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ON THE NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER*

BY

PER-OLOV LOWDIN
Institute of Mechanics and Mathematical Physics, University of Uppsala

Summary. The difference methods for the numerical integration of ordinary differ-
ential equations of the first order are discussed by using operator calculus and symbolic
expansions. A new straightforward central difference method is developed, which is
based on a formula closely associated with Simpson's rule. The main features of the
method are that, for each step of integration, the largest unknown term is determined
by an algebraic equation and that the remaining difference correction is extremely
small. The method can directly be applied even to systems of the first order with one-
point boundary conditions. A numerical example is given.

1. Introduction. Different methods have been given in the literature for the numerical
integration of the ordinary differential equation of the first order

£ - "<■*• *> ®

with the initial condition y — y0 for x = x0 . The purpose of this paper is to discuss
only the methods based on the theory of finite differences, since they seem to combine
simplicity with a large general applicability. The fundamental formulas are here of
two types: central difference (CD) formulas and backward difference (BD) formulas.
The central difference formulas, due to Gauss, are characterized by an extremely rapid
convergence or semi-convergence and a small error-term, but in using them each step
of the integration demands estimation and iteration. The use of estimations is avoided
altogether in the integrations by means of the backward difference formulas, of which
the first is due to Adams-Bashforth, but instead are these formulas slowly convergent
and have relatively large error-terms. Both these methods have difficulties in knowing
how to start, and in general it has been recommended to start the integration inde-
pendently by means of a Taylor-series expansion.

By using operator calculus and symbolic expansions, the connection between the
CD-formulas and the BD-formulas will here be investigated in greater detail. Utilizing
the experience found in this way, we will show that it is possible to construct integration
methods which combine the straightforwardness of the BD-methods with the simplicity
and rapid convergence of the CD-methods. Even the starting problem will be simply
solved.

*Received July 25, 1951.
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2. Difference operators. The extrapolation principle. Let h be the interval, let E be
the step-operator defined by Ef(x) = f(x + h), and let /„ mean / (x0 + nh). We will
then introduce the operators A, V, 5, and n for the formation of forward, backward,
and central differences, and mean values, respectively, by

A = E - 1, V = 1 — E~\ (2)

5 = Eu2 - E~u\ /i = (EU2 + £T1/2)/2. (3)

From (3) one obtains directly

M2 = 1 + 82/4, m(1 + 52/4)-1/2 = 1. (4)

which relations often can be used in transforming CD-formulas into a suitable form.
In the following we will use operator calculus and symbolic expansions1 (Sheppard 1899;
see also Michel 1946, Bickley 1948). If D = d/dx is the differentiation operator, Taylor's
series gives E = exp QiD), and from (3) we then get

hD = 2 sinh-1 5/2, (5)

which is the basic CD-formula for numerical derivation and integration.2
Among computers it is now a well-known fact that, in using pure CD-formulas or

BD-formulas for some purpose, it is often impossible to utilize all the function values
in a given material, which is illustrated by the first two figures below:

BD-formula CD-formula CD-formula with some CD extra-
polated by means of available BD
(or mixed CD-BD-formula)

The triangle indicates a function given numerically in equidistant points and its difference scheme. The
full line shows the differences involved in a difference formula of a certain type; the part of the function
values taken into account in this way is shaded. The dots in the last figure indicate CD extrapolated by
means of available BD.

Bickley and Miller (1942) pointed out that there exist an infinite series of "mixed"
CD-BD-formulas by means of which a given material could be taken into full account,
and they have worked out extensive tables for the numerical derivation. As far as we

irThe formulas obtained in this way have only symbolic character, but they can be rigorously derived
and their remainder-term can be determined by starting from Newton's interpolation formula for un-
equal interval with Cauchy's remainder (see Nielsen 1908).

2For tables of coefficients, see e.g. Salzer (1943, 1944, and 1945).
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know, corresponding tables for the numerical integration have not yet been published,
nor is it necessary.

Here we will proceed in another way. From (2) we obtain
£=1 + V£=1 + V + V2+--- + V+ VB+lE

= 1 + V + V2 + V3 + • • • = (1 - V)"1,

and according to (2) and (3) we then get the extrapolation formulas

5"»Fn = V2m(l - VY'mFn+r = £ alr-m)V2m+kFn+r ,
k = 0

j2m +1 7-t   \—7 2 m +1 /1 V7\r~ m~ 1 Z7 \ (r — m—1) v—7 2m +1 + kjji
0 ■*»+1/2 v V J n + r / j Q*k V n+r j

k = 0

2MS2mFn+1/2 = V2m(2 - V)(l - v)r_™_1F„+r = E blr~m)V2m+kFn+r ,
k = 0

2nh2m+lFn = v2m+1(2 - V)(l - Vy~m~1Fn+r = E blr~m)V2m+1+kFn+r

with the coefficients

0 1 2 3 4 x
s

0 1 0 0 0 0- 0

-111111- -1

-212345- -2

-3 1 3 6 10 15 • -3

-4 1 4 10 20 35 • -4

0 12 3 4

2 111 1

2 3 4 5 6

2 5 9 14 20

2 7 16 30 50

2 9 25 55 105

(6)

(7)

satisfying elementary recurrence relations. The formulas (6)-(7) form together an
"extrapolation principle", by means of which CD-quantities in the horizontal lines n
and (n + 5) can be expressed in terms of the BD in the backward line (n + r). The
series in (7) are only formally infinite; in the practical use they are always interrupted
after a difference of the finite order p, corresponding to an extrapolation of the function
under consideration by a polynomial of the degree p.

Instead of using the rather complicated "mixed" CD-BD formula of the Bickley-
Miller type, we can now take a given material into full account simply by using a pure
CD-formula and by extrapolating as many additional CD as possible by means of the given
BD in the last backward line available. Since the coefficients in (7) are all integers, the
extrapolations can be rapidly carried out on ordinary desk machines. The result will be
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the same as obtained by using a "mixed" formula, and we have to remember that the
error in our case is given by the sum of the remainder in the pure CD-formula and the
remainders in (7).

3. Gauss's formulas and the classical backward difference methods. According to
(4) and (5) the first order equation y' = F(x, y) is equivalent with the CD-equation

hF = m( 1 + 52/4)~1/22 sintr1 5/2-y

1 1 - 1 (8)= m — g m ^ m ~ 3^5 m 8'y H .

from which y can be solved by the inverse relation

h~ly = M(1 + 5z/4)—1/2{2 sinh-1 b/2}'l-F

A-ip-J- ,3p__19L . 2497 7M r 12 720 ̂  60480 M + 3628800 M

Here the symbol S~1F means the first sum of F, defined by S(o~ 'F) = F; the "summation
constants" included in this and other sums will here be determined by the condition
that the integration formulas under consideration should be valid even in the starting
point x = x0 . Formula (9) forms the basis of a method of numerical integration3 due
to Gauss, which was first published by Encke (1837) and which has frequently been
used in the celestial mechanics (see e.g. Charlier 1907).

Here we will study a slightly modified form. By applying the operator 5E1/2 on both
members of (9) we get

h_I tyn+1/2 = i*Fn+1/2 m &2Fn+1/2 + n 64F„+1/2 — M 56Fn+1/2 + • • • (10)

a form used for instance by Hartree (1928). This is nothing but the trapezoidal rule
with difference correction, and we note that, in integrating a given fix integrand F =
F(x), the whole material can be taken into full account by using the "extrapolation
principle" developed in §2. In integrating the differential equation (1), we will now
show that it is possible to avoid the use of estimations, characteristic for the earlier
CD-methods, by using the same principle.

Let us assume that we have started the integration in some way and that we have
computed y, F = Fix, y), and the difference scheme for F accurately up to the point n
given by x = x0 + nh. Since we know the BD of F in the backward line n, we can now
extrapolate the CD in the horizontal line (n + |) in formula (10) according to (7),
and in this way we find approximate values of yn+1 and F„+1 . Repeating the process
we obtain approximate values of yn+2 , F„+2 , y„+3 , F„+3 , • • • . Going back to the point
(■n + 1), we can then improve the accuracy of the solution by the repeated use of
formula (10) and the extrapolation formulas (7), utilizing the CD found on later stages
of the first approximate calculation and extrapolating some additional CD by means
of the last BD-line available. By iterations it is in this way possible to obtain a pure
CD-result in a straightforward manner.

3The remainder was first derived by Nielsen (1908); see also Steffensen (1924) and Nystrom (1926).
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The connection between this method and the classical BD-methods is perhaps of
some interest. Putting the expressions for the CD in (10), extrapolated according to (7)
by means of the BD-lines n, n + 1, n + 2, • • • , into formula (10) we get

rVn+1 - h~1yn = Fn + | VFn + ~ V2Fn + | V3Fn

251 _4et . 95 514- v F 4- VP* 4--t- 720 v r, -r 28g v rn -+-

= Fn+1 - - VFn+1 - — V2Fn+1 - ^ V3Fn+1
(11)

  19 V-7-lET   ^ Y7SJ?    720 n+1 160 "+1  '

which is nothing but the BD-formulas given first in another way by Adams-Bashforth
(1883). The accuracy of the first formula is low,4 corresponding to our first approximation
above, and it is usually recommended to improve the accuracy by using one or more
additional BD-formula, which may formally be obtained from the ground formula by
letting the operator 1 = (1 — V)A' work repeatedly on its right-hand member.5 A
comparison between the formulas (11) and the simple formula (10) shows immediately
that, from the point of view of the computer, it is considerably simpler to use the single
CD-formula (10) together with the extrapolation formulas (7) than the corresponding
classical BD-methods.

Let us now also consider formulas for taking a double step6 from (n — 1) to (n + 1)
by means of the values associated with n. Letting the operator n8 work on both members
of (9) and using (4), we get in the point n

h n 8yn = Fn 4 g S Fn - — 5 Fn + S Fn - 226800 8 Fn + • ■ • , (12)

which is nothing but Simpson's rule with difference correction.7 By combining (12) with
the extrapolation formulas (7) and using iterations, we can again construct a straight-
forward CD-method in the same way as described in connection with formula (10) for
taking a single step.

The connection between this method and the classical BD-methods is easily seen.
By putting the expressions for the CD in (12), extrapolated according to (7) by means

4The remainder was first derived by Nielsen (1908); the propagation of errors has been investigated
by v. Mises (1930) and by Schulz (1932). The method has been further developed in Russian memoirs
by Kryloff; a modification has been given by Falkner (1936).

5See also the note by Stohler (1943).
6The first method of this type was developed by Richardson (1911, 1927), who used approximate

CD-expansions and afterwards improved the solutions by a certain process called the "^-extrapolation";
compare also Duncan (1948).

'The simple Simpson's rule has earlier been used for numerical integration by Bickley (1932) and by
Collatz and Zurmiihl (1942a).
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of the BD-lines n, n + 1, n + 2, • • • , into formula (12) we obtain

7rV»+i - h~lyn-i

- 2F. + | V'f. + | VF„ + | V'f. + |f V*F„ + • ■ • (13)

= 2F„+1 - 2VFn+l + | V2Fn+1 - ~ V'F,,. - ^ V5F„+1

The first formula (13) was derived by Nystrom (1926), and later a slightly modified
form was given by Lindelof (1939); his correction term can here be obtained by taking
the remainder terms in (7) into account.8 The second formula (13) has been treated by
Levy-Baggot (1934) and by Sibagaki (1936). Again we find that it is simpler to use the
single CD-formula (12) together with the extrapolation formulas (7) than the corre-
sponding classical BD-methods.

The main conclusion in this section is therefore that, from the computer's point of
view, it is considerably simpler to use a fundamental CD-formula in combination with
the extrapolation principle (7) than any of the classical BD-methods. However, if high
accuracy is desired, the numerical integrations based on (10) or on (12) are rather
laborious to carry out, since each step of the integration demands iterations of the whole
difference scheme. In the next section we will therefore try to modify the basic CD-
formula in order to find a still simpler and more straightforward integration method.

4. A new central difference method. I) THE BASIC FORM ULA. Let us first try
to derive a new formula of the Gaussian type (9), but having a much smaller difference
correction. According to (3) and (12) we have

1 1 1 2*3
F + 3 ^ SF " VF) - 180 ̂  + I5i2 8 F " 226800 8 F + ''' ' (14)

Letting the operator (fiS)"1 work on both members of this equation, using (4) in treating
the difference correction, and transforming the F-term to the left member, we get the
integration formula

h-'y - | F(x, y) = {^{F - | VF}

(15)
18Qfx d F + 15120 n 5 F 907200 ̂  5 F +

which forms the basis for our method. The sum in the right member is dominating and
will be called the main term:

M = (^-'{f - | VFj. (16)

The difference correction is extremely small and will be denoted by 7. The quantities
involved in the computations are suitably arranged in two or three tables: a main table

8See formula (6), first line.
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recording the quantities x, y, (M + y), 7, M, and F, a difference table giving the differ-
ences of F, and—for non-linear equations (1)—an iteration table. As to the difference
correction the integration will be divided in three parts: the start, the marching process,
and the aftercorrection.

II) THE MARCHING PROCESS. At first we will assume that the integration has
been performed up to the point n with x = x0 + nh. In order to carry out the next step
of the integration, we will then write eq. (15) under the form

Mn+1 = M.-t + 2Fn - | VF„ , (17')

7n+1 = ~l80 M 5 Fn+1 + 15120 M 5 Fn+l ~ 907200 M 5 Fn+1 + " ' '

1 - I Fn+1 = (M + y)n+1 . (17"')

First the new main term Mn+1 is computed from the quantities in the previous part of
the main table according to eq. (17'), which is obtained by letting 2/x5 work on both
members of (16). Then we will extrapolate9 the CD occurring in the difference correction
7»+i by means of the known BD in the backward line n by using formulas (7):

2m 5X+1 = 2V3F„ + 5V'F. + 9V5F„ + 14V6F„ + • • • ,
(18)

2n S5Fn+1 = 2V5Fn + 7V6Fn + 16V7Fn + 30V8F„ + • • • ,

Finally we will determine the values of yn+i and Fn+l by solving the algebraic equation10
(17'"). For linear equations (1) the solution is obvious, and for non-linear equations
we will recommend the use of an iteration process, which will be discussed later (VI).
The quantities yn+x and Fn+l are written down on their places in the main table, a new
backward line (n + 1) is calculated in the difference scheme for F, and then the process
can be repeated for the point (n + 2) with x = xn + (n + 2)h, etc. This integration
process is quite straightforward, and it gives a preliminary solution y with a high
accuracy, due to the smallness of the difference correction.

Ill) THE AFTERCORRECTION. The preliminary solution obtained in the march-
ing process has an accuracy which is determined by the "mixed" CD-BD character of
the integration formulas (17) and (18). However, when the marching process has been
finished for the whole range of integration under consideration (including some addi-
tional points), it is possible to improve the accuracy of y by utilizing the actual values

9A necessary condition for the usefulness of such extrapolation is, of course, that the higher differences
of F converge rapidly against zero; this can be obtained by choosing the interval h sufficiently small. In
general we will calculate the differences of F only up to the order where the irregularities, due to the effect
of rounding-off errors, become to be of about the same magnitude as the differences themselves.

10In agreement with Hartree (1949, p. 235) the term "algebraic" is here meant only as an antithesis
to the term "differential."
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of the CD found on later stages of the calculation. For this purpose we will introduce
the correction

corrn = 7„ , actual — yn , extrapolated

1 31 (19)
= _Y8Q ^ _ V- ^ ~ M S^n.ext} — .

We note that, in the main table, the quantities y and M are usually recorded with the
same number of significant figures, whereas it is often sufficient to record F with at
least one figure less11 than M. The correction (19) will, in general, influence the value
of y, but the idea of our method is now that the interval h should be chosen so small,
that the change in y should not influence the recorded figures of F. In this case the
columns for F and M in the main table will be unchanged by the aftercorrection, and,
according to (17"'), the final solution can be computed from the simple formula

2/n.final Vn .pre I i mi nary H- ^ COl . (20)

In this way it is possible to carry out the transition from a mixed CD-BD-result into
a pure CD-result by a single iteration of a very simple type (compare §3).

During the marching process it is suitable to check the extrapolations (18), e.g. in
every fifth point, by comparing the extrapolated value of 2fiS3F„ in the point n with
the actual value, found when the integration has reached the point (n -f- 2). If the value
of h seems to begin to become too large, it is then necessary to change the length of the
interval by some of the well-known processes of subtabulation.

IV) THE START. Even the start will here be treated by means of our basic formula
(15) by using an auxiliary formula12 and a method of successive approximations. Letting
the operator A = fiS + S2/2 work on both members of (15) and using (4), we get

AM = F + | m"1 6F = F + | (l + p) \ 8F, (21)

which for x = x0 gives the expansions

Mi Mo - F0 + g fi SF0 — 24 ^ ° ^0 96 ^ 0 ~ '

— + g hFl, + - 7o + <>2yo +

(22)

where the latter is derived from the former by using (5) and (17"); the second form is
the best for our purpose. The integration will now be started from the initial condition
y = y0 for x = x() and by using the formulas

Mo — h y0 F0 To j

Mi — h 'y0 + — F0 + - F'0 + - 70 + — 527o +

(23)

"Compare footnote 9.
12Compare Richardson and Gaunt (1927).
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In a zero-order approximation, the quantity 7 is entirely neglected: 7 = 0. The quantities
M0 and Ml found from (23) are written down on their places in the main table, and
then the quantities yl , Fx , M2 , y2 , F2 , M3 , • • ■ etc. are computed successively by
using (17') and (17'")- In this way some approximate values of y and F, forwards and
backwards13 from the starting point, are determined.

Now the difference scheme for F provides a first-order approximation of 7 in the
neighbourhood of the starting point. Using these values of 7, we can then repeat the
start until two consecutive approximations of 7 agree within the significant figures; the
integration can then be continued as a marching process (II). Due to the extreme
smallness of the difference correction, the first order approximation of 7 shows a sufficient
accuracy in most problems.

In problems where the functions involved in eq. (1) are specified only in one direction
from the starting point, it may be necessary to extrapolate the CD in the range of
x = x0 by means of forward differences, using a particularly small interval.

The method of successive approximations described here can easily be extended to
the whole range of integration,14 but, if the computations have to be carried out only
by the aid of desk machines, it is certainly suitable to confine the method to the start.

V) THE A UTOMA TIC ELI M IN A TION OF OSCILLA TING ERRORS. A partic-
ular phenomenon in the first approximation of the start will here be briefly mentioned.
Due to the neglection of 70 in (23), the approximate values of M0 and Mx are affected
with small errors of about the magnitude —70 and +I.570 . This implies that there is
also an oscillating error in the first difference scheme for F, which is propagated to the
higher differences with a steadily increasing magnitude, and the difference scheme can
therefore have a rather irregular appearance.15

At first sight it seems impossible to determine 7 with a sufficient accuracy from a
difference scheme which is disturbed by an oscillating error. However, it is easily proved
that an error of the type (— 1 )*/» , where / is a polynomial in x of the degree p, can be
entirely eliminated by the operator D + l.n .

mp+1{(-1)7-.} - 0. (24)
The operator n can be introduced in any difference formula by the repeated use of the
unity operator 1 = //(I -f- 52/4)_1, and we note that the application of the refinement
process

Penned = n'F - | M2 8*F + ^ 8*F - ^ M2 8°F + . (25)

will every time diminish the degree of the oscillating error by two.
In our case, i.e. the first approximation of the start, the magnitude of the error is

very slowly varying, and we can therefore conclude that, due to the appearance of the
mean-value operator in (17"), the oscillating error will automatically be almost entirely
eliminated in forming the difference correction 7. In the second approximation the
phenomenon has therefore disappeared. A numerical example may be found in Table II.

13When working backwards, we obtain the formulas needed by substituting —h instead of h in (15);
we note that there are different values of M0 for the two directions.

"Compare the treatments of linear equations (1) by Hausmann and Schwarzschild (1947) and by
Fox and Goodwin (1949).

15The existence of oscillating errors has been reported also by other authors (e.g. Fox and Goodwin
1949) in connection with other methods.
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VI) THE SOLUTION OF THE ALGEBRAIC EQUATION. The straightforward-
ness of our integration method based on (15) is essentially depending on the fact that
we have introduced a certain algebraic16 equation, by means of which the largest un-
known central term F is determined for each step of integration. A similar idea has previ-
ously been used by Noumerov in treating second order equations. The eq. (17"') may
be written in the form

y = N + cF(x, y), (26)

where N = h(M + 7) and c = h/3. For linear equations (1) the solution of (26) is
obvious, and we will therefore confine the following discussion to the non-linear case.

A well-known analytical solution of (26) is given by Laplace's formula, but, from
the practical point of view, we will here instead recommend the use of an iteration
process. Let us first consider the marching process (II), and let us assume that the
integration has been performed up to the point n. According to (6) a zero-order approxi-
mation Fn+i of Fn+1 can then be found by extrapolation:

Fi°+\ = Fn + VFn + V2Fn + • • • + VpFn . (27)

By putting this value of Fn+] into the right-hand member of (26), a first-order approxi-
mation of yn+1 is obtained; then a new value of Fn+l is calculated etc., until two con-
secutive approximations of yn+1 agree within the significant figures. The solution is
illustrated by

yw = N + cFm) yw = N + cFm; yw = N + cF(2); • • • (28)

where the upper index gives the order of approximation. This iteration process is of
the first order,17 and the condition for convergency is | cFy \ < 1. Since the zero-order
approximation of F is in general rather accurate,18 the solution is rapidly obtained. A
numerical example may be found in Table IV. A check on the calculations in the differ-
ence scheme is provided by the relation

V*+1Fn+1 = Fn+l - F(n°+\ . (29)

Let us then consider the start (IV). From the practical point of view we will here
recommend the use of a second order process of a simple type. Since the process (28) is
of the first order, the differences y<2) — y'l), y13' — y'2), • • ■ etc. form approximately
a geometric series19 with the quotient q = cFv . Summing this series, we get

y* = yw + {ym - yw\ + {yw - yw\ + • • • = yw + y<" _ f'

(30)
\yw -*/(2)|2

yM - y"' - 2y + yr'

16Compare footnote 10.
"Iteration processes of this type were first classified by Schroder (1870); see also Hartree (1949). A

formula due to Theremin (1855) corresponds to a process of order 00.
18This fact forms the basis of all the classical BD-methods.
19This is easily proved by putting y = y(n) + and expanding F(x,y) into a power series in
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where the middle step for q = cF™ corresponds to the Newton-Raphson formula.20
We will instead use the formula given in the last step. The value y* of y found in this
way can be checked by a new iteration y** — N + cF*. If a still higher accuracy is
required, the whole process can be repeated by introducing the values of y*, y**, and
y*** _ jy _|_ jn (30) _ rphis manner of proceeding corresponds to a well-known
iteration process of the second order.21

Putting (28) into (30), we get the final formula
I rr(l)   I 2

y ~ V ~ c Fm - 2Fw + Fw' ^

which seems to be the best for our purpose. In using this formula, F-0) is determined
from the few terms available in (27), and then the final result can be obtained by means
of only two computations of the function F = Fix, y); for a numerical example, see Table V.

The results obtained in this section show that the rather laborious iterations of the
whole difference scheme for each step of integration, characteristic for the classical CD-
methods and for many of the BD-methods (§3), have here been reduced to the after-
correction (20) and to the simple iteration processes described above for solving the
algebraic equation (26). For linear equations (1) the simplifications are still more con-
siderable.

VII) CHECK OF THE SOLUTION. In all step-by-step methods based on the use
of recurrence relations, it is necessary to have an accurate check on each stage of the
calculation, since a mistake somewhere will vitiate the whole subsequent work. The
most important check is here provided by the difference scheme for F, since a small
error in the solution will give rise to a large irregularity in the higher differences of F;
in this connection even eq. (29) may be of value. By letting the operator 2n8 work on
both members of (15), we get

Vn+l ~ 2/n-l = g (Fn +! -J- 4F„ + Fn_j) + 2/lyU oyn , (32)

which relation may also be used for check purpose. A more independent check is provided
by the differential equation itself in the form (8).

VIII) NUMERICAL EXAMPLE. In order to illustrate how our integration
method works in a practical case, we will here give some results from a treatment of
the non-linear equation

= x ~ y2 (33)

with the initial condition y = 0.72 901 1133 • • • for x = 0. The exact solution is here
the logarithmic derivative of the Airy integral

V = Jc logAi(^' (34)

which has been carefully tabulated by Miller (1946). The start of the integration is
illustrated in Table I, the elimination of oscillating errors in Table II, the marching

^Compare Collatz and Zurmiihl (1942a).
21Aitken (1925), Samuelson (1945), and Hartree (1949).
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process in Table III, and the solution of the algebraic equation in Tables IV and V.
The calculation was carried out with nine figures with a speed of 12-15 points an hour
by the aid of ordinary table machines (Facit ESA and Hamann-Selecta). It was found
that, except for rounding-off errors in the 8th decimal, even the preliminary solution
was in agreement with the values in Miller's table.

Table I. Start integration for the equation y' = x — y2 by means of successive approximations. The
computations are arranged as in Table III, and we will here give only the solution y in the different
approximations in comparison to Miller's values.

X 2/Mill.r 2/(1) h-7(1) J/<*> h-y®>

-0.5 -.42 898 806 -.42 898 723 X10"8 X10"8
-0.4 -.49 541 771 -.49 541 759
-0.3 -.55 823 486 -.55 823 422 39s -.55 823 485 393
-0.2 -.61 787 457 -.61 787 457 316 -.61 787 458 316
-0.1 -.67 469 872 -.67 469 819 25, -.67 469 873 254
-0. -.72 901 113 -.72 901 113 20e -.72 901 113 20e
+0. -.72 901 113 -.72 901 113 - 206 -.72 901 113 - 20e

0.1 -.78 106 918 -.78 106 869 -168 -.78 106 919 -16s
0.2 -.83 109 270 -.83 109 265 -139 -.83 109 269 -139
0.3 -.87 927 067 -.87 927 016 -115 -.87 927 068 -lie
0.4 -.92 576 688 -.92 576 675
0.5 -.97 072 392 -.97 072 337

There is an error of ±1 in the 6th decimal in the first approximation j/(1) and a corresponding error in the
8th decimal in the second approximation ym. The marching process can be based on ym.

Table II. Calculation of y in the start. The table shows the elimination of the oscillating errors in the first
approximation by the mean-value formation, cf. formula (17")- The difference scheme for F is rather
irregular in the first approximation, but still it gives almost the same values of 2^53F and 2Ju56F as the
second approximation. The unity = 10~s.

First approximation
53F dsF 2n5°F 2

Second approximation
S3F o'F 2n»'F 2,xb5F

82 163
-.3 147 319

65 156 3 271
-.2 116 576 7 531

51 420 4 260
-.1 93 364 5 376

41 944 1 116
0. 75 528 4 024

33 584 2 908
.1 61 716 2 955

28 132 47
.2 50 859 2 260

22 727 2 213
.3 42 262

19 535

82 212

64 880 4 222

51 706 3 115

41 647 2 300

33 888 1 693

27 822 1 281

23 037 973

19 225

147 092

116 586 7 337

93 353 5 415

75 535 3 993

61 710 2 974

50 859 2 254

42 262
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Table III. A part of the main table for the marching process in the numerical integration of y' = x — )/2.

x y M + y y M F
-.3 -.55 823 4850 5.78 622 388 393 5.78 621 995 -.61 162 615

995 238
-.2 -.61 787 4584 6.37 266 884 315 6.37 266 569 -.58 176 900

885 021
-.1 -.67 469 8729 6.93 206 008 254 6.93 205 754 -.55 521 838

792 038
-0. -.72 901 1133 7.46 726 374 206 7.46 726 168 -.53 145 723

+0. -.72 901 1133 -7.11 295 892 -206 -7.11 295 686 -.53 145 723

.1 -.78 106 9189 -7.64 066 886 -168 -7.64 066 718 -.51 006 908

.2 -.83 109 2686 - 8.14 735 518 -139 - 8.14 735 379 -.49 071 505

.3 -.87 927 0676 -8.63 500 112 -115 -8.63 499 997 -.47 311 692

.4 -.92 576 6881 -9.10 532 070 -98 - 9.10 531 972 -.45 704 432

.5 -.97 072 3954 -9.55 980 454 -86 -9.55 980 368 -.44 230 500

.6 -1.01 426 6910 - 9.99 975 664 - 71 -9.99 975 593 -.42 873 737

.7 -1.05 650 5902 -10.42 632 411 -61 -10.42 632 350 -.41 620 472

.8 -1.09 753 8455 -10.84 052 100 - 53 -10.84 052 047 -.40 459 066

.9 -1.13 745 1315 -11.24 324 799 -46 -11.24 324 753 -.39 379 549

1.0 -1.17 632 1976 -11.63 530 863 - 39 -11.63 530 824 -.38 373 339

-712 939

-645 134

-586 604

-535 754

-491 311

-452 254

-417 755

-387 135

-359 839

-335 403

A comparison with Miller's table shows that there is an error of ±1 in the 8th decimal in the preliminary
solution; the aftercorrection is so small that it changes only the rounding-off.

Table IV. Solution of the algebraic equation (26) in the marching process according to the iteration
process (28). r gives the order of approximation.

x = 1.0 ft = 0.1 N = -1.16 353 0863

r 2/w F(r)

0 -.38 373 343
1 -1.17 632 1977 -.38 373 340
2 -1.17 632 1976 -.38 373 339



110 PER-OLOV LOWDIN [Vol. X, No. 2

Table V. Solution of the algebraic equation (26) in the start by using formula (28) and (31), respectively.
First approximation.

2 = 0.1 h = 0.1 iV = —0.76 406 6409

yM p(r) Order y(r> F(r)

0 -.53 145 723
1 -.78 178 1650 -.51 118 255
2 -.78 110 5827 -.51 012 631
3 -.78 107 0619 -.51 007 131
4 -.78 106 8786 -.51 006 845
5 -.78 106 8691 -.51 006 830
6 -.78 106 8686 -.51 006 829
7 -.78 106 8685

-.78 106 8685 -.51 006 829
-.78 106 8685

This example shows that the use of (31) can spare a considerable amount of work in the start integration
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