others.

Often the dynamical system admits some kind of sym-
metry, and consequently the traditional approaches used
for computing periodic orbits were based on those symme-
tries. When dealing with force fields without symmetries,
a different approach must be used. The normal procedure
is then the application of the Poincaré map, and differen-
tial corrections are obtained through the computation of
the state transition matrix along the periodic orbit.
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For conservative systems the monodromy matrix has
one unit eigenvalue with multiplicity two – related to the
time invariance of the system – thus preventing the com-
putation of the corrections. Two approaches are normally
used to compute the nontrivial eigenvalues, both of them
based on the integration of the variations in Cartesian
coordinates. The first computes the complete state tran-
sition matrix and uses basic techniques of matrix algebra
for obtaining the eigenvalues of a singular matrix. The sec-
ond eliminates the two unit eigenvalues from the system
by creating a lower dimensional map.

The alternative presented here is based on the com-
putation of the variational equations when projected onto
the Frenet frame. While Cartesian variations merge pe-
riodic and secular terms, the intrinsic formulation of the
variations results in the separation of the tangent displace-
ments (Deprit 1981), which retain the secular part of the
variations and cause the varied periodic orbit to have a
new period. Therefore, the formulation of the variational
equations in the Frenet frame directly reduces the dimen-
sion of the state transition matrix to compute, and elim-
inates the trivial eigenvalues. Of course, our algorithm is
not restricted to symmetric problems, and is valid for the
computation of families of periodic orbits for variations
of any parameter or integral for a conservative dynamical
system with three degrees of freedom.

A vectorial predictor-corrector algorithm for the com-
putation of the analytic continuation of a periodic orbit
is given in Sect. 2 and the formulation of the variational

Article published by EDP Sciences and available at http://www.aanda.org or 
http://dx.doi.org/10.1051/0004-6361:20020598

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20020598
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equations in the Frenet frame (Deprit 1981) is recalled in
Sect. 3, where a re-formulation of the predictor-corrector
procedure is introduced – the major contribution of this
paper. Since the algorithm proposed here involves the
computation of the variations, the calculation of the linear
stability of the periodic orbits requires no additional effort:
the nontrivial characteristic exponents are computed from
the normal and binormal variations. The linear stability of
the periodic orbits (Sect. 4) can then be studied by using
the two stability indices first proposed by Broucke (1969).

The algorithm has been checked recalculating some
of the halo orbits of the Restricted Three-Body Problem
computed in Gómez et al. (1985). Although that problem
is a symmetric one, the procedure described here does not
make use of this fact. All the tests done showed very good
agreement with the results presented in that work for ei-
ther the period or any of the stability indices. In order to
illustrate the robustness of the method, an application to
the Restricted Three-Body Problem is provided in Sect. 5
where we compute families of three dimensional periodic
orbits that bifurcate from Strömgren’s (1935) planar fam-
ily m of (retrograde) periodic orbits.

2. On Poincaré’s continuation method:
An algorithm

Let

ẋ = F (x;σ) (1)

be an autonomous differential system of n equations de-
pending on a parameter σ. The solution

x = x(t; ξ;σ) (2)

of Eq. (1) is a function of the parameter σ and the initial
conditions ξ = x(0; ξ;σ). Let us suppose that a periodic
solution of system (1)

x(t; ξ0;σ0) = x(t+ T0; ξ0;σ0) (3)

with period T0 > 0 is known for a certain value σ = σ0

of the parameter and for the initial conditions ξ = ξ0.
The Poincaré continuation method is concerned with the
problem of computing the analytic continuation of Eq. (3)
for values of the parameter close to the initial value σ0.
That is, for σ = σ0+∆σ new initial conditions ξ = ξ0+∆ξ
and period T = T0 + ∆T are required to produce a new
periodic solution of Eq. (1).

As a consequence of the uniqueness theorem for differ-
ential equations, Eq. (3) will hold for all t as it does for
a value t0, say t0 = 0. Therefore, the new solution shall
verify the periodicity condition

x(T ; ξ;σ)− ξ = 0, (4)

where the existence of the implicit functions ξ is directly
related to the nonvanishing of the Jacobian determinant of
the left hand side of Eq. (4). In reference to this Jacobian
there can be different possibilities depending on the exis-
tence of integrals of Eq. (1). The interested reader should
consult Siegel & Moser (1971).

2.1. The predictor-corrector algorithm

Rewriting Eq. (4) as

x(T0 + ∆T ; ξ0 + ∆ξ;σ0 + ∆σ) − (ξ0 + ∆ξ) = 0 (5)

and expanding it around (T0; ξ0;σ0), at first order one
obtains the linear system

(∇ξx− I) ·∆ξ + F (x;σ0) ∆T +
∂x

∂σ
∆σ = −(x− ξ0),(6)

that must be evaluated at (T0; ξ0;σ0), where I is the n×
n identity matrix.

Equation (6) provides the basic scheme for implement-
ing the Poincaré’s continuation method. The right hand
side of Eq. (6) vanishes for a periodic solution – Eq. (3) –
of Eq. (1), and the linear system

(∇ξx− I) · ∆ξ
∆σ

+ F (x;σ0)
∆T
∆σ

= −∂x
∂σ

(7)

evaluated at (T0; ξ0;σ0), can be used to compute the ini-
tial conditions ξ1 = ξ0+∆ξ and period T1 = T0+∆T of a
new periodic solution of Eq. (1) for the value σ1 = σ0+∆σ
of the parameter. Since the solution of Eq. (7) is a tangent
prediction it could happen that x(T1; ξ1;σ1)− ξ1 6= 0; in
that case new corrections ∆ξ1 and ∆T1 must be computed
such that

x(T1 + ∆T1; ξ1 + ∆ξ1;σ1)− (ξ1 + ∆ξ1) = 0. (8)

Equation (8) is formally equivalent to Eq. (5) – now with
∆σ ≡ 0 – so we can again use Eq. (6) to obtain the correc-
tions. Then, iterative corrections could be in order from

(∇ξx− I) ·∆ξi + F (x;σ1) ∆Ti = −(x− ξi) (9)

that must be evaluated at (Ti; ξi;σ1). Note that now the
right hand side no longer vanishes.

The partial derivatives of x with respect to the initial
conditions ξ are computed from the homogeneous varia-
tional system

∇ξẋ = (∇xF ) · (∇ξx), (10)

starting from the initial conditions(
∇ξx

)
t=0

= I, (11)

as follows from x(0; ξ;σ) = ξ. Analogously, the partial
derivative ∂x/∂σ is a particular solution of the variational
equations

∂ẋ

∂σ
= (∇xF ) · ∂x

∂σ
+
∂F

∂σ
· (12)

Equations (7) and (9) provide a predictor-corrector
scheme for computing the analytic continuation of Eq. (3),
but one should note that both equations are linear sys-
tems of n equations in n + 1 unknowns. One possibility
is to look for new periodic orbits of the family with the
same period (∆T = 0) but these new periodic solutions
do not exist in general. The normal procedure is to fix
one of the initial conditions and allow the variation of the



694 M. Lara and J. Peláez: On the numerical continuation of periodic orbits

period (Szebehely 1967). Because a tangent displacement
is a translation along the initial solution, it is avoided by
constraining the variation of the initial conditions to a
(n− 1)-dimensional plane that is not tangent to the solu-
tion at ξ0.

Finally, we note that the previous procedure is directly
applicable to nonautonomous systems

ẋ = F (t;x;σ), (13)

but only when the dependence of F on the independent
variable t is through periodic functions. Then, the period
of the solution is the same of those periodic functions.
Applications for that case have been done, for instance, in
Scheeres (1998) and Peláez & Lara (2001).

2.2. Integrals

When system (1) admits one integral

ψ(x;σ) = γ, (14)

a new constraint must be added to the periodicity condi-
tion Eq. (4), namely

ψ(ξ;σ) = γ. (15)

Thus, the fundamental system (6) must be augmented
with the equation

ψ(ξ0 + ∆ξ;σ0 + ∆σ) = γ0 + ∆γ, (16)

that at first order is written as

∇ξψ ·∆ξ +
∂ψ

∂σ
∆σ = ∆γ. (17)

We append one more equation to system (6) and also in-
troduce a new unknown ∆γ. We have to add an additional
constraint to get as many unknowns as equations. Any re-
lation between ∆T , ∆σ and ∆γ would be suitable for this
task, but there are three natural choices on which we focus
this paper:

∆T = 0: a family of periodic orbits with constant period
is generated when varying the parameter σ, where the
integral changes its value from orbit to orbit. The lin-
ear system

(∇ξx− I) · ∆ξ
∆σ

= −∂x
∂σ

(18)

will give the corrections ∆ξ to the initial conditions
and Eq. (17) will provide the new value of the energy
integral.

∆σ = 0: a natural family of periodic orbits is constructed
where each orbit has a different period. The system to
solve is now

F (x;σ)
∆T
∆γ

+ (∇ξx− I) · ∆ξ
∆γ

= 0,

∇ξψ ·
∆ξ
∆γ

= 1.
(19)

∆γ = 0: is the case of the isoenergetic family of peri-
odic orbits with different period for each value of the
parameter σ. For this case we need to solve the system

F (x;σ)
∆T
∆σ

+ (∇ξx− I) · ∆ξ
∆σ

= −∂x
∂σ

,

∇ξψ ·
∆ξ
∆σ

= −∂ψ
∂σ
·

(20)

While system (18) is generally nondegenerate, sys-
tems (19) and (20) are not and must be adequately re-
duced as discussed in Siegel & Moser (1971).

3. Intrinsic formulation

In what follows we restrict the study to dynamic systems
of three degrees of freedom and change the notation for
convenience. Hereafter, vectors are three dimensional.

We limit our analysis to dynamical systems determined
by the Lagrangian

L =
1
2
ẋ · ẋ+ ẋ ·A(x) +W (x), (21)

where either the scalar function W or the vector one A
can depend on one or more parameters γi (i > 0). Such
systems are conservative and admit the orbital integral

γ =
1
2
ẋ · ẋ−W (x). (22)

The equations of motion are

ẍ+B × ẋ−∇xU = 0, (23)

where the vector function B = B(x) is the curl B =
∇x ×A and the notation

U ≡W (x) + γ0, (24)

has been introduced. The corresponding variational equa-
tions produced by a variation of any parameter (or inte-
gral) σ of the dynamical system are

δẍ+ (∇xB · δx)× ẋ+B × δẋ−H · δx
= (∇xUσ −Bσ × ẋ)δσ, (25)

where H =∇x(∇xU) is the Hessian in x of the effective
potential function U . Equation (25) admits the variational
integral

ẋ · δẋ−∇xU · δx−
∂U

∂σ
δσ = 0. (26)

The variational integral Eq. (26) reduces by one the num-
ber of dimensions of the variational system and conse-
quently the number of equations to be integrated and the
number of integration constants to be determined. When
using intrinsic variations not only the order of the vari-
ational system is reduced, but the variational equations
turn out to be separable. The separability of the varia-
tions was a well-known fact for dynamical systems with
two degrees of freedom, where the variational system can
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be reduced to a differential equation of order 2 for the
normal displacement and a quadrature for the tangent
displacement. Deprit (1981) has shown how the separa-
bility of the variational equations carries to dynamical
systems with three degrees of freedom determined by the
Lagrangian (21). For these systems, the separability of the
tangent displacements is a consequence of the existence
of the variational integral, and Palmore (1982) extended
this separability to a wide range of conservative dynamical
systems with n degrees of freedom. Apparently, that sep-
arability was found independently in Karimov & Sokolsky
(1989).

3.1. Rotation to the Frenet frame

One passes from Cartesian to intrinsic coordinates by
means of a rotation R of the reference frame. Therefore,
an intrinsic variation

s =

 p
q
r

 , (27)

where p is the component in the tangent direction, q in
the normal one and r in the binormal, is obtained from
the corresponding δx by means of

s = R · δx. (28)

In the simplest case of a dynamical system with two de-
grees of freedom the rotation angle

φ = arctan
ẏ

ẋ
(29)

corresponds to the inclination of the direction of the ve-
locity vector with respect to the x-axis and

R =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 · (30)

In the general case of three degrees of freedom the rotation
matrix R is given by the components of the Frenet frame
projected onto the Cartesian frame,

R = (t,n, b)τ , (31)

where τ means transposition and

t =
1
V
ẋ, n =

1
N
ṫ, b = t× n, (32)

where

V 2 = ẋ · ẋ, N2 = ṫ · ṫ. (33)

The necessary components of the Frenet frame and their
derivatives are listed in Table 1. Note that the deriva-
tive d3x/dt3 of the equations of motion needs to be com-
puted, which in principle is not a problem because the
analytical expression for ẍ is known; of course this deriva-
tive can also be obtained from numerical approximations.

Table 1. From left to right and from top to bottom, sequence
to compute the elements of the rotation matrix Eq. (31) and
their derivatives.

V =
√
ẋ · ẋ t = 1

V
ẋ

V̇ = 1
V ẋ · ẍ ṫ = 1

V (ẍ− V̇ t)

N =
√
ṫ · ṫ n = 1

N
ṫ

b = t× n V̈ = 1
V

(ẋ · d3

dt3
x+ ẍ · ẍ− V̇ 2)

ẗ = 1
V

( d3

dt3
x− 2V̇ ṫ− V̈ t) Ṅ = n · ẗ

ṅ = 1
N

(ẗ− Ṅn) ḃ = t× ṅ

Table 2. Auxiliary functions for Eq. (34). The matrix W is
the product of the rotation matrix R and the Hessian H of U .

M = ḃ · n

R1 = M(M −B · t)− (B · n)2 + (W · b) · b+V [rxB · b] · n
R2 = (M −B · t) +M

R3 = (N +B · b)(B · n) + Ṁ + (W · n) · b+V [rxB · n] · n
R4 = (B · n)/V

R5 = b ·rxUσ + V (n ·Bσ)

Q1 = M(M −B · t)−(B · b)2+(W · n) · n− V [rxB · n] · b
−3N(N +B · b)

Q2 = −R2

Q3 = (2N +B · b)(B · n)−Ṁ+(W · n) · b− V [rxB · b] · b
Q4 = −(2N +B · b)/V
Q5 = n ·rxUσ − V (b ·Bσ)

3.2. Intrinsic variations

Intrinsic variations are separated into one system of dif-
ferential equations involving, exclusively, the normal and
binormal displacements

q̈ = Q1 q +Q2 ṙ +Q3 r + (Q4 Uσ +Q5)δσ,
r̈ = R1 r +R2 q̇ +R3 q + (R4 Uσ +R5)δσ, (34)

and the quadrature

d
dt

( p
V

)
=

1
V

[
(2N +B · b)q − (B · n)r +

Uσ
V

]
, (35)

producing the tangent displacement. The functions Qi,Ri,
(i = 1, . . . , 5) are given in Table 2. Thus, the general solu-
tion of the variational system (34)–(35) depends only on
four arbitrary integration constants. The tangent displace-
ment will be obtained from (35) after solving Eq. (34).

For details on the derivation of the Eqs. (34)–(35) the
reader is referred to Deprit (1981) where his γ has been
replaced by the partial derivative Uσ and the terms Q5

and R5 have been added, respectively, to the right hand
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sides of the Eqs. (201) and (202) of his paper; these extra
terms come from the right hand side of the nonhomoge-
neous Eqs. (25). Note that the radius of curvature ρ and
the radius of torsion T that appear in the formulas given
by Deprit (1981) can be obtained from

V

ρ
=
√
ṫ · ṫ, V

T = ḃ · n. (36)

Note, too, that the integration of the variational system
Eqs. (34) needs the computation of the derivative of M ,
present in Q3 and R3.

3.3. The intrinsic predictor-corrector

Lets now re-formulate the algorithm given in Sect. 2 but
now using intrinsic coordinates. First we note that a vari-
ational displacement of Eq. (2), now written as

x = x(t; ξ, ξ̇;σ), (37)

is given by

δx = ∇ξx · δξ +∇ξ̇x · δξ̇ +
∂x

∂σ
δσ. (38)

Therefore, in the differential approximation (δ ≡ ∆) the
linear system (6) is equivalent to

∆T ẋ(T0) + ∆x(T0)−∆ξ = ξ0 − x(T0), (39)

∆T F (x(T0), ẋ(T0)) + ∆ẋ(T0)−∆ξ̇ = ξ̇0 − ẋ(T0), (40)

where we omitted the dependence of x and ẋ on the initial
conditions ξ0, ξ̇0 and on the parameter σ for the sake of
brevity.

We formulate the problem in the Frenet frame by mul-
tiplying Eq. (39) by the rotation matrix Eq. (31) that must
be evaluated in t = T0. We get

∆T V (T0) t(T0) + s(T0)−R(T0) ·∆ξ
= R(T0) · [ξ0 − x(T0)]. (41)

3.3.1. Tangent prediction

For the predictor stage – being exactly periodic the initial
orbit given by Eq. (37) – the right hand side of Eq. (41)
vanishes and R(T0) = R(0). Therefore

∆T V (T0) t(T0) + s(T0)− s(0) = 0. (42)

That is

∆T V (T0) + p(T0)− p(0) = 0, (43)

q(T0)− q(0) = 0, (44)

r(T0)− r(0) = 0. (45)

The particular solution s = s∗ of the variational equations
that fulfills the periodicity condition (42) depends on four
integration constants α = (α1, α2, α3, α4)τ . The values

of these constants are computed from the linear system
formed by Eqs. (44)–(45) and their respective derivatives:

[M(T0)−M(0)] ·α = −β(T0), (46)

where

M(t) =


q1(t) q2(t) q3(t) q4(t)

r1(t) r2(t) r3(t) r4(t)

q̇1(t) q̇2(t) q̇3(t) q̇4(t)

ṙ1(t) ṙ2(t) ṙ3(t) ṙ4(t)

 , (47)

and

β =
(
q5(t), r5(t), q̇5(t), ṙ5(t)

)τ
. (48)

System (46) is nondegenerate except for some critical
points that, as we will see below, correspond to bifurca-
tions of the dynamical system.

Once s∗ is obtained the corrections the initial condi-
tions are easily obtained from

∆ξ = Rτ (0) · s∗(0),

∆ξ̇ = Ṙτ (0) · s∗(0) +Rτ (0) · ṡ∗(0).
(49)

The correction to the period is obtained then from Eq. (43)

∆T =
p(0)− p(T0)

V (T0)
· (50)

Note that the value of δσ is irrelevant in the integration
of Eqs. (34)–(35). Then one can compute the variations
(p, q, r) scaled by δσ. If that is the case, the corrections
Eqs. (49)–(50) must be multiplied by δσ.

Finally, in order to maintain the right direction of the
corrections without leaving the energy manifold, the new
initial conditions are computed as in Deprit & Henrard
(1967)

ξ = ξ0 + ∆ξ,

ξ̇ =
√

2U(ξ, σ)
ξ̇0 + ∆ξ̇
|ξ̇0 + ∆ξ̇|

·
(51)

3.3.2. Isoenergetic corrections

The solution Eq. (37) is only approximately periodic.
Thus, the right hand side of (41) no longer vanishes.
Assuming that the difference ∆R = R(T0)−R(0) is of the
same order as the desired corrections we neglect ∆R ·∆ξ.
Then Eq. (41) is written

∆T V (T0) t(T0) + s(T0)− s(0)=R(T0)·[ξ0 − x(T0)], (52)

and the procedure for computing the displacements s∗

and ṡ∗ follows the path described for the tangent pre-
dictions. In this case we deal only with the homogeneous
part of Eq. (34). The four necessary integration constants
are again obtained from Eq. (46), where now

β =


nτ (t)
bτ (t)
ṅτ (t)
ḃ
τ
(t)

· [x(t)− ξ0] +


0τ

0τ

nτ (t)
bτ (t)

· [ẋ(t)− ξ̇0]. (53)
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Equations (49) provide the corrections to the initial con-
ditions and the correction to the period is obtained from

∆T =
[ξ0 − x(T0)] · t(T0) + p(0)− p(T0)

V (T0)
, (54)

where the tangent displacement has been computed inte-
grating the homogeneous part of Eq. (35).

Finally, Eq. (51) provides the desired corrections.

3.3.3. Practical procedure

Despite the fact that the intrinsic variational equations
would be much more complicated than the Cartesian ones,
one should note that there is no need to solve them. At
any point, it is possible to transform the solutions of the
variational equations between rectangular and intrinsic co-
ordinates by simple rotations. In fact, for the computation
of the four necessary integration constants we only need
to know the intrinsic displacements s∗ and ṡ∗ at the times
t = 0 and t = T . Therefore, in practice we integrate the
much simpler variational equations in rectangular coordi-
nates, proceeding as follows.

We choose initial conditions

pi(0) = 0, i = 1, . . . , 4, (55)

and

M (0) = I4, (56)

where I4 is the 4× 4 identity matrix; each value ṗi(0) is
computed from the derivative

ṗi =
V̇

V
pi + (2N +B · b) qi − (B · n) ri, (57)

of the quadrature Eq. (35), evaluated at t = 0. The rota-
tion matrices R(0), Ṙ(0) are then computed, and using
the inverse rotations

δxi(0) = Rτ (0) · si(0),
δẋi(0) = Ṙτ (0) · si(0) +Rτ (0) · ṡi(0), (58)

we obtain the four sets of the initial Cartesian varia-
tions. Once we have integrated those Cartesian variations
through a period, we apply the direct rotations

si(T ) = R(T ) · δxi(T ),
ṡi(T ) = Ṙ(T ) · δxi(T ) +R(T ) · δẋi(T ), (59)

at t = T , and obtain si(T ), ṡi(T ). Then we are ready for
the computation of the four integration constants from
Eq. (46), and finally the corrections from Eq. (49).

4. Brief comment on stability

Linear stability of periodic orbits depends on the eigenval-
ues of the resolvent of the variational equations associated
with the fundamental period of the periodic orbit. In sys-
tem (21) admitting Hamiltonian formulation the eigen-
values appear in reciprocal pairs (λi, 1/λi), (i = 1, 2, 3)

and one eigenvalue takes the value 1 with multiplicity 2.
The trivial eigenvalues correspond to the tangent displace-
ments. Thus, the nontrivial eigenvalues are obtained from
Eq. (47) by solving the equation

det|M(T0)− λI4| = 0. (60)

Remark here that the critical case of any of the nontriv-
ial eigenvalues having modulus 1 is a singularity of the
algorithm provided in this paper. In such case the linear
system Eq. (46) associated with the periodicity condition
is degenerate.

Taking in account that the eigenvalues appear in
reciprocal pairs, Eq. (60) is

λ4 + a1λ
3 + a2λ

2 + a1λ+ 1 = 0, (61)

or

(λ2 − k1λ+ 1) (λ2 − k2λ+ 1) = 0, (62)

where a1 = −(k1 + k2) and a2 = 2 + k1k2. Thus, the
two stability indices k1 = λ1 + 1/λ1 and k2 = λ2 + 1/λ2,
given by

ki = −1
2
a1 − (−1)i

√
2 + (

1
2
a1)2 − a2, (i = 1, 2) (63)

are normally used. The condition ki ∈ IR and |ki| < 2
gives linear stability while any other possibility means in-
stability.

Finally, in reference to planar solutions, one should
note that the two stability indices k1 and k2 correspond
to the in plane stability and to the “vertical” or out of
plane stability (Hénon 1973). The stability in the normal
(or in plane) direction is directly evaluated by

kn = q1(T0) + q̇3(T0) (64)

while the out of plane or binormal stability index simply is

kb = r2(T0) + ṙ4(T0). (65)

The value |kn| = 2 means that possibly new families of
periodic orbits bifurcate in the plane and |kb| = 2 means
that possibly three-dimensional families bifurcate out of
the plane.

5. An example

As illustration, the procedure described above is applied
to one of the most widely studied problems in celestial
mechanics: the (circular) Restricted Three-Body Problem.
At this point we want to make clear that the aim of this
section is not to review the problem but just to show the
robustness of the intrinsic predictor-corrector algorithm
by computing several families of periodic orbits.
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5.1. Equations of motion and variations

Given a particle of infinitesimal mass that is attracted by
two primaries each moving around the other, in a synodic
frame with the x-axis is in the direction of the primaries,
the z-axis in the normal direction to the orbital plane of
the primaries and the y-axis completing a direct frame,
the equations of motion are

ẍ− 2ẏ = Wx,

ÿ + 2ẋ = Wy, (66)
z̈ = Wz ,

with

W =
1
2
(
x2 + y2

)
+

1− µ
r1

+
µ

r2
, (67)

and

r2
1 = (x+ µ)2 + y2 + z2,

r2
2 = (x− 1 + µ)2 + y2 + z2. (68)

As usual, the units are chosen in such a way that the
distance between the primaries, the mean motion of the
Keplerian orbit of the primaries and the Gauss constant
are equal to one.

There is an integral of these equations, the Jacobian
constant, that we write
1
2
(
ẋ2 + ẏ2 + ż2

)
−W (x, y, z;µ) = h. (69)

Taking the value h as a parameter and introducing the
notation

U ≡ h+W (x, y, z;µ), (70)

integral Eq. (69) is written in the form

1
2
(
ẋ2 + ẏ2 + ż2

)
− U(x, y, z;µ, h) = 0. (71)

The variations are Eqs. (34) where Q5 and R5 depend on
the parameter that varies. Other functions are computed
from Tables 2 and 1 where B has modulus 2 and the z-
axis direction, its gradient is zero and the elements of the
Hessian are

Uxx = 1 +
1− µ
r5
1

[
3(x+ µ)2 − r2

1

]
+
µ

r5
2

[
3(x+ µ− 1)2 − r2

2

]
,

Uxy = 3y
[

1− µ
r5
1

(x+ µ) +
µ

r5
2

(x+ µ− 1)
]
,

Uxz = 3z
[

1− µ
r5
1

(x+ µ) +
µ

r5
2

(x+ µ− 1)
]
,

Uyy = 1 +
1− µ
r5
1

(
3y2 − r2

1

)
+
µ

r5
2

(
3y2 − r2

2

)
,

Uyz = 3yz
(

1− µ
r5
1

+
µ

r5
2

)
,

Uzz =
1− µ
r5
1

(
3z2 − r2

1

)
+
µ

r5
2

(
3z2 − r2

2

)
.

(72)

Fig. 1. Normal kn and binormal kb stability indices versus the
Jacobi constant h for the family m of periodic orbits. The
horizontal dashed lines correspond to the critical values ±2.

5.2. Families for variations of the Jacobi constant

For both primaries with equal masses (µ = 1/2) let us
vary the Jacobi constant (Uh ≡ 1 and both Q5 and R5

vanish).
We begin with a Keplerian approximation of a circu-

lar orbit in the x−y plane far away from the primaries.
For a semimajor axis a = 4, the Keplerian period in the
synodic frame is T ≈ 5.585 for a retrograde orbit. The
corresponding initial conditions of this very rough approx-
imation of a periodic orbit are x0 = z0 = ẏ0 = ż0 = 0,
y0 = 4 and ẋ0 = 4.5. The maximum difference in ab-
solute value between each of these initial conditions and
the same coordinate or velocity at the approximate pe-
riod T is ε0 = 1.1× 10−2, but three iterations are enough
for the corrector to obtain the sequence ε1 = 4.1× 10−4,
ε2 = 1.7 × 10−7 and finally the improved periodic orbit
with ε3 < 10−13. The corrected initial conditions and pe-
riod for x = z = ẏ = ż = 0 are

y = 3.96199469992294,

ẋ = 4.46677589984367,

T = 5.57243120610132.

For a variation ∆h = −0.05 the predictor computes the
initial conditions of an orbit that is approximately peri-
odic, again with ε0 = 1.1× 10−2. The sequence of correc-
tions is now ε1 = 1.2× 10−4, ε2 = 2.6× 10−11 and finally
ε3 < 10−14. Smaller values ∆h allow of course much better
predictions.

In that way we compute the planar family m – in
Strömgren’s (1935) notation – of periodic orbits for varia-
tions of the Jacobi constant. The value ∆h cannot be fixed
constant for all the computations and for orbits closer to
the primaries, smaller ∆h values are required to obtain
predictions amenable to improvement by the corrector.
Figure 1 shows the behavior of the normal kn and bi-
normal kb stability indices of this planar family; due to
the large values of both indices, a scale proportional to
sinh−1k is used. While kn = 2 for h ≈ 0.30818 – orbit m1
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in Hénon (1965) – the binormal index kb takes the crit-
ical values −2 for the bifurcation value h ≈ 0.8 and +2
for h ≈ 0.5 – respectively orbits m1v and m2v of Hénon
(1973) –. The initial conditions below (x = z = ẏ = ż = 0)
correspond to the critical orbits.

m1 m1v m2v

y 0.308181675221049 1.215282306063897 0.775716002198331
ẋ 1.957971157274867 2.142289266036791 2.938881706201847
T 1.425241167993047 3.531452892246346 2.467621780342713
kb 26.62 −2.00 +2.00
kn +2.00 −1.45 −1.76

In the case kb = −2 a bifurcated branch family of three-
dimensional periodic orbits starts from the planar, retro-
grade orbitm1v with period doubling and ends at the equi-
lateral equilibrium L4. We call this family the L4-family
and of course the symmetrical L5-family also exists. We re-
mark here that we do not claim to establish a way for com-
puting bifurcated orbits – see, for instance (Hénon 1973;
Markellos 1981; Belbruno et al. 1994) –, but simply to
show the robustness of the predictor-corrector algorithm.
With this in mind, we compute the bifurcated family as
follows. Close to the bifurcation value, we take a periodic
orbit of the planar family m for x = z = ẏ = ż = 0

y = 1.209894432634087,

ẋ = 2.139024877316912,

for which h0 = 0.791930530821579. Then, we slightly
modify the initial velocity in the z-axis direction by set-
ting ẋ = 2.138 and computing ż from the integral Eq. (69)
with h = h0; two symmetric solutions exist for ±ż. For an
approximate period T = 7.041614672725651 – that dou-
bles the period of the planar periodic orbit – these mod-
ified initial conditions allow the corrector to converge to
a three-dimensional periodic orbit of the bifurcated fam-
ily with the sequence ε0 = 9.2 × 10−2, ε1 = 1.2 × 10−3,
ε2 = 1.5 × 10−4, ε3 = 6.4 × 10−7, ε4 = 6.2× 10−11, and
ε5 < 10−13. The three-dimensional corrected periodic so-
lution is (x = z = ẏ = 0, h = h0)

y = 1.21460588387117,

ẋ = 2.13950776590580,

T = 7.06289508950945.

Once one periodic orbit of the three-dimensional family is
obtained, the convergence of the algorithm is indeed much
better. Figure 2 presents the stability indices of the bifur-
cated L4-family that are now k1 and k2 because this family
is not planar. The L4-family remains with linear stability
until h ≈ 0.48 where k1 > 2, whereas at h ≈ −1.234039
(k1 = k2) the family enters a zone of complex instability
remaining there until its termination at the equilateral L4

equilibrium. Figure 3 shows the two periodic orbits of this

Fig. 2. Stability indices versus the Jacobi constant for the L4-
family of periodic orbits. For h < −1.234039, k1 and k2 are
complex numbers.

Fig. 3. Periodic orbits of the L4-family when k1 = k2. Left
h ≈ 0.59506, right h ≈ −1.234039. Primaries are represented
by dots.

family when k1 = k2; the respective initial conditions are
(x = z = ẏ = 0)

h 0.595060530821579 −1.234038469178420
y 1.174109021245709 0.850091106717253
ẋ 1.972301154871868 0.111468952994908
ż 0.495891121768287 0.519684176787866
T 7.063185569369677 6.363331100559023

In the case kb = +2 we found a transversal bifurcation.
We call the bifurcated family the L1-family because it ends
at the L1 collinear point. As before, we modify the initial
velocity of a planar orbit just passed the bifurcation value
and use these initial conditions as starters for the correc-
tor procedure. For h0 = 0.4952105308215789 the initial
conditions of a periodic orbit of the planar family are

x = z = ẏ = ż = 0,

y = 0.775707482134065,

ẋ = 1.938879462050800.

For the period T0 = 2.467597374742529 of this orbit,
making ẋ = 1.93887 and computing ż from the integral



700 M. Lara and J. Peláez: On the numerical continuation of periodic orbits

Fig. 4. Stability indices k1 and k2 versus the Jacobi constant h
for the L1-family of periodic orbits. Both indices are complex
numbers for −0.47480835 < h < 0.46334917.

Fig. 5. Stability behavior of the L1-family on the a1-a2 plane.
A scale proportional to sinh−1 a1,2 is used.

Eq. (69) with h = h0, the corrector algorithm converges
to the three-dimensional periodic solution (x = z = ẏ = 0)

y = 0.775715315248107,

ẋ = 1.938876894065857,

T = 2.4676231846873.

Again we find two possibilities associated with the sign (±)
of ż. The stability k1 and k2 indices of the L1-family
are presented in Fig. 4 versus the Jacobi constant h. For
−0.47480835 < h < 0.46334917 this family has complex
instability. The behavior on the a1-a2 plane is presented
in Fig. 5, where we appreciate that the family passes from
Broucke’s (1969) region 1 (stability) to region 2 (complex
instability) through a Krein collision (Howard & MacKay
1987), then to region 4 (even-even instability) and finally
to region 6 (even semi-instability). For convenience the
values of a1 and a2 have been scaled proportional to their
respective sinh−1. Figure 6 shows the two periodic orbits

Fig. 6. Periodic orbits of the L1-family when k1 = k2. Left h ≈
0.46334917, right h ≈ −0.47480835. Primaries are represented
by dots.

Fig. 7. Stability behavior of the family for variations of µ. A
scale proportional to sinh−1a1,2 is used.

of this family when k1 = k2 and the respective initial
conditions (x = z = ẏ = 0) are listed below.

h −0.474808349178421 0.463349173821579
y 0.630644393432460 0.772133837453028
ẋ 1.116409595398506 1.913885053382574
ż 0.828732085352047 0.184702299430020
T 2.722825258179725 2.474956115380520

5.3. Variations of µ

We vary now the real parameter µ. The partial derivative

Uµ =
1
r2
− 1
r1
− (1− µ)

x+ µ

r3
1

− µx− 1 + µ

r3
2

(73)

depends on the position vector and the functions Q5

andR5 in Eq. (34) are no longer zero, so the gradient of Uµ
must be computed. A periodic solution of the case µ = 1/2
serves as starter of the algorithm and we use an orbit of
the L4-family for that purpose: the orbit that enters the
area of complex instability (h = −1.23403946917842). The
initial conditions of that orbit are

x = z = ẏ = 0,
y = 0.8500912035204521,
ẋ = 0.1114681281729226,
ż = 0.5196824227332966,
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and the period is T = 6.363330478421584 The new family
is then computed for decreasing values of µ from µ = 0.5
until µ = 0. Figure 7 presents the stability behavior of this
family, where we appreciate that starting from complex
instability the family enters Broucke’s region 1 of linear
stability. That happens for a value µK = 0.057246492698
and the family remains stable for smaller values µ < µK

of the parameter.
In this case the value ∆µ can be fixed for all the family

and, for instance, for a value ∆µ = −0.003 the typical
sequence of iterations of the predictor-corrector procedure
is ε0 < 10−3, ε1 < 10−7 and ε2 < 10−13. Greater values
|∆µ| can be chosen and even for ∆µ = −0.1 the algorithm
shows good convergence.

Conclusions

For a wide range of dynamical systems, tangent displace-
ments are separated from normal and binormal ones when
using intrinsic variations.

Differential corrections algorithms for the continuation
of periodic orbits rely on the integration of the variational
equations. When dealing with time-invariant systems one
confronts the problem of eliminating the trivial eigenval-
ues of the monodromy matrix. This inconvenience does
not exist when using the Frenet frame, that has the im-
portant advantage of strictly adhering to the geometry of
the problem.

The analytical continuation of periodic orbits for vari-
ations of any parameter or integral of a conservative dy-
namical system with three degrees of freedom, has been
implemented by means of a predictor-corrector algorithm
based on the integration of the variational equations when
projected onto the Frenet frame. The algorithm proposed
here is not restricted to symmetric problems and, since the
computation of the intrinsic variations is part of the pro-
cedure, the orbital stability in linear approximation can
be obtained without additional calculations. Application
to the computation of some families of 3-dimensional pe-
riodic orbits of the Restricted Three-Body problem that
bifurcate from the Strömgren m-family show the reliabil-
ity and robustness of the algorithm.
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