
 Open access  Journal Article  DOI:10.1137/0916010

On the numerical integration of ordinary differential equations by symmetric
composition methods — Source link 

Robert I. McLachlan

Published on: 01 Jan 1995 - SIAM Journal on Scientific Computing (Society for Industrial and Applied Mathematics)

Topics: Exponential integrator, Numerical partial differential equations, Backward differentiation formula,
Ordinary differential equation and Differential equation

Related papers:

 Construction of higher order symplectic integrators

 Numerical Hamiltonian Problems

 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations

 
Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo
simulations

 Fourth-order symplectic integration

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-
1rew0erady

https://typeset.io/
https://www.doi.org/10.1137/0916010
https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady
https://typeset.io/authors/robert-i-mclachlan-47qc5xi39i
https://typeset.io/journals/siam-journal-on-scientific-computing-162j53kf
https://typeset.io/topics/exponential-integrator-7j4vs8g6
https://typeset.io/topics/numerical-partial-differential-equations-2guwoafz
https://typeset.io/topics/backward-differentiation-formula-766igrf9
https://typeset.io/topics/ordinary-differential-equation-2kek8o2j
https://typeset.io/topics/differential-equation-1cuh8ry8
https://typeset.io/papers/construction-of-higher-order-symplectic-integrators-11tikvgg57
https://typeset.io/papers/numerical-hamiltonian-problems-rlh48bf6wq
https://typeset.io/papers/geometric-numerical-integration-structure-preserving-5cgiku3vko
https://typeset.io/papers/fractal-decomposition-of-exponential-operators-with-30ia40of18
https://typeset.io/papers/fourth-order-symplectic-integration-3upbi4bnst
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady
https://twitter.com/intent/tweet?text=On%20the%20numerical%20integration%20of%20ordinary%20differential%20equations%20by%20symmetric%20composition%20methods&url=https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady
https://typeset.io/papers/on-the-numerical-integration-of-ordinary-differential-1rew0erady


ON THE NUMERICAL INTEGRATION OF

ORDINARY DIFFERENTIAL EQUATIONS

BY SYMMETRIC COMPOSITION METHODS

Robert I. McLachlan

Abstract. Differential equations of the form ẋ = X = A+B are considered, where
the vector fields A and B can be integrated exactly, enabling numerical integration
of X by composition of the flows of A and B. Various symmetric compositions are
investigated for order, complexity, and reversibility. Free Lie algebra theory gives
simple formulae for the number of determining equations for a method to have a
particular order. A new, more accurate way of applying the methods thus obtained
to compositions of an arbitrary first-order integrator is described and tested. The
determining equations are explored, and new methods up to 100 times more accurate
(at constant work) than those previously known are given.

1. Composition methods.

Composition methods are particularly useful for numerically integrating differ-
ential equations when the equations have some special structure which it is advan-
tageous to preserve. They tend to have larger local truncation errors than standard
(Runge-Kutta, multistep) methods [4,5], but this defect can be more than compen-
sated for by their superior conservation properties.

Capital letters such as X will denote vector fields on some space with coordinates
x, with flows exp(tX), i.e., ẋ = X(x) ⇒ x(t) = exp(tX)(x(0)). The vector field
X is given and is to be integrated numerically with fixed time step t. Composition
methods apply when one can write

X = A+B

in such a way that exp(tA), exp(tB) can both be calculated explicitly. Then the
most elementary such method is the map (essentially the “Lie-Trotter” formula
[26])

ϕ : x 7→ x′ = exp(tA) exp(tB)(x) = x(t) + O(t2). (1.1)

The advantage of composing exact solutions in this way is that many geometric
properties of the true flow exp(tX) are preserved: group properties in particular.
If X , A, and B are Hamiltonian vector fields then both exp(tX) and the map ϕ
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2 R. I. MCLACHLAN

are symplectic; if X , A, and B are skew-Hermitian (as in quantum mechanics, for
example) then ϕ is automatically unitary; if X , A, and B are divergence-free then
ϕ is volume-preserving. If X = J(x)∇(H1 +H2) is a Poisson system and we split
it as X = J(x)∇H1 + J(x)∇H2 then ϕ is a Poisson map, such maps being difficult
to generate by other means. In addition, if X , A, and B have any common first
integrals then they are shared by ϕ. Composition methods are also a convenient
way of preserving any reversibilities of the flow, which we discuss in section 3.

More generally, methods which write X = A+B and compose approximations of
exp(tA) and exp(tB) are known as operator-splitting methods. These have a long
history, going back to Yanenko [28] and Strang [22], who dealt with the special case
known as dimensional splitting. Here X is the spatial discretization of a PDE with
multiple space dimensions, and in the equations determining the approximation x′

of exp(tA), say, x′ is coupled in one spatial direction only. For example, A might
contain differences in only one spatial direction. Arbitrary compositions of sets of
methods have also been considered with the goal of increasing order or stability;
see for example Stetter [21] on cyclic composition of linear multistep methods. An
early work on compositions of one-step methods which predates the application to
Hamiltonian systems is Iserles [8].

For us the primary requirement is to be able to solve ẋ = A(x) and ẋ = B(x) ex-
actly. (Actually, as we shall see later, this can be relaxed—without needing to find
new time-stepping coefficients—to finding first-order approximations to exp(tA)
and exp(tB), or to exp(tX).) Most currently used methods split X into linear vec-
tor fields or into parts with linear flows such as shears ẋ1 = 0, ẋ2 = f(x1), but in
principle one can choose pieces from any of the repertoire of known integrable sys-
tems. In this way Wisdom [27] split the differential equations for the n-planet solar
system into n Sun-planet two-body problems, each an integrable Kepler problem,
and n(n− 1)/2 planet-planet interaction terms, each a shear. McLachlan [15] gave
a class of Lie-Poisson systems which can be split into linear systems, and showed
that a model of the 2D Euler equations for the flow of an incompressible perfect
fluid falls into this class. Many PDE’s arising in physics can be split after pseu-
dospectral spatial discretization [14]. Zhang has given examples for the unitary [30]
and volume-preserving [31] cases.

The method (1.1) is only first order. The order can be increased to p, say, by
composing many such stages [18]:

. . . exp(bntB) exp(antA) . . . exp(b1tB) exp(a1tA) (1.2)

with the coefficients ai, bi chosen so that above composition approximates exp(tX)
with error O(tp+1). (This will require some smoothness: A and B must be Cr for
some r ≥ p.) Like Iserles [8] and Suzuki [24] we shall also consider compositions of
an arbitrary first-order method ϕ(t) and its inverse:

. . . ϕ±1(w2t)ϕ
±1(w1t). (1.3)

If nothing more than ϕ(t) = 1 + tX + O(t2) is known about ϕ, this appears to be
significantly more general than (1.2). We shall see in Theorems 1 and 2 that this
is not so: in fact, any method of the form (1.2) directly generates a method of the
form (1.3) of the same order, and vice versa. Thus the work of finding high-order
methods, which for historical reasons has been concentrated on type (1.2), need not
be repeated.



ON SYMMETRIC COMPOSITION METHODS 3

A fundamental result, useful in analyzing compositions such as (1.2) and (1.3),
is the Baker-Campbell-Hausdorff (BCH) formula [3, p.160]: formally at least,

expA expB = exp
(
A+B +

1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + . . .

)
, (1.4)

where [A,B] = A · ∇B − B · ∇A is the commutator bracket of vector fields. The
composition (1.2) may then be expanded as a asymptotic series

exp(tX1 + t2X2 + . . . ) (1.5)

where Xn ∈ Ln(A,B), the elements of degree n of the free Lie algebra generated
by A and B, that is, the vector space spanned by all commutators of degree n of
A and B. Let the dimension of Ln(A,B) be c(n) (see Eq. (2.1)). On choosing a
basis for Ln(A,B), the coordinates of Xn are polynomials of degree n in the ai’s
and bi’s. If these are zero then Xn = 0 for all A and B. Therefore for a method
to have order p (i.e., X1 = X , X2 = . . . Xp = 0) there are

∑p
n=1 c(n) determining

equations.
The simplest example of (1.2) is leapfrog:

exp(1
2 tA) exp(tB) exp( 1

2 tA) (1.6)

which is second order. Note that if many steps are performed without output, only
one evaluation each of A and B is required per time step. An important property
of leapfrog is its (time) symmetry; we say a map S depending on a time step t is
symmetric if

S(−t)S(t) = 1. (1.7)

If a method has this property, only odd powers of t appear in the expansion (1.5)
so only the odd-order determining equations need to be solved [29].

There are several ways of deriving the determining equations, which we shall
not go into in detail here. Yoshida [29] does a direct expansion of the Xn in (1.5)
using the BCH formula (1.4), simplified using symmetry arguments, and Suzuki
[23,24] has built a general theory along these lines. Sanz-Serna, Abia, and Calvo
(see [19] for a review) have extended the graph-theoretic approach, standard in the
numerical solution of initial value problems, to the symplectic and symmetric cases.

Adding special symmetries to the method reduces the number of determining
equations to be solved, but it also reduces the number of parameters ai, bi available
to satisfy them. Let m be the number of evaluations of B per time step. We shall
distinguish the following cases:

Type NS, non-symmetric.
Historically [18], the first methods derived were of the form

exp(am+1tA) exp(bmtB) exp(amtA) . . . exp(b1tB) exp(a1tA) (1.8)

which has 2m+ 1 parameters.
Type S, symmetric.

Imposing symmetry (1.7) gives methods of the type

exp(a1tA) exp(b1tB) . . . exp(b(m+1)/2tB) . . . exp(b1tB) exp(a1tA) (1.9a)
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for an odd number m of evaluations of B, or

exp(a1tA) exp(b1tB) . . . exp(a(m/2)+1tA) . . . exp(b1tB) exp(a1tA) (1.9b)

for even m. In both cases there are m+ 1 parameters.
Type SS, symmetric composed of symmetric steps.

Yoshida [29] used the composition

S(w1t) . . . S(w(m+1)/2t) . . . S(w1t) (1.10)

where S is any symmetric integrator (usually second order). It is advantageous
to use only odd values of m. Some possible choices for the basic component S
are leapfrog (1.6) (notice that consecutive steps with A may be amalgamated),

a generalized leapfrog
∏r

i=1 exp(1
2 tAi)

∏1
i=r exp(1

2 tAi) when X =
∑r

i=1 Ai

[7], the midpoint rule x′ = x + tX
(
(x + x′)/2

)
, or a symmetrized integra-

tor ϕ(t/2)ϕ−1(−t/2) where ϕ is any first-order method [2]. There are only
(m + 1)/2 parameters in (1.10), but the number of determining equations is
drastically reduced.

Type SB3A, Symmetric with [B,[B,[B,A]]] = 0.
One often finds splittings which satisfy [B, [B, [B,A]]] = 0, so that the coef-
ficient of such a term in (1.5) does not need to be set to zero. This reduces
the number of determining equations, which is further reduced by considering
symmetric methods of the form (1.9). The most important example is the class
of Hamiltonian systems of the form q̇ = p, ṗ = −∇V (q) with the splitting

A =

(
p
0

)
, B =

(
0

−∇V (q)

)
(1.11)

so that in this case SB3A methods will be of Runge-Kutta-Nyström (RKN)
type [19]. However, there are other applications, such as Poisson systems with

constant Poisson tensor J =
(

0
−Kt

K
0

)
, Hamiltonian H(q, p) = A(q, p) + B(q)

and A quadratic in p [14]. We shall see later that the distinction between cases
(1.11) and [B, [B, [B,A]]] = 0 is not important in practice.

Section 2 applies some results from the theory of free Lie algebras to the problem
of counting the number of determining equations. This knowledge is crucial, as it
determines both the number of stages needed to achieve a given order and the
number of free parameters then available to “tune” the method. It also suggests
suitable bases in which to express the determining equations, although we do not
explore that issue here. Note that the free Lie algebra approach only counts the
dimensions of certain spaces, giving upper bounds for the number of stages required.
There could be further simplifications in the determining equations for particular
methods. For example, although at high order type NS has more determining
equations than type S, type S methods also solve the NS equations. The same is
true in turn for types S and SS. The only known simplifications are those arising
from the symmetries presented here, but proofs that there are no more can only
be carried out by algebraically reducing the determining equations for particular
cases, as in Koseleff [9,10].

We also show in section 2 that type S methods can be adapted to the case when
one only has ϕ(t), an arbitrary first-order approximation to exp(tX). In section 3
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Table 1. Number of determining equations and parameters

Data for types NS and S are from (2.1), for type SS from (2.9b), and for type SB3A from (2.10).

Order Type NS Type S Type SS Type SB3A

Determining equations:
2 3 2 1 2
4 8 4 2 4
6 23 10 4 8
8 71 28 8 18
10 226 84 16 44

Parameters:
2m+ 1 m+ 1 (m+ 1)/2 m+ 1

we discuss the reversibility properties of composition methods. The solution space
of the determining equations is searched in section 4 to find methods with minimum
error constants, these optimized methods being illustrated with some brief examples
in section 5.

2. Counting the determining equations.

As discussed above, the number of determining equations at order n for methods
of the form (1.8) or (1.9) is the number of independent commutators of A and B
of order n. These commutators span the subspace Ln(A,B) of L(A,B), the free
Lie algebra generated by A and B, which may be thought of as the vector space
spanned by A, B, and all their commutators [A,B], [A, [A,B]], . . . . The dimension
of Ln(A,B) is given by Witt’s formula [3, p.140]

c(n) =
1

n

∑

d|n

µ(d)2n/d (2.1)

where µ(d) is the Möbius function µ(1) = 1, µ(d) = (−1)j if d is the product of j
distinct primes, and µ(d) = 0 otherwise.

The first 10 values of c(n) are 2, 1, 2, 3, 6, 9, 18, 30, 56, and 99, giving the
total numbers of determining equations shown in Table 1:

∑p
n=1 c(n) for a type NS

method of order p, and
∑p/2

n=1 c(2n− 1) for a type S method of (even) order p.
(note: Sanz-Serna [19] considers partitioned Runge-Kutta (PRK) methods, a

method of integrating equations in the form ẋ1 = A(x1, x2), ẋ2 = B(x1, x2). When
explicit, as they can be when A = A(x2) and B = B(x1) as arises in Hamiltonian
systems, PRK methods reduce to a special case of (1.2). Note (1.2) applies even
when the dependent variables are not so partitioned. The numbers of determining
equations at order 1 ≤ n ≤ 10 for general (i.e., possibly implicit) PRK methods
are cprk(n) = 2, 1, 2, 3, 6, 10, 22, 42, 94, and 203 (see [19], Table 1, column 5). For
orders p > 5, cprk(n) > c(n), that is, explicitness must create some redundancy in
the PRK determining equations. It does not appear than partitioning creates any
redundancy in the determining equations of (1.2).)

One may also start with an arbitrary map ϕ(t) (assumed smooth in space and
time) approximating exp(tX) to first order, and compose it together with its inverse
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as in (1.3): . . . ϕ±1(w2t)ϕ
±1(w1t). Taking the logarithm of ϕ gives the asymptotic

series
ϕ(t) = exp(α1t+ α2t

2 + α3t
3 + . . . ) (2.2)

where the αi are vector fields. Since ϕ(t) is first order, α1 = X . Such a formulation
is useful because often a “two-map” (X = A + B) splitting is not available. If
X =

∑r
i=1 Ai then ϕ(t) =

∏r
i=1 exp(tAi) may be available, giving an “r-map”

integrator as in [7]. Witt’s formula for the number of independent commutators of
order n formed from r indeterminates (here, the vector fields Ai) is 1

n

∑
d|n µ(d)rn/d,

showing that it is hopeless to generalize (1.2) to general compositions of r flows—
there are just too many independent commutators. If exp(tAi) is not available, one
can use ϕ(t) =

∏r
i=1 ϕi(t) where ϕi(t) approximates exp(tAi) to first order. In the

symplectic case, a suitable ϕ is generated by the generating function of the third
kind qtp− tH(q, p); for the Lie-Poisson case, a suitable (Poisson) ϕ is constructed
in [6]. If one is not worried about staying in the right group, ϕ(t) could be Euler’s
method 1 + tX .

Formula (1.3) is at first sight more general than (1.2), because it contains an
infinite number of indeterminates αi instead of only two, A and B; but we show
now that (1.2) and (1.3) are really equivalent. To count the determining equations
arising from (1.3), the following extension of Witt’s formula [3, p.141] was used by
Suzuki [24]. It gives the dimension b of the space spanned by commutators of the
indeterminates A1, A2, . . . , with each Ai occurring ni times:

b(n1, n2, . . . ) =
1

P

ni

∑

d|ni ∀i

µ(d)
(

P

ni/d)!∏
i(ni/d)!

. (2.3)

Then the number of determining equations d(n) at order n in (1.3) is the sum of
the dimensions of the spaces spanned by commutators of the αi whose total order
is n: 1 at order 2 (spanned by α2); 2 at order 3 (spanned by α3 and [α1, α2]); 3 at
order 4 (spanned by α4, [α1, α3], and [α1, [α1, α2]]), etc.

d(n) =
∑

n1+2n2+···+nnn=n

b(n1, n2, . . . , nn) (2.4)

This requires an elaborate search for partitions of n; the formula is greatly simplified
by the following

Theorem 1. d(n) = c(n) for all n > 1.

The proof will use the Lyndon basis for free Lie algebras, which we describe
briefly. See Lothaire [10] for more details. A word is a sequence of letters chosen
from an alphabet A; words are multiplied by concatenation. A Lyndon word is a
word which is not the power of another word (i.e., it is primitive) and is lexicograph-
ically minimal (i.e., would be first in a dictionary) amongst its cyclic permutations.
The Lyndon words on A = {A,B} are {A,B,AB,AAB,ABB,AAAB,AABB,
ABBB,AAAAB,AAABB,AABAB, . . . }. There is a bijection from the set of
Lyndon words to a basis for L(A) [10, p.67]. Thus the number of Lyndon words
of a given length is given by Witt’s formula. We also need the Lazard elim-
ination method ([10], p.85 and [3], p.132), which decomposes L(A,B) as B ⊕
L(A, [A,B], [[A,B], B], . . . ).1

1We have found it convenient to evaluate sums such as (2.9a), tables of Lyndon bases, deter-
mining equations, etc. in Mathematica. Contact the author for more details.
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Proof of Theorem 1. Choosing αi = [[. . . [A,B], B], . . . , B] (i − 1 B’s) immedi-
ately shows that d(n) ≥ c(n) for n > 1. In fact this mapping provides more, a
bijection between the Lyndon bases of L(α1, α2, . . . ) and L(A,B)\B, because the
Lazard elimination method shows that the set of Lyndon words over the alphabet
{A,AB,ABB,ABBB, . . . } is equal to the set of Lyndon words over {A,B}, ex-
cluding B. The above bijection preserves the total order of a word, so

∑n
i=1 c(n) =

1 +
∑n

i=1 d(n). Now c(1) = 2 (because L1(A,B) = {A,B}) and d(1) = 1 (because
L1(α1, . . . ) = {α1}), which proves the result. �

A standard way to construct higher-order methods out of ϕ is to let S(t) =
ϕ(t/2)ϕ−1(−t/2) and then use an SS method [2]. However, because of Theorem 1,
one can do better. Suppose some coefficients ai, bi have been determined which give
(1.2) order p. Let ϕ+(t) = ϕ(t) and ϕ−(t) = ϕ−1(−t). (In most of the examples
mentioned above, ϕ− is exactly as easy to compute as ϕ+.) Then one can use a
(more accurate) type S method with ϕ+, ϕ− stages, instead of being restricted to
type SS:

Theorem 2. The determining equations for the map (1.8) and for the map

ϕ+(cmt)ϕ
−(dmt) . . . ϕ

+(c1t)ϕ
−(d1t) (2.5)

to have order p > 1 are equivalent, where

d1 = a1, cm = am+1, di + ci = bi for i = 1, . . . ,m, and

di + ci−1 = ai for i = 2, . . . ,m.
(2.6)

Proof. Let
ϕ(t) = exp(α1t+ α2t

2 + α3t
3 + . . . ) (2.7a)

Then
ϕ−1(t) = exp(−α1t− α2t

2 − α3t
3 − . . . )

so
ϕ−1(−t) = exp(α1t− α2t

2 + α3t
3 − . . . ) (2.7b)

At order n there is one determining equation for (2.5) for each basis element of
Ln(α1, α2, . . . ).

Now start with a method of the form (1.8), and break it up schematically as
follows:

eam+1A ebmB eamA . . .

| � � � �

ecmAecmB edmBedmA . . .

| |
ϕ+(cmt) ϕ−(dmt) . . .

using the equations (2.6). Notice that Eqs. (2.6) are 2m+1 linear equations in 2m

unknowns; the compatibility condition for these equations is
∑m+1

i=1 ai =
∑m

i=1 bi.
This is satisfied with both sides equal to 1 when (1.8) is a consistent method, i.e.,
when p ≥ 1.
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Taking ϕ+(t) = exp(tA) exp(tB) and ϕ−(t) = exp(tB) exp(tA) shows that (1.8)
has order p when (2.5) does.

To show the converse we need to show that there are no simplifications in the
determining equations of (2.5) under the particular choice ϕ(t) = exp(tA) exp(tB),
i.e., when α1 = A+B, α2 = 1

2 [A,B], . . . . This is true because, for n > 1, Theorem
1 states that there are the same number of independent commutators of order n of
A and B as there are of the αi. �

Similar counting arguments apply to compositions of symmetric methods. Now

S(t) = exp(α1t+ α3t
3 + α5t

5 + . . . ) (2.8)

so, using (2.3), there are

cs(n) = dim(Ln(α1, α3, . . . )) =
∑

n1+3n3+···=n

b(n1, n3, . . . ) (2.9a)

determining equations at order n, as given in [24]. This can be simplified greatly us-
ing a similar bijection to that in the proof of Theorem 1. Let A be an indeterminate
of order 1 and B an indeterminate of order 2, and let βi = [[. . . [A,B], B], . . . , B]
((i−1)/2 B’s). Then the sets of Lyndon words over the alphabets A = {α1, α3, α5,
. . . } and {β1, β3, β5, . . . } = {A,AB,ABB, . . . } are equal, and the latter is equal
to the set of Lyndon words over the alphabet B = {A,B}, excluding B. If a word
over A has order n and its image (as a word over B) under the bijection has j B’s,
then the image must have n− 2j A’s. So

cs(n) =

⌊n/2⌋∑

j=1

b(j, n− 2j) (2.9b)

If n = p is prime, only 1 divides both j and p− 2j, so then

cs(p) =

⌊p/2⌋∑

j=1

1

p− j

(
p− j
j

)
. (2.9c)

For type SS methods, only the odd-order determining equations need be solved;
their numbers are cs(3) = 1, cs(5) = 2, cs(7) = 4, cs(9) = 8, cs(11) = 18, cs(13) =
40, and cs(15) = 90 (the last two are given incorrectly in [24]).

The B3A case is also clarified by the Lazard elimination method. Now the
number cb3a(n) of determining equations at order n is the dimension of the space
spanned by commutators of order n of A and B, when C ≡ [B, [B, [B,A]]] = 0.
Under the bijection of Theorem 1 (C = α4, [B,C] = α5, etc.), αi = 0 for i ≥ 4.
Thus, for n > 1,

cb3a(n) =
∑

n1+2n2+3n3=n

b(n1, n2, n3) (2.10)

and the first 10 values of cb3a(n) are 2, 1, 2, 2, 4, 5, 10, 15, 26, and 42, giving the total
numbers of determining equations shown in Table 1. An alternative construction
proceeds as follows: C is independent of commutators of A and B of order less than
4. So the subspace of Ln(A,B) (n < 8) on which an arbitrary commutator of A
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and B is zero when C = 0 is spanned by the commutators of 1 C and n − 4 A’s
and B’s; so

c(n) − cb3a(n) =

n−4∑

i=0

b(1, i, n− 4 − i)

=
1

n− 3

n−4∑

i=0

(n− 3)!

i!(n− 4 − i)!

= 2n−4 (2.11)

However, for n ≥ 8, this is an overestimate because the independence assumption
fails; e.g., for n = 8, [C, [B, [B, [B,A]]]] is erroneously included in (2.11). We do
not have a simplification of (2.10) for n ≥ 8.

The first savings occur at order 4, when 1 term, namely C itself, is zero. But for
a symmetric method, the order 4 terms are zero anyway. Thus, types S and SB3A
are equivalent for orders ≤ 4.

We now consider the question of whether the particular “RKN” choice

A =

(
p
0

)
, B =

(
0

−∇V (q)

)
(1.11)

leads to any further reduction in the number of determining equations. Under
(1.11), we can replace commutator brackets of vector fields by Poisson brackets of
the Hamiltonians HA = p2/2 and HB = V (q). One should now describe the Lie
algebra generated by these two functions. We have not solved this problem, but
the following bound—obtained by counting the Lyndon words over {A,B} which
are nonzero in this instance—is lower than that in [5, Tab. 1, col. 4] for n > 8.

First notice that α1 = HA is quadratic in p, α2 = {HB, α1} = ∇V (q)tp is linear
in p, and α3 = {HB, α2} is independent of p. Thus {α3, α2} is independent of p, and
the order 8 term (n1 = 0, n2 = 1, and n3 = 2 in (2.10)) {α3, {α3, α2}} is identically
zero. In general, the elements being bracketed in a term in (2.10) have total degree
2n1 + n2 in p, which is reduced by one for each bracket; the final bracket will be
zero if 2n1 + n2 − (n1 + n2 + n3 − 1) = n1 − n3 + 1 < 0. Such a term should then
be dropped from the sum (2.10).

crkn(n) ≤
∑

n1+2n2+3n3=n
n1≥n3−1

b(n1, n2, n3) (2.12)

At orders 8, 9, and 10 there is a reduction of 1, 0, and 2 in c. These seem to be the
only such simplifications, so we conjecture that (2.12) is an equality, implying the

Conjecture. The solution sets of the determining equations of the method (1.2)
under the assumptions [B, [B, [B,A]]] = 0 and (1.11) are identical for nonsymmetric
methods of order ≤ 7, and for symmetric methods of order ≤ 10.

Note that the bases used in deriving (2.10) and (2.12) would be convenient ones
in which to derive the determining equations themselves.

One could also consider a type “SSB3A”; but this leads to no further simplifica-
tion, as the following theorem shows.
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Theorem 3. Consider a B3A method of order p (not necessarily symmetric) given
by the composition of leapfrog steps exp( 1

2witA) exp(witB) exp( 1
2witA), where [B, [B, [B,A]]] =

0. Then this method also has order p when the leapfrog steps are replaced by any
symmetric method, such as leapfrog with arbitrary A, B.

Proof. We must show that the determining equations for a method given by the
composition of symmetric steps S do not change when S is replaced by leapfrog
with [B, [B, [B,A]]] = 0. Consider the method S(wmt) . . . S(w1t), with S as in
(2.8). Now replace S by leapfrog with arbitrary A, B. We have

α1 = A+B, α3 =
1

12
[B, [B,A]] − 1

24
[A, [A,B]], . . . ,

each αi being a weighted sum of all commutators of order i of A and B. One
could collect commutators of A and B in the expansion of S(wmt) . . . S(w1t), du-
plicating many of the determining equations. Some of these may be dropped when
[B, [B, [B,A]]] = 0, but because A and B appear symmetrically in the αi (up to
constants), there will always be an identical equation with A and B swapped which
cannot be dropped. Thus there is no simplification in the determining equations.
�

To conclude this section we cover three compositions which do not prove useful.
First, the form

∏
ϕA(ait)ϕB(bit), where ϕA and ϕB are first-order integrators

for the differential equations ẋ = A and ẋ = B, respectively. Writing ϕA =
exp(tA + t2α2 + . . . ) and ϕB = exp(tB + t2β2 + . . . ) shows that there are far too
many independent terms in such a composition—eight at third order, for example.
Even if ϕA and ϕB are symmetric then one will not be able to do better than
working with ϕ(t) = ϕA(t)ϕB(t).

Second, the composition
∏
ϕ(wit), suggested in [24], which would be useful

because it does not involve ϕ−1. The determining equations at order two are∑
wi = 1 and

∑
w2

i = 0, which have no real solutions. We do not know of any
applications of complex solutions of the determining equations: even for complex
equations such as the nonlinear Schrödinger equation, stepping in the imaginary
time direction would bring severe stability problems. For real equations, one could
add new determining equations to make the method real overall; this is likely to
remove any advantage of the complex solutions.

Third, the nonsymmetric method
∏
S(wit) where S(t) is symmetric. Counting

the free parameters is encouraging (two for fourth order at m = 5, for example,
when type SS has only one parameter free) but a limited search of the solution
set indicated that the truncation error was minimized at the type SS solutions. A
cautionary tale, given the emphasis on counting free parameters in this paper.

3. Reversibility.

The overall symmetry (1.7) of both (1.9) and (1.10) is not just useful for simplify-
ing the determining equations; it can also imply that the maps inherit reversibility
properties of the differential equations. A vector field X is reversible under an in-
volution R (a map with the property R2 ≡ 1) if XR = −RX ; its flow ϕ then has
the property Rϕ = ϕ−1R. That is, changing variables to y = Rx is the same as re-
versing the direction of time. A system can be reversible with respect to more than
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one involution. Define the symmetry set Σ = {x : R(x) = x}. When the dimension
of Σ is half the dimension of the phase space, near Σ reversible systems “look like”
Hamiltonian ones: they have a KAM theorem [12] and their eigenvalues have the
same restrictions as those of Hamiltonian systems. Therefore one should definitely
use a reversible integrator on such systems. In the Hamiltonian case, the further
restriction of reversibility when R is an anti-symplectic map further restricts the
dynamics. The generic codimension of fixed points with multiple eigenvalues de-
pends on reversibility [12]. Symmetric orbits (those mapped into their time-reversal
by R) intersect Σ twice, which makes them easier to find numerically; orbits bifur-
cating from them at eigenvalues different from one are also symmetric. All of these
properties will be inherited by a reversible symplectic integrator.

Theorem 4. Let the vector fields X, A and B be reversible under the involution
R. Then a symmetric method ϕ of type S (Eq. (1.9)) is also reversible.

Rϕ =R exp(a1tA) exp(b1tB) . . . exp(b1tB) exp(a1tA)Proof.

= exp(−a1tA)R exp(bttB) . . . exp(b1tB) exp(a1tA)

...

= exp(−a1tA) exp(−bttB) . . . exp(−b1tB) exp(−a1tA)R

=ϕ−1R �

Example. Hamiltonian systems with Hamiltonian 1
2p

2 + V (q) (p, q ∈ Rn) are
reversible under R : (q, p) 7→ (q,−p), and, if V is even, also under R′ : (q, p) 7→
(−q, p). Under the splitting (1.11), both A and B inherit these reversibilities, hence
so do symmetric integrators of the form (1.9).

Similarly, for methods of the form (1.10) one needs S to be reversible. It is for
the midpoint rule ϕ when R is linear:

x
ϕ7−→ x′ = x+ tX

(
(x+ x′)/2

) R7−→ x′′ = R
(
x+ tX((x+Rx′′)/2)

)

= Rx− tX
(
(Rx+ x′′)/2

)

and

x
R7−→ x′ = Rx

ϕ−1

7−→ x′′ = Rx− tX
(
(Rx+ x′′)/2

)

showing that Rϕ = ϕ−1R.
Otherwise one should start with a first order map ψ, project onto reversible maps

with ϕ(t) = Rψ−1(t/2)Rψ(t/2) [20], and apply Theorem 2 to ϕ.

4. Minimum-error methods.

Ideally one would like to know the fastest method for a given problem with a
specified accuracy; in practice we can only determine good all-round methods of
each particular order. We classify methods by their type, order, and number m of
evaluations of B per time step. (The number of evaluations of A is one more when
output is desired.)
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There are many possible ways in which error constants can be defined. For
standard integrators one uses some norm of the coefficients of the elementary dif-
ferentials appearing in the first term of the local truncation error; an alternative
is to measure the errors in the defining equations at the next highest (p + 1) or-
der. When working with Hamiltonian systems with Hamiltonian H , McLachlan

and Atela [13] defined the Hamiltonian truncation error as H − Ĥ(t), where the

map x′(t) satisfies d(x′)/dt = J∇Ĥ(t), and then measured the Euclidean norm

of the elementary differentials multiplying the coefficient of tp in H − Ĥ(t). One
can also work with the energy error H(x′)−H(x) or the autonomous Hamiltonian
truncation error, defined as the Hamiltonian of the vector field Xp+1 where

. . . exp(b1tB) exp(a1tA) = exp(X + tp+1Xp+1 + . . . ). (4.1)

The asymptotic series on the right hand side of (4.1) does not usually converge, but
keeping only the first two terms is a good approximation when t is small enough.
An advantage of this approach is that Xp+1 is easy to calculate using the BCH
formula and Poisson brackets [14,29].

There is a certain arbitrariness, not only in the choice of criterion, but also in
the weighting of each term in the error or in the defining equations. In fact, which
criterion is used does not matter much, because its only application is to compare
similar methods to choose the “best overall” independently of any particular test
vector field. The “optimal” methods are very similar under any of the criteria. Here
we use the Hamiltonian truncation error of [13], because we are primarily interested
in the symplectic case.

It is also important to compensate for the differing number m of evaluations of B
in different methods. For example, if the amount of work to integrate to a fixed time
is given, the time step for leapfrog (m = 1) will be half that of an m = 2 method.
This will reduce the error in leapfrog by a factor of 4. Thus, for a method of order
p with error constant E requiring m evaluations of B per time step, we shall use
the effective error constant (m/p)pE. (The normalizing factor p−p is only present
so that the error constants do not get confusingly large). All errors stated below
are effective error constants. We have carried out searches for the best methods of
each of types S, SS, and SB3A, for orders 2, 4, 6, and 8, and various values of m.
For comparison, we also report the error constants when the methods are applied
to the RKN case (1.11). Note that even if the effective error constant decreases
as m increases, it may still not be advantageous to use the method with larger m
for finite time steps. This will depend on the system being integrated and on the
error required. The calculations reported below are analytic for orders 2 and 4, and
numerical for orders 6 and 8. In most cases only the results are stated.

Type S, symmetric

Order 2. It may come as a surprise that the popular leapfrog (1.6) can be beaten,
just. It has an error constant of 0.070. Taking m = 2, we get the family of second-
order methods

exp(ztA) exp( 1
2 tB) exp((1 − 2z)tA) exp( 1

2 tB) exp(ztA). (4.2)

The error constant reaches a minimum of 0.026 at z = (y2 + 6y− 2)/12y ≈ 0.1932,

where y = (2
√

326 − 36)1/3. Notice that all stages are in the +t direction, so



ON SYMMETRIC COMPOSITION METHODS 13

that this method is also suitable for equations unstable in the −t direction, such
as discretizations of parabolic PDE’s. Substeps in the −t direction do not destroy
stability in such cases, but can degrade it.

We illustrate the above discussion on error measurement for this case. It turns
out that the errors in the order 3 defining equations, the local truncation error, the
autonomous Hamiltonian truncation error, and the Hamiltonian truncation error
are all minimized at the same value of z, 0.1932. For example, X3 in (4.1) is
((6z − 1)[B, [B,A]] + (2 − 12z + 12z2)[A, [A,B]])/24 and we minimize (6z − 1)2 +
(2− 12z+ 12z2)2. For a Hamiltonian system split as H = A(p) +B(q), the energy
error is minimized at z ≈ 0.1912.
Order 4. The most well-known method, ϕ(zt)ϕ((1−2z)t)ϕ(zt) where z = 1/(2− 3

√
2)

and ϕ is leapfrog (1.6), has an error constant of 0.098. We know it’s worth looking

at m > 3 because Suzuki’s method [23] ϕ(yt)2ϕ((1 − 4y)t)ϕ(yt)2, y = 1/(4 − 3
√

4),
has a smaller error constant, 0.055. We therefore explore the cases m = 4 and
m = 5.

For m = 4 we have 5 unknowns and 4 determining equations, which can be
reduced to a quadratic. Let the free parameter be b1. There are two solutions for
each b1 not in [0, 1

2 ]. The minimum error is 0.014 near b1 = 6
11 (see Table 2).

m = 5 gives two free parameters; let them be b1 and b2. There are several local
minima of the error, all roughly equal. The absolute minimum is 0.0037, but to
get simple coefficients we take the nearby values b1 = 2

5 , b2 = − 1
10 , which gives an

error of 0.0046. This is 21 times smaller than the m = 3 method so we recommend
it for all uses.
Orders ≥6. From Table 1, note that order 6 requires m = 9. But if we take m = 9
then solutions of type SS will have one free parameter. This makes it extremely
difficult to locate the isolated solutions of type S, and it seems unlikely that they
would be more accurate than the best of type SS. Therefore we call a halt at order
4.

Type SS, symmetric composed of symmetric steps

Order 2. These methods are composed of m steps, each already of order 2. m = 2
reduces to two identical steps, equivalent to halving the step size; m = 3 allows
fourth order.
Order 4. For most applications, the (more accurate) type S methods will be pre-
ferred. If, however, the proposed symmetric stage is the midpoint rule, then SS
may be required. It is not possible to do much better than Suzuki’s method given
above: the error constant can be reduced from 0.055 to 0.033, at w1 = 0.28.

We have found no cases in which it is advantageous to take m even in an SS
method, because doing so only provides the same number of unknowns as one
obtains with m−1 evaluations of B. For example, consider S(zt)S(( 1

2 −z)t)2S(zt).

For this to be fourth order (
∑
w3

i = 0) requires 12z2 − 6z + 1 = 0, which has no
real solutions. At m = 6 the best method has error 0.31.
Order 6. m = 7 is required and leaves no free parameters. Yoshida [29] gave 3
solutions of the determining equations. The best is his method A, with error 0.063.
At m = 9 (one free parameter) the optimal method has error 0.0115, and at m = 11
(two free parameters), 0.0087. This is a marginal reduction so we recommend the
m = 9 method, given in Table 2.
Order 8. m = 15 is required. Yoshida gave 5 solutions, of which the best (“method
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Table 2. Coefficients of symmetric composition methods.

Missing coefficients w(m+1)/2 etc. are defined by the first-order conditions
∑
ai =∑

bi =
∑
wi = 1. All numbers are correct to 20 digits. Type SB3A (see (1.9),

(1.11)) may be used when X = A + B and [B, [B, [B,A]]] = 0; type S (see (1.9))
may be used with any splitting X = A + B or with an arbitrary first-order map,
see Theorem 2; type SS may be used with these, or with any symmetric map S(t),
see (1.7), (1.10).

Order 2.

SS, m = 1: error 0.070, w1 = 1 (leapfrog)

S, m = 2: error 0.026,

a1 =
y2 + 6y − 2

12y
≈ 0.1932, b1 =

1

2
, y = (2

√
326 − 36)1/3

Order 4.

SS, m = 3: error 0.098 (as RKN, 0.087) w1 = (2 − 3
√

2)−1

SS, m = 5: error 0.055 (as RKN, 0.044) w1 = w2 = (4 − 3
√

4)−1

SS, m = 5: error 0.033 (as RKN, 0.032) w1 = 0.28,
w2 = 0.62546642846767004501

S, m = 4: error 0.014 (as RKN, 0.0081)

b1 =
6

11
, a1 =

642 +
√

471

3924
, a2 =

121

3924
(12 −

√
471)

S, m = 5: error 0.0046 (as RKN, 0.0045)

b1 =
2

5
, b2 = − 1

10
, a1 =

14 −
√

19

108
, a2 =

20 − 7
√

19

108
,

SB3A, m = 4: error 0.0084,

b1 = 1, b2 = −1

2
, a1 =

1

2
− z, a2 = −1

3
+ z, a3 =

2

3
, z =

√
7/8

3

SB3A, m = 5: error 0.0011,
b1 = −3/73, b2 = 17/59,
a1 = 0.40518861839525227722, a2 = −0.28714404081652408900

Order 6.

SS, m = 7: error 0.063 (as RKN, 0.054)
w1 = 0.78451361047755726382, w2 = 0.23557321335935813368,
w3 = −1.17767998417887100695

SS, m = 9: error 0.025 (as RKN, 0.023)
w1 = 0.1867, w2 = 0.55549702371247839916,
w3 = 0.12946694891347535806, w4 = −0.84326562338773460855
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SB3A, m = 7: error 0.0013,
b1 = 0.00016600692650009894, b2 = −0.37962421426377360608,
b3 = 0.68913741185181063674, b4 = 0.38064159097092574080,
a1 = −1.01308797891717472981, a2 = 1.18742957373254270702,
a3 = −0.01833585209646059034, a4 = 0.34399425728109261313

Order 8.

SS, m = 15: error 0.14 (as RKN, 0.057)
w1 = 0.74167036435061295345, w2 = −0.40910082580003159400,
w3 = 0.19075471029623837995, w4 = −0.57386247111608226666,
w5 = 0.29906418130365592384, w6 = 0.33462491824529818378,
w7 = 0.31529309239676659663

SS, m = 17: error 0.050 (as RKN, 0.023)
w1 = 25/194, w2 = 0.58151408710525096243,
w3 = −0.41017537146985013753, w4 = 0.18514693571658773265,
w5 = −0.40955234342085141934, w6 = 0.14440594108001204106,
w7 = 0.27833550039367965131, w8 = 0.31495668391629485789

D”) has error 5.00. But there are many more solutions to the determining equations.
A computer search (over “reasonable” parameter ranges) found 100, of which the
best has error 0.14 (this method was also found recently by Suzuki [25]). These
solutions are discussed more later. Withm = 17, optimizing over the free parameter
gave error 0.05 (see Table 2), and with m = 19, error 0.06. Here we stopped.

Type SB3A, symmetric with [B, [B, [B,A]]] = 0

Order 2. This is identical to type S, above.
Order 4. As discussed previously, the determining equations are the same as for
type S in this case, so one may use the methods derived above. However, the error
terms are not the same, and the optimal methods are found at different parameter
values.

For m = 4 (one free parameter, b1) we found the bizarre situation that the error
hardly depends on b1 at all: in fact, it tends to 0.0096 as b1 → ±∞, compared to
the minimum of 0.0078 at b1 = 3

5 . Numerical methods do not usually allow their
step sizes to tend to infinity!

Let b1 → ∞. Then the solution considered has a1 = (3 −
√

3)/6 + O(1/b1),

a2 = (
√

3 − 2)/(24b21) + O(1/b41), and b2 = 1
2 − b1. Consider the suspect steps

exp(b1tB) exp(a2tA) exp(−b1tB) : (q, p) 7→ (q′, p′′), where

p′ = p+ b1t∇V (q)

q′ = q +
ε

b21
tp′, where ε =

√
3 − 2

24
≈ −0.011

p′′ = p′ − b1t∇V (q′)

and we see that the two large steps in p almost cancel one another out because
b1(∇V (q′) −∇V (q)) = O(1/b1).
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This seems to be just a curiosity, though, and for practical use we recommend
either b1 = 6

11 as for type S, or b1 = 1, which has the simple coefficients b2 = − 1
2 ,

a1 = 1
2 − z, a2 = − 1

3 + z where z =
√

7/8/3, a3 = 2
3 , and error 0.0084.

For m = 5 one can do about four times better than the optimal type S method,
with b1 ≈ −0.04, b2 ≈ 0.29, error 0.0011 (see Table 2).

There have been two previous searches for optimal order 4 RKN (equivalently,
B3A) methods which did not impose symmetry (and thus were not reversible), i.e.,
which used type NS. For example, m = 4 gives one free parameter because one of
the eight determining equations (see (2.10)) is identically zero in the RKN case.
Calvo and Sanz-Serna [4] optimized this case and found a method with error 0.0019;
McLachlan and Atela [13] set a1 = 0 and found a method with error 0.0024. These
are both better than the symmetric m = 4 methods, but worse than the symmetric
m = 5 method above. One could consider beating it by going to m = 5, but then
[17] order 5 is possible.
Order 6. There is a coincidence that m = 7 gives isolated solutions for both types
SS and SB3A, although the determining equations are different in the two cases,
the solution set of SB3A containing that of SS. Okunbor and Skeel [17] found 16
methods and we do not find any more. Their best, given in Table 2, has an error
constant of 0.0013; this cannot be substantially decreased by increasing m.
Order 8. We have not explored this case in detail. There is the problem that
taking m = 17, to get isolated SB3A solutions, means that type SS solutions will
have one free parameter. Still, Okunbor [16] does give three sets of coefficients which
are SB3A and not SS. One can consider optimizing the SS methods for RKN, by
minimizing their errors when [B, [B, [B,A]]] = 0; this did not lead to substantial
improvements.

Calvo and Sanz-Serna [5] develop an optimized symmetric eighth-order RKN
method with m = 24 which they found to be superior to Yoshida’s method D
in tests. We calculate its error constant to be 0.43 (as an RKN method, 0.19),
larger than the error-0.05 (0.02 as RKN) method found above. However, they also
imposed the additional constraint that the method be a composition of leapfrog
steps (1.6). From Theorem 4, this means that their method is of type SS—that is,
it works for all splittings X = A + B, not just for those of the form (1.11). The
m = 17 SS method of Table 2 will be superior in the general and in the RKN case.

It would be useful to have some simple function of the stage lengths which char-
acterized the accuracy of these methods. Figure 1 illustrates two possibilities. We
have taken the 100 type SS, order 8, m = 15 methods and compared their errors to
(a) Mlength =

∑m
i=1 |wi|, the “total distance traveled”, and (b) Mneg = minm

i=1 wi,
the most negative stage. Clearly Mlength and Mneg are strongly correlated. Al-
though there is a unique method which minimizes Mlength and maximizes Mneg,
and has error very close to the minimum, there is substantial scatter even at the
“good” end of these figures. Other methods with errors 2.5× larger have very simi-
larMlength andMneg; there are also very accurate methods with Mlength throughout
the range 6.5–10. Methods with Mlength ≈ 10 have errors varying by a factor of
1000. Here these heuristics can only be used to select a set of potentially accurate
methods.

In the case of free parameters, consider type SS, order 6, m = 9 methods (which
have one free parameter, say b1). Here the heuristics are more promising: although
they do not identify globally best methods, they do quite well locally, at least within
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the arbitrariness of the error measurement. Figure 1(c) shows two solution paths
for this case. The minimum error, 0.025, is at b1 = 0.19, Mlength = 4.37, Mneg =
−0.843; but the latter are best at b1 = 0.39, Mlength = 3.82, Mneg = −0.706, where
the error is 0.036. This suggests a search procedure in which one locally minimizes
Mlength from successive starting points, each local minimum being tested for its
error constant. This strategy was used interactively to locate the above methods.

5. Numerical examples.

We shall illustrate the above methods and error calculations with some brief
examples, considering only the symplectic case. As usual we use the energy error
as an indicator of the degree to which phase space structures are preserved by the
integrator.

An entirely separate issue is to consider the growth of the pointwise error in
the solution, which we comment on briefly using some ideas from the theory of
Hamiltonian systems [1], and test in the last example. Consider an n-degree-of-
freedom (2n-dimensional) Hamiltonian system to be integrated over a time interval
T with time step t. If the system is integrable, the numerical integrator is near-
integrable. Then chaotic numerical orbits occupy an exponentially small region
of phase-space volume and can be ignored. ‘Most’ orbits are constrained to n-
dimensional invariant tori which are O(tp) away from the tori of the original system.
The angular velocities on these tori are O(tp) away from the correct ones, leading
to an O(T ) error in the solution. This has been observed in symplectic integrations
of the Kepler problem [19]. Because the errors in nonsymplectic integrators are
O(T 2) [19] (the actions and hence the frequencies drift linearly in time, leading to
quadratic growth in the angle errors), a symplectic integrator will always beat a
nonsymplectic integrator over sufficiently long time intervals.

At the other extreme there are fully chaotic orbits. Now nearby orbits diverge
like O(exp(λT )), where λ > 0 is a Lyapunov exponent; thus errors in the numerical
solution will grow at the same rate. The numerical value of the error at a fixed time
T only depends on the truncation error, which can be smaller for nonsymplectic
methods.

In between there is a range of mixed behavior. Consider an elliptic fixed point
(or periodic orbit) to which KAM theory applies. The region around this point has
a positive density of invariant tori in both the original and the numerical systems.
On these the error is still O(T ). In the chaotic bands between these tori, the
Lyapunov exponents are O(dj/2) where d is the distance from the fixed point and
j is the order of the resonance driving the chaos. As d → 0 and j → ∞ there
are increasingly longer time intervals in which the O(exp(dj/2T )) component of the
error is numerically smaller than the additional O(T 2) error term in a nonsymplectic
integrator. Symplectic integrators can be competitive here too.

A separable Hamiltonian. Let

H =
1

2

(
p2
1 + p2

2 + q21 + q22
)

+ q21q2 −
1

3
q31 ,

the Hamiltonian for the Hénon-Heiles system. We have integrated this to T =
500 with initial conditions (q1, q2, p1, p2) = (0.1, 0.1, 0, 0), using the splitting H =
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HA(p) +HB(q) (more energetic initial conditions gave similar results). The energy
errors, which do not grow in time, are shown in Figure 2 and confirm the analyses
of the preceding section. The non-RKN methods are included as they would be
needed on systems not of this type.

Note the large advantage of the m = 2 method over leapfrog, and of type S over
type SS in general. For the m = 5 SB3A method, sixth-order errors dominate the
fourth-order errors for fewer than 3500 function evaluations (corresponding to the
large step size t = 0.7 and errors larger than 10−5). This highlights a shortcoming
of only considering the leading term in the errors. One could consider decreasing
the sixth-order error at some expense in the fourth-order error, to obtain a method
more accurate at very large step sizes, perhaps even going to m = 7. However,
there is no unique way to do this, as the breakeven point will depend on the system
being integrated. The fact that the effective sixth-order error of our m = 5 method
is already smaller than that of the m = 7 sixth-order SB3A method suggests that
there is not much scope for improvement.

In Figure 2(c) we compare the most accurate methods of each type. Notice
that the breakeven errors (the error at which one should switch to a higher-order
method) are smaller for S than for SB3A methods. In the symplectic case, high-
order composition methods will always be beaten by Gaussian Runge-Kutta (GRK,
see [19]) for small enough step sizes. This is because, for order p, the latter only
require 1

2p(1 + O(t)) evaluations of X , and have smaller truncation errors as well.
For example, consider eighth-order methods. GRK8 needs four evaluations of X
per iteration and has an error constant about 1000 times smaller that our m = 17
composition method, so will be superior if it converges to the required accuracy
(say 10−16) in fewer than 10001/817/4 ≈ 10 iterations. In this problem, this occurs
when t < 0.25. For GRK4, the breakeven is 7.3 iterations against type S, and 4.6
iterations against type SB3A. Very large problems will favor composition methods
more, but problems in which

∏n
i=1 exp(tA) is more complicated than X (e.g., if the

former involves non-elementary functions) will favor Gaussian Runge-Kutta.

A non-separable Hamiltonian. We next illustrate Theorem 2 for a more
complicated splitting. Add a non-separable term to the Hénon-Heiles Hamiltonian:

H =
1

2

(
p2
1 + p2

2 + q21 + q22
)

+ q21q2 −
1

3
q31 + (q1p1)

2

= H1(p) +H2(q) +H3(q, p)

and let ϕ(t) = exp(tJ∇H1) exp(tJ∇H2) exp(tJ∇H3) where J =
(

0
−I

I
0

)
. Such a

“3-map” splitting was first proposed by Forest and Ruth [7] and is also used in
[25]. Clearly some consecutive terms in (2.5) can be amalgamated. We obtain the
following results for the energy errors at constant work, for the inital condition
(q1, q2, p1, p2) = (0.1, 0.5, 0, 0), leading to a quasiperiodic orbit:

• S, m = 2: 4.6× better (more accurate) than leapfrog;
• S, m = 5: 6× better than the best SS m = 5; 19× better than SS m = 3;
• SB3A, m = 5: 21× better than the best SS m = 5.

The last item suggests that optimization we performed for the SB3A case is also
relevant here, although we have not explored this issue. Other initial conditions
lead to similar results.

Finally, we also checked the error in the solution itself. This depended more
strongly on the initial condition. At T = 500, the results are
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• S, m = 2: 1.4× worse than leapfrog;
• S, m = 5: 34× better than SS m = 5; 337× better than SS m = 3.

Changing to a chaotic orbit starting at (q1, q2, p1, p2) = (0.2, 0.5, 0, 0) increased the
errors by a factor of about 4 × 106:

• S, m = 5: 19× better than SS m = 5; 57× better than SS m = 3;

but the second-order methods could not integrate so far accurately. At T = 100,

• S, m = 2: 1.4× better than leapfrog.

Although these numbers do not exactly mirror the error constants in Table 2,
we still conclude that the composition (2.5) is advantageous. One could also use
nonsymmetric methods in (2.5).
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Figure 1. Effect of stage lengths on the error constant of type SS methods. 100
eighth-order, m = 15 methods are compared for the effect of (a) Mlength, the total
distance traveled, and (b) Mneg, the most negative stage. (c) shows the connection
between these variables for the most accurate families of type SS, sixth order, m = 9
methods.

Figure 2. Efficiency of various composition methods applied to the Hénon-Heiles
system. (a), methods of order 2 and 4; (b), methods of order 6 and 8; (c), best
methods of each type compared. The abscissae measure the number of evaluations
of the force B over an integration time of 500.
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