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ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE NUMERICAL INTEGRATION OF 
INTERFACE ELEMENTS 

J. C. J. SCHELLEKENS AND R. DE BORST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Delft University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqf Technology, Depurtment of Civil Engineering, TNO Building and Construction Research, 

P.0.  Box. 5048, 2600 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA Delft, The Netherlands 

SUMMARY 

Eigenmode analyses of the element stiffness matrices have been used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto assess the impact of the applied 
integration scheme on the stress predictions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof two- and three-dimensional plane interface elements. It is 
demonstrated that large stress gradients over the element and coupling of the individual node-sets of the 
interface element may result in an oscillatory type of response. For line elements and linear plane interface 
elements the performance can be improved by using either a nodal lumping scheme or Newton-Cotes or  
Lobatto integration schemes instead of the more traditional Gauss scheme. For quadratic interface elements 
the same holds true except for a nodal lumping scheme. 

1. INTRODUCTION 

Interface elements are a powerful tool in the modelling of geometrical discontinuities in different 
kinds of structures. In finite element analysis of civil engineering structures a large variety of 
applications for interface elements is present. Interface elements can be used to model 
soil reinforcement interaction,' to model the intermediate layer between rock and concrete, e.g. 
in arch dam or in the analysis of rock joints.536 Applications in concrete mechanics 
cover the modelling of discrete cracking, '~~ aggregate interlock9 and bond between concrete and 
reinforcement."-I4 In rubber parts, interface elements can be of importance when disintegration 
of rubber and texture is concerned, e.g. in conveyor belts. Furthermore, interface elements are 
suited to model delamination in layered composite structures' ', or frictional contact in forming 
processes. 

Interface elements can bc divided into two elementary classes. The first class contains the 
continuous interface elements (line, plane and shell  interface^),^-^^"-'*, 2"+23 whereas the second 

class of elements contains the nodal or point interface e l e r n e n t ~ , ' ~ ' ~ , ~ ~  which, to a certain extent, 
are identical to spring elements. In this contribution we shall only consider the numerically and 
lumped integrated continuous interface elements, since nodal interfaces are integrated explicitly. 

A basic requirement of interface elements is that during the elastic m g e  of the loading process 
no significant additional deformations occur due to the presence of these elements in the finite 
element model. Therefore, a sufficiently high initial dummy stiffness has to be supplied for the 
interface elemenls. Depending upon the applied numerical integration scheme, this high dummy 
stiffness may result in undesired spurious oscillations of the stress field. In this paper th'e impact of 

Gauss, Newton-Cotes, Lobatto and lumped integration schemes on the stress prediction in 
interfaces is investigated for three-dimensional linear and non-linear analyses. Eigenvalue ana- 
lyses of the linear elastic and non-linear element stiffness matrices have been carried out to 
explain the observed oscillatory performance of interface elements. Since we shall focus on 
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threc-dimensional applications, the results from the two-dimensional analyses are discussed only 
briefly. 

2. FINITE ELEMENT FORMULATION 

As mentioned in the introduction, the element stiffness matrix of line and plane interface elements 
can either be assembled by numerical or by lumped integration. The difference stems from the fact 
that in numerically integrated interfaces the traction vs. relative displacement relations are 
evaluated along an interpolated displacement field in the integration points, whereas the lumped 
interfaces evaluate the relation at the individual node sets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANumerically integrated interface elements 

of freedom, which leads to an element nodal displacement vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 
Consider an m-noded plane interface as in Figure 1. Each node has three translational degrees 

(1) 1 2  m 1 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 1 2  m T  
v = ( v n ,  V n , .  . . r v n  r v s , v s ,  * * .  > v s  Yv t  9 vt 9 . .  * , v t  1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn denotes the direction normal to the interface surface and s and t denote the directions 
tangential to the interface surface. The continuous displacement field is denoted as 

u = (u i ,  ufi, u:, uf, ul;, uf)T (2) 

where the superscripts u and 1 indicate the upper and lower side of the interface, respectively. With 
the aid of the interpolation polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = ( N , ,  N Z ,  . . . , Nm,2) ,  the relation between the 
continuous displacement field and the nodal displacement vector is derived as 

U = H V  (3) 

in which H contains the interpolation polynomials according to 

H =  

n O O O O O  

O n 0 0 0 0  

O O n O O O  

O O O n O O  

O O O O n O  

O O O O O n  

(a) linear plane interface (b) quadratic plane interface (c) nodal (d) tractions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ J  

displacements 

Figure 1. Linear and quadratic plane interfaee elements 

(4) 
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To relate the continuous displacement field to the relative displacements, an operator matrix 

L is introduced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  

0 0 0 0 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1  

(6)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'I .[ 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  + 1  0 

- 1  + 1  0 0 0 

When the relative displacement vector Au is defined as Au = (Au,,, Aus, A U ~ ) ~ ,  we obtain 

AU = LU 

The relation between nodal displacements and relative displacements for continuous elements is 
now derived from equations (3) and (6) as 

AU = LHv -+ AU = BV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

where relative displacement vs. nodal displacement matrix B reads 

r - n  n o o O O 1  

Since we consider an element in which the local co-ordinate systems in the integration points 
coincide with the global co-ordinate system, no transformations are necessary. For an arbitrary 
oriented interface element, the matrix B has to be transformed to the local tangential co-ordinate 

system of the integration point or node set. 
When the matrix D is used to denote the relation that describes the constitutive behaviour of 

the interface element 

D =  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,  0 (9) [I :: I,] 
the traction vs. relative displacement relation becomes 

t = DAu (10) 

in which t = (tm, t,, t,)T represents the traction vector. 
The linear element stiffness matrix K can now be obtained using the standard procedure of 

minimizing the total amount of potential energy." The amount of internal work done in the 
interface element equals 

U = -  h T t d A  : 
which, after invoking equations (7) and (lo), results in 

U = ;vTjABTDRdAv 2 

The amount of external work is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w =  - V T f  
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with f the external force vector. After variation of the total potential energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW )  with respect 
to the nodal displacement vector we obtain 

KV = f (14) 

where the stiffness matrix K equals 

K = { A  BTDBdA 

For numerically integrated interface elements, the integral in equation (15) is replaced by an 
integration over the iso-parametric co-ordinates and q: 

with det J the determinant of the Jacobian matrix. For line interfaces the interpolation functions 

Ni are indepcndent of 4 and equation (16) reduces to 

< = + 1  2 112 

K = b [  g = - 1  B T D B [ ( E ) I + ( $ ) ]  d< 

where b is the width of the interface. If, for example, we use a 2 x 2 Gauss integration scheme for 
the assembly of the element stiffness matrix of a linear eight-noded plane interface with surface A,  
the result is 

1 

36 
K=- -A  

where each 8 x 8 submatrix has the form 

K, 0 0 

0 K, 0 

0 0 K, 

4di 2di di 2di 

2di 4di 2di di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d i  2di 4di 2di 

2di di 2d; 4di 

- 4di - 2di - di - 2di 

- 2di - 4 4  - 2di ~ di 

- dj - 2di - 4di - 2di 

- 2di - di - 2di - 4di 

- 4di 

- 2di 

- di 

- 2d; 

4di 

2di 

di 

2di 

- 2di - di 

- 4di - 2di 

- 2di - 4di 

- di - 2di 

2 4  di 

4di 2di 
2di 4di 

di 2di 

- 2di 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi 

- 2d, 

- 4di 

2 4  

di 

2di 

4di 

for i = n, s and t. 

2.2. Lumped integrated intevface elem-nts 

The major difference between lumped and numerically integrated interface elements is the use 
of relative displacements at the isolated node sets instead of an interpolated relative displacement 
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field in integration points. Again we introduce the element vector of equation (1)  

2 m 1 2  m 1 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( V i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’, , v, , v, , . . . , v, , v, , v, , . . . , VY)T 

and the relative displacements vs. nodal displacement rclation 

with Bi, the relative displacement-nodal displacement matrix for a node set is. For a lumped 
interface element, elaborating the integral in equation (15) results in a summation over the 
element node sets. Hence, 

ns 

K = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC BEDisBisAis 
is= 1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11s denotes the number of node sets and Ai, is the surface contribution of node set is. Since 
the traction vs. relative displacement relation is evaluated in the individual node sets instead of in 
the integration points, the matrix Bi, is obtained as 

0 0 0 0 - 1  + 1  ::I Bis = [ 0 0 - 1  + 1  0 

- 1  + 1  0 0 0 

With the sequence of element degrees of freedom as in equation (1) this results in the following 

nodal displacement vs. relative displacement matrix B, for the first node set of a linear plane 
interface element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I B1=[  0 0 0 0 0 0 0 0 - 1 o o o t o o o  0 0 0 0 0 0 0 0  

- 1 0 0 0 1 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 - t 0 0 0 1 0 0 0  

(23) 

The surface contributions A, of the node sets are determined from: 

dAip = det J d t  dq (24) 

and 
nip 

Ais = C Ni,,ip dAip 
i p = l  

where Nis, ip is the value of the interpolation polynomial of node-set is at integration point i p .  As 
an example, the stiffness matrix is given for an eight-noded linear plane interface with surface A: 
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in which the 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 8 submatrix Ki  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas the form 

- 
di 0 0 0 - d i  0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0' 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdj 0 0 0 -d i  0 0 

0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi 0 0 0 -di 0 

0 0 0 di 0 0 0 - di 

-di 0 0 0 di 0 0 0 

0 -di 0 0 0 di 0 0 

0 0 - d i  0 0 0 d, 0 

0 0 0 -di 0 0 0 d; - 

where i can be n, s, and t .  It is noted that no coupling of degrees of freedom exists between the 
individual node sets. 

3. INTEGRATION SCHEMES AND ELEMENT PERFORMANCE 

3.1. Introduction 

In finite element analysis the surface or line integral to determine the element stiffness matrix is 

replaced by a weighted sum as 

where the values of B,, and the weight factor ulP are dependent on the applied integration scheme 
and A is the surface of the element. For numerical integration of continuum elements the accurate 
Gauss scheme is commonly used, whereas thickness integration of shells is usually performed 
using a Sirnpson intcgratjon rule. However, in recent publications'.2.',20-22 it . was found that 

under certain conditions, the application of Gaussian integration to interface elements leads to 
oscillatory traction profiles owing to spurious kinematic element performance. In this section wc 
shall examine the effects of Gauss, Newton-Gotes/Lobatto and nodal lumping schemes on the 
behaviour of plane interface elements in 3D-analyses of a notched beam and a soil reinforcement 
syrtem. For the different integration schemes the locations of the integration points and the 
corresponding weight factors are collected in Figure 2. It i s  noted that Newton-Cotes and 
Lobatto schemes are identical for the cases of Lwo and three sampling points, respectively. This is 
not so for higher-order quadrature, but since, in this paper, we shall restrict the discussion to 
linear and quadratic interface elements we shall henceforth refer to this integration scheme as 
Newton-Cotes/Lobatto. 

3.2 Three-dinlensional /incur elastir analj!ris of a notclied bcam 

We shall start with a discussion on the impact of different integration schemes on the results of 
an analysis of a three-dimensional notched beam.". " When interface elements are included in 
a finite element model the major prerequisite is that no additional deformations are introduced in 
the elastic stage. For this reason sufficiently high stiffness values for the interfaces have to be 
inserted. In the notched beam of Figure 3 interface elements are Included in front of the notch to 
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model the possible development of discrete crack. The question is how large the initial stiffness of 
the interface should be taken such that on the one hand additional deformations are negligible 
and on the other hand a realistic traction profile is obtained. Different analyses have been carried 
out using linear and quadratic elements. The stiffness values d, for the interfaces ranged from 

N/mm3 to 10’’ N/mm3. A Young’s modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20000 N/mm2 and a Poisson’s ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 4 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t----------. 

t - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 
1 2 

Nodes and isoparametric axis 

1 .o 1.0 1.0 1 .o 1 .o 1.0 1.0 1.0 ---- 
A a A A A A A  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
---e-------. 
1 2 1 2 1 2 1  2 I (a) Nodal lumping (b) Gaul3 (c) Lobatto (d) Newton-Cotes 

4 5 6  - - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 
1 2 3  

Nodes and isoparametric axis 

1 2 3  

(a) Nodal lumping (b) GauB (c) Lobatto (d) Newton-Cotes 

~~ 

‘-il- 5 

:5 *.............. 
1 

Nodes and isoparametric axes 

I (a) Nodal lumping (b) GauO (c) Lobatto (d) Newton-Cotes 

Figure 2. (a-c) (continued) 
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1 

Nodes and isoparametric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.333 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.083 0.333 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.028 0.111 0.028 0.028 0.111 0.028 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.m 0.123 0.077 
A 1  A 4  A ?  

0.083 0.333 -0.083 

1 1 2 3  4 7  1 4 7  

(a) Nodal lumping (b) Gaul3 (c) Lobatto (d) Newton-Cotes 

Figure 2. Locations and weight factors for integration points. (a) Linear line interface elements; (b) Quadratic line 
interface elements; (c) Linear plane interface elements; (d) Quadratic plane interface elements 

1 00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I 

surface load 

interface 
elements 

1 

Figure 3. Finite element model of a three-dimensional concrete beam 

I; = 0.2 were used for the continuum elements. Since the fracture problem is of pure mode-I type 
the values of the shear stiffnesses d,  and d,  are irrelevant. 

The beam is loaded in the vertical direction by a surface load on the second row of elements 

from the symmetry plane as indicated in Figure 3 (F,,,  = 1 kN). The results for the linear 
eight-noded plane interface element fully agree with the results from a two-dimensional analysis” 
in the sense that for 2 x 2 Gauss integration oscillations occur in the vertical direction for stiffness 

values higher than N/mm3, while 2 x 2 Newton-Cotes/Lobatto integration and the nodal 
lumping scheme produce satisfactory results for all applied stiffness values (Figures 4 and 5). In 
the horizontal direction the traction profiles are free from oscillations, since there is no influence 
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\ 
tn [N/mm2] 

\ 
tn [N/mm'] 

Figure 4. Traction profiles for linear plane interface elements with 2 x 2 Gauss integration: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ,  = (b) d, = loT4: 
(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = 10 + 

of the notch singularity and no traction gradients exist. The traction profiles for the mesh with 
yuuclrutic elements are presented in Figures 6 8. From Figures 4-8 the following observations are 
made: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Satisfactory results are obtained for all integration schemes for d, = 

0 Beyond stiffness values of l o f 3  N/mm3 application of the Gauss integration scheme leads to 

N/mm3. 

oscillatory results. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tn [N/mm2] 

\ 
tn [N/mm2] 

1 
tn [Nlmm'] 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Traction profiles for linear plane interface elements with 2 x 2 Newton-Cotes/Lobatto integration: 
(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = (b) d, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) d. = 

Application of exact Newton-Cotes/Lobatto integration leads to correct results for the 
whole range of stiffness values. 
The lumped integration scheme yields proper results for linear plane interface elements, but 
not for quadratic plane interface elements. This is because the negative surface contributions 
of the corner nodes of quadratic elements then introduce negative diagonal terms in the 
element stiffness matrix. This leads to an ill-conditioned system of equations which is solved 
inaccurately with an LDU-decomposition without pivoting as has been done here. 
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\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tn [N/rnm2] 

Figure 6. Traction profiles for quadratic plane interface elements with 3 x 3 Gauss integration: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ,  : 
(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. = (c) d. = 

When, in case of Newton-CotesjLobatto integration, a scheme is applied with more sampling 

points than necessary-jover-integration) oscillating traction distributions are again obtained. This 
is because four-point and higher-order Lobatto or Newton-Cotes schemes result in a stiffness 
matrix for the interface element that is identical to that which results from a three-point Gauss 
scheme, and therefore, yields no improvement with respect to the element performance. Also 
over-integration and under-integration using a Gauss scheme do not result in improvements with 



54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.  J. SCHELLEKENS AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. DE BORST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\ 
tn [N/mm2] 

\ 
In [N/mm2] 

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tn [N/mm2] 

Figure 7. Traction profiles for quadratic plane interface elements with 3 x 3 Newton-CoteslLobatto integration: 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = (h) dn = 10"; (c) d, = locs 

respect to the oscillations in the traction profiles that are observed for the standard Gauss 
integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3. Non-linear analysis of soilkreillforcement interaction 

In addition to the mode-1 analyses of the concrete beam the performance of the interface 
elements has also been examined for pure mode-I1 behaviour.'.'' The problem that is considered 
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Figure 8. Traction profiles for quadratic plane interface elements with lumped integration: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(bj d, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(c) d. = 

for this purpose is a pull-out test of a soil-reinforcement bar. The finite element mesh for the 
three-dimensional analysis is shown in Figure 9. In the mesh quadratic volume elements are used 
to model the soil mass and the reinforcement bar. In the analyses the horizontal and vertical 
displacements of the soil as well as the vertical displacements of the reinforcement bar were 
prevented. The interface is modelled with 16-noded quadratic plane interface elements. The 
physically non-linear behaviour of the interface elements is governed by a Coulomb friction law 

= J(t: + t:) + t , tan4 - c 
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plane interface elements 

reinforcement strip 

Figure 9. Finite element model of a three-dimensional soil-reinforcement system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t, [kN,m21 high load level ts [kN,mzl high load level 
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Figure 10. Shear traction profiles for quadratic plane interface elements with 3 x 3 Gauss integration. Left: d, = 10”. 
Right: d, : 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc the cohesion, # the friction angle and ti the tractions. A more detailed description of the 
Coulomb friction model which includes a formulation of a consistent tangent operator has been 
given by Schellekens.2’ In the analysis we have taken the cohesion equal to 0.577 x N/m2 

and the friction angle 4 equal to zero. An associated slip law was used. For the stiffness values of 
the soil and reinforcement bar Eaoi, = N/m2 have been substituted. 
The dummy stiffness for the interface elements was varied between N/m3 and N/m3. 
The results from non-linear analyses with Newton-Cotes/Lobatto and Gauss integration 
schemes are given in Figures 10 and 11 and show that the Gauss scheme again results in an 
oscillating traction profile for the high dummy stiffness value of N/m3. Similar to the earlier 
observations the oscillations vanish with decreasing values for the dummy stiffness. 

Sliding starts at x = 0 m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 1.0 m and propagates from the ends of the bar towards the 
centre. Figure 10 shows that oscillations appear just before the sliding front and that oscillations 
seem to disappear once the sliding front has passed. This phenomenon has also been observed by 
Gens zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.’ 

N/m2 and E,, = 
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Figure 11. Shear traction profiles for quadratic plane interface elements with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x 3 Newlon-Cotes,’Lohatto integration. 
Left: d, = 10”. Right: d, = 

4. EICENVALUE ANALYSIS O F  THE ELEMENT STIFFNESS MATRIX 

Eigenvalue analyses of the element stiffness matrix will now be presented to gain more insight in 
the underlying reasons for the oscillations in the traction profiles. For all four element types and 
for different integration schemes the non-zero eigenmodes and the corresponding eigenvalues of 
the linear elastic stiffness matrix are listed in Figures 12-15. The length, surface and dummy 
stiffness of the interface elements were taken equal to 1. The eigenmodes of line interface elements 
and the linear plane interface elements do not show a coupling of nodal displacements between 
the individual node sets when integrated with a Newton-Cotes/Lobatto or a lumped integration 
scheme (Figures 12 and 13). However, such a coupling is observed when the same elements are 
integrated by a Gauss scheme. With regard to quadratic plane interface elements we observe that 
the eigenmodes of the element stiffness matrix possess coupling of displacements between node 
sets also for Newton-Cotes/Lobatto integration [Figure 15(b)], so that only lumped integration 
is free from this coupling of nodal displacements. 

Furthermore, in Reference 21 eigenvalues and eigenmodes were calculated for the stiffness 
matrices of quadratic plane interface elements with a varying number of sliding points. These 
results show the effect of the progression of the non-linearity on the eigenvalues and eigenmodes. 
In particular, it was observed that a change in status of an integration point from elastic into 
sliding results in an increase of the number of uncoupled zero energy modes. Also, fully inelastic 
elements have no coupled non-zero energy modes left in the direction in which the elements show 
inelastic behaviour. 

5. INTERPRETATION AND EXPLANATION 

Before explaining the behaviour of the interface elements on the basis of the results of the 
eigenvalue analyses, clarity must exist about the conditions under which the element performance 
is not satisfactory. From the analyses of the concrete beam and the soil-reinforcement system we 
have seen that the introduction of a high dummy stiffness in combination with a Gauss 

integration scheme results in oscillations in the traction profiles. The cause of the problem, 
however, is not the high value of the dummy stiffness, but the resulting large traction gradient 
over an interface element. In the concrete beams such a high gradient occurs near the notch 
singularity and in the soil-reinforcement structure near the free ends of the reinforcement bar. It 
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(a) 2-point GauR integration scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h=  1.0 r I * C J  h=l .0  >"= 1.0 

h=1.0 

(b) 2-point Lobatto/Newton-Cotes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor lumped integration 

Figure 12. Eigenmodes and corresponding cigenvalucs for a linear line interface element 

h = 0.01 608 h = 0.01 608 h = 0.0333 

- h = 0.0333 h = 0.1 1 06 h = 0.1 106 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) 3-point GauR integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A. = 0.0333 h = 0.0333 

(b) 3-point LobattoiNewton-Cotes or lumped integration 

Figure 13. Eigenmodes and corresponding eigenvalues for a quadratic line interface element 

appears that when a Gauss scheme is used the element is not able to describe properly highly 
inhomogeneous tractions within one single element. This is illustrated in Figure 16 which shows 
the effects of mesh refinement on the traction profile of the 3D soil reinforcement problem. 
A 3 x 3 Gauss scheme is applied and the stiffness values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,  and d,  are equal to 10'' N/m3. The 
results are given for the cases with 20 and 40 elements over the length of the structure. We observe 
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(a) 2x2 GauR integration 

(b) 2x2 Lobatto, Newton-Cotes or lumped integration 

Figure 14. Eigenmodes and corresponding eigenvalues for a linear plane interface element 

that, with increasing mesh refinement, the element performance improves as a result of the 
decreasing traction gradients over a single element. 

Accordingly, the combination of high traction gradients and the integration scheme is respon- 
sible for the improper element behaviour. In line and plane interface elements oscillations occur 
both in linear and non-linear analysis when Gauss integration is used. Newton-Cotes/Lobatto 
integration results in smooth traction profiles in all the analyses. 

In contrast to Newton-Cotes/Lobatto integration, application of Gauss quadrature to line 
interface elements and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinear plane interface elements results in the existence of non-zero energy 
modes with coupling between the degrees of freedom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the individual node sets. This causes 
oscillations in the traction profiles if a large traction gradient exists. Figure 15(b) Fhows that for 

quadratic plane interface elements not only Gauss integration, but also Newton-Cotes/Lobatto 
integration results in non-zero energy modes with node set coupling. On the basis of this 
observation one would expect oscillatory traction profiles, which is not in agreement with 
our findings from the numerical experiments. In order to explain the good performance of 
Newton-Cotes/Lobatto integration schemes in the analyses, we shall further investigate the 
element stiffness matrix of the plane interface element. The linear elastic element stiffness matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K assembled using Lobatto integration equals 

1 
180 

K = - A  

K, - K ,  0 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

- K, K, 0 0 0 0 

0 0 K, - K ,  0 0 

0 0 - K, K, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

0 0 0 0 Kt - Kt 

0 0 0 0 - K, K, 
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in which each Ki  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is an 8 x 8 submatrix of the form 

lOdi - lOdi 5 4  - lOdi 5di - 10di 5di - lOdi 

- lOdj 40di - lOdj 20di - lOdi 20di - lOdj 204 

5di - l0di lOdi - lOdi 5di - lOdj 5 4  - lOdi 

5di - 10di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5dj - lOdi lOdi - lOdi 5 4  - 10d, 

5 4  - l0di 5 4  - lOd, 5 4  - 10di 10di - lOdi 

- lOdi 204 - 1Odi 40di - lOdi 20di - l0di 204 

- lOdi 20di - lOdi 20di - 10dj 4061 - lOdj 20di 

- lOdi 204 - lOdi 20di - lOdi 20di - lOdi 40di 

h = 0.5556.10-3 

h = 0.2222.1 0-2 

h = 0.260 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-3 I = 0.41 1 w 3  

h=0.1843-10-2 h=0.1843.10-2 

(a) 3x3 GauO integration 

QU 
b = 0.2222.1 0-2 7, = 0.2222.10-2 

h = 0.1 081 .I 0-’ 

h = 0.1 304.1 0-’ 

(b) 3x3 Newton-CoIesiLobatto integration 
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(c) Lumped integration 

Figure45. Eigenmodes and corresponding cigenvalues for a quadratic plane interface element: (a) 3 x 3 Gauss integra- 
lion; (b) 3 x 3 Newton Cotes/Lobatto integration; (c) Lumped integration 
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Figure 16. Shear traction profiles in soil-reinforcement structure for quadratic plane interface elements with 3 x 3 Gauss 
integration (d, = 10”)). Left: 20 elements. Right: 40 elements 

If we decompose this submatrix in a matrix which contains the contributions of the integration 
points which coincide with the element nodes (K,) and a matrix which contains the contribution 
to the stiffness matrix of the integration point located in the centre of the element (K,) we obtain 

K, = 

- 5 4  0 0 0 0 0 0 0- 

O 2 0 d i O  0 0  0 0  0 

0 O 5 d i  0 0 0 0 0 

0 O O 2 0 d i O  0 0  0 

0 0 0 O 5 d i  0 0 0 

0 0 0  O O 2 0 d i O  0 

0 0 0 0 0 O 5 d i  0 

- 0 0 0  0 0  O 0 2 0 d i  - 
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K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

5 4  

- l0dj 

5di 

- lOdi 

5 4  

- lOd; 

5 4  

- l0di 

- l0di 5di 

20di - Jodi 

- l0di 5di 

204 - l0di 

- 10d; 5 4  

20di - l0di 

- lOdi 5di 

20dj - lOdi 

- lOdi 

204 

- lOd, 

20dj 

- lOdi 

20d i 

- 10d, 

20di 

5di - lOdi 5di  - 10& 

- l0dj 20di - l0di 20di 

5dj - 104 5di - lOdi 

5di - lOdi 5 4  - lOdj 

- 10di 204 - l0di 204 

5 4  - IOdi 5dj ~- lOdi 

- lOdi 20di - lOdi 20di 

- 10di 204 - 10di 20di 

From these matrices we see that coupling is indeed introduced by the centre integration point. We 

now introduce a characteristic part of the B matrix of the centre point which relates nodal 
displacements normal to the element to the normal relative displacement in the integration point. 

- 0.25 0.5 - 0.25 0.5 - 0.25 0-5 - 0.25 0.5 

(33) 

O 0 0  O 1  

B = [  0 0  0 0  0 0  

0 0  0 0  0 0  

The relation between the non-zero components in the B matrix is such that when a displace- 
ment field over an element has a gradient in either the (- or r-direction, the nodes in the direction 
in which the displacement field varies, do not have a resulting contribution to the tractions and 
relative displacements in the central integration point. The tractions and relative displacements in 
the central point of the element are only dependent on the nodal values of the nodes which are 
located in the direction in which no gradient exists. So in these special cases the element acts as if 

no coupling between the node sets exists and no oscillations will occur. This can be assessed by 
a few examples. The upper side of an element is given in Figure 17. For the first problem, a linear 
varying displacement u, = (1. 1, I ,  0.5,0,0,0,0.5) is applied. The traction values in Figure 17 

represent in a smooth traction profile. A simple calculation using equation (33) is sufficient to 
show that the traction value in the midpoint is the mean of the traction values of nodes 4 and 8. 
The contributions of the other nodes cancel each other. I f  we apply a displacement field 
u, = (1, 0, 0, 0, 0, 0, 0,O) that varies with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and r,  we observe that all the nodal displacements 
contribute to the relalive displacement in the midpoint and that a non-smooth traction profile 
results (see Figure 17). As a conclusion we can state that. for quadratic plane interface elements, 
besides a few special cases (linear, quadratic and cubic variation in the displacement field from 
node 1 to 5). Newton-Cotes/Lobatto integration produces smooth traction profiles only when 
the displacement field over the element varies in only one direction. Since this was the case in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 6 5  0 0 0  0 0 0  0 0 0  0 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa o . 5 ~ o . 5 0 . 5 ~ o . 5  .tJ. ./-zJ0 
1 2 3  1 1 1  1 1 1  1 0 0  1 0 0  

Node Nodal Normal Nodal Normal 
Numbers Displacements Tractions Displacements Tractions 

Figure 17. Prescribed nodal displacements and traction values for a Newton-C,otcs/Lobatto integrated quadratic plane 

interface clement 
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presented examples no oscillatory traction profiles were encountered. In cases where 
Lobatto/Newton-Cotes integration gives oscillatory traction profiles one must either use extreme 
mesh refinement or apply linear elements. However, it is emphasized that, due to the fact that the 
tractions are calculated inaccurately only for the centre integration point, the spurious behaviour 
of Newton-Cotes/Lobatto integrated elements will be less severe than the spurious behaviour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
Gaussian integrated elements. This is demonstrated next for two linear elastic analyses. 

The first analysis is a modification of the three-dimensional beam analysis. In order to obtain 

a traction profile that varies in two directions an additional notch is provided (Figure 18) and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, surfaceload 

/ 

Figure 18. Double-notched three-dimensional beam loaded in two directions. The part of the mesh that is not shown is 
equal to the discretization in Figure 3 
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Figure 19. Traction profile for the double-notched three-dirnensional beam. Quadratic plane interface elements with 3 x 3 
Newton-Cotes/Lobatto integration 
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beam is loaded in the horizontal and vertical direction. The dimensions and material properties in 
this analysis are as specified in Section 3.2. The dummy stiffness of the quadratic plane interface 
elements is set equal to J, = l o f 9  N/m3. From Figure 19 which shows the traction surface for 
a 3 x 3 Newton Cotes/Lobatto integration scheme we conclude that the interface performance is 
still satisfactory, even under more complex loading conditions. 

A linear elastic analysis of the soil-reinforcement system presented in Figure 20 was used to 
demonstrate the element performance under non-uniform shear loading. The reinforcement plate 
was loaded in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- and y-direction by uniform surface loads equal to 3.0 x Njm’ and 
1.0 x 10’ N/m2, respectively. The dummy stiffness values of the interface elements were assumed 
to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = d, = 10” N/m3. The other material properties were equal to the values specified in 
Section 3.3. Figures 21 and 22 show the results for 3 x 3  Gaussian integration and 3 x 3  
Newton Cotes/Lobatto integration. Again we observe a good performance of the 

Newton-Cotes/Lobatto integrated interface elements, especially when compared to the results 
obtained from Gaussian integration. 

reinforcement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

Figure 20. Soilheinforcement system loaded in shear in two directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ts x 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOc5 [Nirn’] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 21. Shear tractions for soil-reinforcement system when applying 3 x 3 Gauss integration (d, = 10’ ’1. Left: in 

y-direction. Rightin x-direction 
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Figure 22. Shear tractions for soil-reinforcement system when applying 3 x 3 Lobatto integration (d, = lof9). Left: in 
y-direction. Right: in x-direction 

6. CONCLUDING REMARKS 

Preliminary calculations indicate that the application of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinear distorted plane interface elements 
produces inaccurate results when a Newton-Cotes/Lobatto integration scheme is used to as- 
semble the element stiffness matrix. This is caused by an improper calculation of the surface 

contributions (det J) for the integration points. Elements that are integrated by a Gaussian 

integration scheme or a nodal lumping scheme do not suffer from this deficiency. 
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