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Abstract. It is shown that the numerical rank of the off-diagonal blocks of certain Schur
complements of matrices that arise from the finite-difference discretization of constant coefficient,
elliptic PDEs in two spatial dimensions is bounded by a constant independent of the grid size.
Moreover, in three-dimensional problems the Schur complements are shown to have off-diagonal
blocks whose numerical rank is a slowly growing function.
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1. Introduction. In this paper we investigate the numerical ranks of the off-
diagonal blocks of the Schur complements of some matrices that arise from the finite-
difference discretization of constant coefficient, elliptic partial differential equations
(PDEs). In particular we prove that for two-dimensional problems, under some as-
sumptions about the domain and boundary conditions, the numerical rank of the
off-diagonal blocks of certain Schur complements is bounded by a constant that is
independent of the grid size. We also show that for three-dimensional problems, the
Schur complements exhibit a “Hierarchically semiseparable structure” [3], under an
appropriate ordering of the grid. This in turn implies that fast direct numerical solvers
can be built for these problems, though the details of the construction are outside the
scope of this paper. We emphasize that we are aiming at showing a matrix prop-
erty in this paper rather than deriving a new algorithm. We exhibit results for both
Dirichlet- and Neumann-type problems.

2. The problem. Consider the model problem in two dimensions:

∂

∂x

(
p(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
q(x, y)

∂

∂y
u(x, y)

)
− r(x, y)u(x, y) = f(x, y)

for (x, y) ∈ Ω, where Ω = [0, 1] × [0, 1] with homogeneous Dirichlet boundary con-
ditions. The standard five-point or nine-point discretization of this problem on an
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n×m uniform grid leads to a system of linear algebraic equations of the form

Gu =

⎛
⎜⎜⎜⎜⎜⎜⎝

A0 B1

C1 A1 B2

C2
. . .

. . .

. . .
. . . Bm−1

Cm−1 Am−1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u0

u1

...

...
um−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f0
f1
...
...

fm−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where we have assumed that ui are the discretized unknowns along the ith column
of the n × m grid. In this case each of Ai, Bi, and Ci is an n × n matrix, while G
itself is an nm× nm matrix. Furthermore each of the Ai, Bi, and Ci are tridiagonal
matrices.

One way to find the unknowns ui is to do sparse Gaussian elimination on the
coefficient matrix G, assuming that the associated LU factorization exists. Of course,
in this naive column ordering of the unknowns, when we eliminate the block entry C1

we get in the position occupied by A1 the new block S1 = A1 − C1A
−1
0 B1. Observe

that even though all the individual matrices on the right-hand side of the expression
are tridiagonal matrices, A−1

0 is not, and hence S1 is a dense (nonsparse) matrix.
In the next step of Gaussian elimination we would use S1 as the pivot block to

eliminate C2. Now in the position occupied by the block A2 we would get the matrix
S2 = A2−C1S

−1
1 B1. Again, since S1 is a dense matrix, in general S−1

1 will be a dense
matrix, and therefore S2 will also be a dense matrix.

What this implies is that during LU factorization of the sparse matrix G, we
will produce fill-in quickly that causes us to compute the inverses (and hence LU
factorizations) of dense n× n matrices. If we assume that these dense matrices have
no structure, then we would need O

(
n3
)
flops for that operation alone. (Here we are

assuming that we will not use any of the fast matrix-matrix multiplication techniques
(like those of Strassen [15]) to speed up the LU factorization of dense matrices.)
Therefore it follows that one would require at least O

(
n3
)
flops to compute sparse

LU factorization of G. Though this argument is not rigorous, as we do not account for
the different possible orderings of the unknowns and the equations, a more thorough
analysis has been carried out by Lipton, Rose, and Tarjan [10], who show that this
lower bound result is essentially correct.

Now, if one wishes to find an algorithm to factor G in linear time (O(nm) flops),
then one possible approach is to find some hidden structure in the dense matrices
S1, S2, etc., that is produced during LU factorization, and to exploit this structure
to speed up the calculation of the inverses of these matrices, and the application of
these same inverses to other matrices. This is precisely the strategy suggested by
many researchers, including Hackbusch [8], Gohberg, Kailath, and Koltracht [6], and
Greengard and Rokhlin [7].

In fact it has been conjectured that if one looks at the off-diagonal blocks of
these matrices (S1, S2, etc.), then their ε-rank is going to be small. This conjecture
has been justified by the fact that, for example, S−1

2 can be viewed approximately
(especially in the limit as n becomes large) as a subblock of the discretized Green’s
function of the original PDE. It is known from the theory of elliptic PDEs that under
some mild constraints the Green’s function will be smooth away from the diagonal
singularity (see, for example, Folland [5]). This in turn has been taken to imply that
the numerical ranks of the off-diagonal blocks of S−1

2 would be small. This conjecture
has been observed to be experimentally true by us and many other researchers in
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a wide variety of cases. Some related theoretical results can be found in work by
Hackbusch and Bebendorf [1, 2].

In this paper we try to prove the conjecture for the constant coefficient case (for
an earlier attempt see [4]). In particular, we consider off-diagonal blocks that touch
the diagonal. The theory of Hackbush and Bebendorf shows the existence of low rank
off-diagonal blocks away from the diagonal. Although their theory is applicable to a
wider class of matrices than that considered in this paper, it produces weaker bounds
on the rank of the off-diagonal blocks.

To be more precise let us first make the following definitions:

S0 = A0,

Si+1 = Ai+1 − CiS
−1
i Bi.

We call Si the Schur complements of the matrix G.
Furthermore, if B is a square matrix and

B =

( n1 n2

n1 B00 B01

n2 B10 B11

)

is a block 2×2 partitioning of B such that both B00 and B11 are also square matrices,
then we call B01 and B10 Hankel blocks of B. In brief, a Hankel block of a square
matrix is an off-diagonal block that touches the main diagonal and stretches all the
way to either the top-right or bottom-left corner of the matrix.

In the case of three-dimensional problems, we cannot hope to look at just the
off-diagonal blocks, since the rank of such blocks would be expected to grow linearly
in the grid size along one spatial dimension. The standard discretization of the three-
dimensional Laplacian on an n×m× k uniform grid leads to a system of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ã0 B1

C1 Ã1 B2

C2
. . .

. . .

. . .
. . . Bk−1

Ck−1 Ãk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Ãi are block tridiagonal matrices. The Schur complements are given by

S0 = Ã0,

Si+1 = Ã− CiS
−1
i Bi.

The Schur complements are of size nm × nm, and their inversion would require
O(n3m3) flops at each step. However, we aim to show that these Schur comple-
ments have a much finer structure under an appropriate ordering of the grid. To this
effect, we define the following. A strip-row (column) Hankel block of a matrix A is
any row (column) block of A that excludes the diagonal block. For example, let A be
a block matrix of the form ⎛

⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ .
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Then a strip-row Hankel block of A is

(
A21 A23

)
,

and a strip-column Hankel block of A is

(
A12 A32

)T
.

One more definition. The ε-rank of a matrix A is defined to be the number of singular
values of A that are bigger than ε. We also note that ‖A‖ will always denote the largest
singular value of A, and κ(A) will denote the product of the largest and smallest
singular values of A.

With these definitions we can state the main goals of this paper. In the two-
dimensional case, we would like to investigate the ε-rank of the Hankel blocks of Si

for large values of i when n itself is very large. In the three-dimensional case, we shall
consider the strip-row and strip-column Hankel blocks of the Schur complements in
the limit of large i and n.

3. Simpler problem. In the interest of clarity we begin by first considering
the simpler problem of the two-dimensional Laplacian with Dirichlet conditions. In
particular we make the assumption that the grid is n × ∞; that is, it is infinite in
one direction. As already stated we will be assuming that the PDE has constant
coefficients. So in this section we are going to assume that G looks like this:

G =

⎛
⎜⎜⎜⎜⎝
A0 B
C A B

C A
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

Note that G is an infinite matrix (on one end) now. The Schur complements that we
intend to look at now are

S0 = A0,

Si+1 = A− CS−1
i B.

The question we are interested in investigating in this section is, what is the ε-rank
of the Hankel blocks of S∞?

It turns out that S∞ is not always guaranteed to exist in the usual sense. We
therefore make the following additional assumptions.

Assumption 1. Every leading principal submatrix of G is Hermitian positive-
definite.

Assumption 2. A0, A, and B commute with each other. We will denote their
common unitary eigenvector matrix by V .

First, observe that under these assumptions C = BH and hence commutes with
A0 and B. Furthermore, it follows that the Si are Hermitian positive-definite matrices
that also commute with A and B. Next we make an important observation.

Theorem 1. A2 − 4BHB is Hermitian positive-definite.
To prove this theorem we need a very standard result about tridiagonal Toeplitz

matrices (see Carl Meyer’s book [11], for example).
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Theorem 2. If A is an n× n tridiagonal Toeplitz matrix with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b
c a b

c
. . .

. . .

. . .
. . . b
c a

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then the eigenvalues of A are given by

λj = a+ 2b

√
c

b
cos

(
jπ

n+ 1

)
,

where 1 ≤ j ≤ n, and the corresponding eigenvector is given by

vj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
c
b

)1/2
sin
(

1jπ
n+1

)
(
c
b

)2/2
sin
(

2jπ
n+1

)
(
c
b

)3/2
sin
(

3jπ
n+1

)
...(

c
b

)n/2
sin
(

njπ
n+1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now we can present the proof of Theorem 1. Since every leading principal sub-
matrix of G is positive-definite it follows that

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

A B
BH A B

BH . . .
. . .

. . .
. . . B
BH A

⎞
⎟⎟⎟⎟⎟⎟⎠

is always positive-definite. Now, utilizing the fact that A and B are diagonalized by
V , we can compute the eigenvalues of H using Theorem 2. Doing the straightforward
calculation, we find that the eigenvalues of the np× np matrix H are given by

λn(i−1)+j(H) = λi(A) + 2λi(B) cos

(
jπ

p+ 1

)
, 1 ≤ j ≤ p, 1 ≤ i ≤ n.

Since H is positive-definite for all finite p > 1, we have that

λi(A) > 2|λi(B)|,

which establishes Theorem 1. Note that another way to compute the eigenvalues of
H is to just observe that since A and B commute with each other, they essentially
behave like scalars (except that a nonzero B is not necessarily invertible) and that
the proof of Theorem 2 carries over to this case.
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Model problems. We next observe that Assumptions 1 and 2 are true when
the PDE is just Poisson’s equations. If we discretize the Laplacian with the five-point
stencil, then we obtain

A0 = A =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −1
−1 4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎞
⎟⎟⎟⎟⎟⎟⎠

and B = I. The truth of Assumption 1 is well known and follows from the explicit cal-
culation of the eigenvalues of H in the proof of Theorem 1. The truth of Assumption 2
follows from the standard result in Theorem 2.

What about the case when we discretize the Laplacian using a nine-point stencil
on a uniform grid with finite-difference? In this case

A0 = A =

⎛
⎜⎜⎜⎜⎜⎜⎝

20 −4
−4 20 −4

−4
. . .

. . .

. . .
. . . −4
−4 20

⎞
⎟⎟⎟⎟⎟⎟⎠

,

while

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

−4 −1
−1 −4 −1

−1
. . .

. . .

. . .
. . . −1
−1 −4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The validity of Assumptions 1 and 2 follows as before from Theorem 2.
Now we can state the main theorem of this section.
Theorem 3. Under the stated assumptions, S∞ exists and the ε-ranks of the

Hankel blocks of S∞ are bounded by

r

(
1 + 8 ln4

(
3‖A‖
ε

))
,

where r is the maximum Hankel block rank of A, B, and C.
The proof of this theorem will occupy the rest of this section. Observe that for

five-point and nine-point stencil discretizations r = 1.
We begin by looking at the operator M that produces Si+1 from Si:

Si+1 = M(Si) = A− CS−1
i B.

We observe that since A0 = S0, A, B, and C share the same eigenvector matrix
and are diagonalizable, it follows that Si is also diagonalizable and shares the same
eigenvector matrix. Therefore it follows that A, B, C, and Si all commute with each
other. Since these matrices commute with each other, and since they are the only
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ones that appear in our expressions, it helps to think of them as scalar quantities. The
only significant way in which they differ from scalars in our algebraic expressions is
that a nonzero expression may not be invertible, while that is not possible for a scalar.
Since that case will never arise for us, we will switch to a more scalar-like expression
for writing inverses of matrices that more clearly expresses the mutual commutativity
of our expressions. Hence we write

Si+1 = M(Si) =
ASi − CB

Si
.

In this form it is clear that M is a Möbius transform (see Needham’s book [12] for
more information), and it is well known how to analyze discrete dynamical systems
whose iterator is a Möbius transform. We proceed in the standard way. For each Si

we define two matrices Pi and Qi that are diagonalizable by V , and such that

Si =
Pi

Qi

and

P0 = A0,

Q0 = I,(
Pi+1

Qi+1

)
=

(
A −CB
I 0

)(
Pi

Qi

)
.

We first observe that the Pi and the Qi are well defined. To establish that indeed
Si = Pi/Qi we need to establish that Qi is invertible for all finite i. To see this, first
observe that Qi+1 = Pi. So we need to establish that Pi remains invertible for all
finite i. This follows immediately from induction and the formula

Pi+1 = Si+1Pi.

We refer to the iterator matrix representation of M as T , where

T =

(
A −CB
I 0

)
.

It is obvious now that the question of finding S∞ reduces to the question of finding
P∞ and Q∞, which is much easier as we only need to analyze a linear iterator. We
proceed in the standard way and first compute the eigendecomposition of T . This is
not as hard as it looks since the entries in the block 2 × 2 representation of T are
essentially diagonal matrices. Define the two matrices

Ξ+ =
A+

√
A2 − 4CB

2
,

Ξ− =
A−√

A2 − 4CB

2
.

Now we make some crucial observations about these two matrices. Observe that the
eigenvector matrix for these two is still V and that they are clearly diagonalizable.
Next, since the eigenvalues of A2 − 4CB and A are strictly positive real numbers, it
follows that the eigenvalues of Ξ+ are bigger in magnitude than the corresponding
eigenvalues (belonging to the same eigenvector) of Ξ−.
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By direct computation one can verify the following block eigendecomposition of
the iterator matrix T :

T =

(
Ξ+ Ξ−
I I

)(
Ξ+

Ξ−

)(
Ξ+ Ξ−
I I

)−1

.

Since (
Pi

Qi

)
= T i

(
P0

Q0

)
,

is just the well-known power iteration, we see that P∞ and Q∞ will be a block multiple
of one of the block eigenvectors of T . Since we have already established that Ξ+ has
the larger eigenvalues in magnitude, we only need to check that the starting block
vector (

P0

Q0

)
=

(
A0

I

)

has a nonzero oblique projection on the corresponding block eigenvector(
Ξ+

I

)
,

which is true. Hence we can say immediately that

(3.1) S∞ =
P∞
Q∞

=
Ξ+

I
=

A+
√
A2 − 4CB

2
.

We now make some trivial observations.
Lemma 1. Let

A =

( n1 n2

n1 A00 A01

n2 A10 A11

)
and B =

( n1 n2

n1 B00 B01

n2 B10 B11

)
,

C = AB =

( n1 n2

n1 C00 C01

n2 C10 C11

)
,

and

D = A+B =

( n1 n2

n1 D00 D01

n2 D10 D11

)
;

then rank(C01) ≤ rank(A01) + rank(B01) and rank(D01) ≤ rank(A01) + rank(B01).
Using this lemma we see that in order to get an upper bound on the ε-rank of the

Hankel blocks of S∞ we need a theorem that connects the ε-rank of the Hankel block
of the square root of a matrix with the rank of the Hankel blocks of the matrix itself.
Here is one such theorem.

Theorem 4. Let A be a diagonalizable positive-definite matrix and let B =
√
A.

Furthermore, suppose that the rank of every Hankel block of A is at most r. Then the

ε-rank of any Hankel block of B is at most 2r ln4
( 3√‖A‖

ε

)
.
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This is the key technical theorem in this paper. Its proof in turn depends on a
highly acclaimed result of Newman (see Petrushev and Popov [14]), which goes as
follows.

Theorem 5 (Newman [13]). For every integer p ≥ 5 there is a rational function
of order p which approximates the function

√
x to an accuracy better than 3e−

√
p for

all 0 ≤ x ≤ 1.
Note that the interval of approximation includes the singular point 0. An ele-

mentary proof of this theorem can be found in the aforementioned book by Petrushev
and Popov.

We also need a known result that links the rank of the Hankel blocks of a matrix
to that of its inverse.

Lemma 2. Let

A =

( n1 n2

n1 A00 A01

n2 A10 A11

)

be an invertible matrix and let

A−1 =

( n1 n2

n1 B00 B01

n2 B10 B11

)
.

Then rank(A01) = rank(B01).
We will indicate a short proof of Lemma 2 now. First observe that if A00 and

A11 were invertible, then, using the LU factorization of A, we could prove that both
B00 and B11 would be invertible too. Therefore, in this case, we can easily establish
the lemma from the equation

A00B01 +A01B11 = 0.

Now, by using continuity, we can finish the proof in the general case.
At this point we can establish Theorem 4. From Newman’s theorem it follows

that to approximate the square-root function uniformly on the interval [0, ‖A‖] to an
accuracy of ε or better, we can use a rational function of order p, where

p = ln2

(
3
√‖A‖
ε

)
.

Call this rational function s. Now we can use s to approximate the square root of
the matrix A as s(A) ≈ √

A. Since the rational function will contain, in the worst
case, a polynomial of degree p in the numerator and another in the denominator, we
see, using Lemmas 1 and 2, that the rank of the Hankel blocks of s(A) will be at
most 2rp2. Now substituting the value of p we obtain the proof of Theorem 4 since
‖s(A)−√

A‖ ≤ ε.
Now, we can apply Theorem 4 to finish the proof of Theorem 3. We apply it,

along with Lemma 1, to the expression given in (3.1) to obtain the following bound
on the ε-rank of every Hankel block of S∞:

r

(
1 + 8 ln4

(
3‖A‖
ε

))
,

where r is the maximum Hankel block rank of A, B, and C. This finishes the proof
of Theorem 3.
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4. The n×m grid. We are now ready to study the ε-rank of the Hankel blocks
of Sm when the underlying PDE has been discretized on a uniform n×m grid, with
the unknowns ordered in column-major order. Again we will concentrate only on the
constant-coefficient case. Now we must explicitly keep track of the size of each matrix.
To facilitate this we adopt the convention of denoting the n×n matrix A as nA; that
is, we put the size as a left subscript on the name of the matrix.

With this notation we consider the matrix

nmG =

⎛
⎜⎜⎜⎜⎜⎜⎝

nA0 nB

nC nA nB

nC nA
. . .

. . .
. . . nB

nC nA

⎞
⎟⎟⎟⎟⎟⎟⎠

nm×nm

.

Note that each of the subblocks is an n × n matrix, but that nmG is itself a block
m × m matrix. Usually for PDEs m and n will be linearly related to each other.
Therefore, we will assume that there is a constant l such that m = ln. As before we
define the n× n Schur complements of nmG as

nSi+1 = nA− nC nSi
−1

nB,

with nS0 depending upon the boundary conditions. Now, we can state the main
concern of this paper. What is the ε-rank of the Hankel blocks of nSm as n approaches
infinity? Note that as n approaches infinitym also approaches infinity. However, ∞S∞
is not a sensible object to look at anymore. The problem is that as n gets bigger the
size of nSm also gets bigger. Hence, we no longer have the luxury of studying the
limit point of a sequence of matrices in a fixed space. Instead, the best we can hope
for is some kind of asymptotic result.

With that in mind we make the following definitions:

nΞ+ =
nA+

√
nA

2 − 4 nC nB

2
,

nΞ− =
nA−

√
nA

2 − 4 nC nB

2
.

Note that these are just the fixed points of the Schur complements if we letm approach
infinity while holding n fixed, as described in section 3. Furthermore, as shown in
that section the ε-ranks of the Hankel blocks of nΞ+ are at most

rn

(
1 + 8 ln4

(
3‖nA‖

ε

))
,

where rn is the maximum rank of any of the Hankel blocks of nA and nB.
For the five-point stencil discretization of the Laplacian rn = 1 and ‖nA‖ ≤ 6.

For the nine-point stencil discretization of the Laplacian rn = 1 and ‖nA‖ ≤ 28.
Thus, in the model problems, the ε-ranks of the Hankel blocks of nΞ+ are bounded
by a constant as n approaches infinity.

What we will show in the rest of this paper is that under assumptions that hold
true for the model problems, nSm approaches closer and closer to nΞ+ as n gets bigger
and bigger.
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Also, define nDA, nDB, nDC , nDm to be diagonal matrices of the eigenvalues of

nA, nB, nC, and nSm. Let

nX+ =
nDA +

√
nDA

2 − 4nDC nDB

2
,

nX− =
nDA −

√
nDA

2 − 4nDC nDB

2
.

First we make our assumptions explicit.

4.1. Assumptions.
Assumption 3. nS0, nA, nB, and nC commute with each other. We will denote

their common unitary eigenvector matrix by nV .
Assumption 4. There is a constant W < ∞ such that ‖nA‖ ≤ W , ‖nB‖ ≤ W ,

‖nC‖ ≤ W , ‖nV ‖ ≤ W , and ‖nV −1‖ ≤ W for all n.
Assumption 5. There is a constant r < ∞ such that the rank of the off-diagonal

blocks of nA0, nA, and nB are all bounded by r for all n.
Assumption 6. nA, nCnB, and nA

2 − 4nCnB are positive-definite.
Assumption 7. There is a constant μ > 0 such that nS0 > μnΞ+ + (1− μ)nΞ−.
Assumption 8. There is a constant 0 ≤ γ < 1 such that limn→∞ ‖nΓln‖ ≤ γ,

where

nΓ =
nX−
nX+

.

Note that Assumption 6 implies that

(4.1) nX+ − nX− > 0

and Assumption 7 and (4.1) imply

(4.2) nD0 − nX− > 0.

By Assumptions 4 and 6, we have that nX+ and nX− are bounded, and nΓ is
bounded between 0 and 1.

Lemma 3. With nΓ defined as above, we have

lim
n→∞

∥∥
nΓ

ln(I − nΓ)
∥∥ = 0.

This lemma is an elementary consequence of the fact that nΓ has nonnegative
eigenvalues between 0 and 1. To see this, observe that

0 ≤ xln(1 − x) ≤ xn(1− x) ≤
(

n

n+ 1

)n
1

n+ 1
, 0 ≤ x ≤ 1.

Therefore the function xln(1 − x) approaches zero uniformly on [0, 1] as n → ∞.
Now observe that the eigenvalues of nΓ

ln(I − nΓ) are of the form nλ
ln(1 − nλ) with

0 ≤ nλ ≤ 1, and the proof follows immediately.
From earlier discussions it is clear that Assumptions 3, 4, 5, and 6 hold for the

model problems of finite-difference discretization of the Laplacian with Dirichlet con-
ditions using five-point and nine-point stencils. We just have to verify Assumptions 7
and 8.
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4.2. Five-point stencil. For this case with nS0 = nA, Assumption 7 is true by
picking μ = 0.5. Next let us verify the validity of Assumption 8 for the five-point
stencil case. In this case the eigenvalues of nA are given by

(4.3) λj(nA) = 4− 2 cos

(
jπ

n+ 1

)
for j = 1, . . . , n,

while nB = nC = I. The eigenvalues of nA±√
nA2 − 4I are

λj(nA)±
√
λ2
j(nA)− 4.

Let

f(x) =
x−√

x2 − 4

x+
√
x2 − 4

.

Then

(4.4) λj(nΓ) = f(λj(nA)).

We observe that the eigenvalues of nA are arranged in increasing order in the interval
(2, 6). Since the function f is monotonically decreasing in the interval (2,∞), it
follows that λj(nΓ) is decreasing with increasing j.

We now compute the limit of the kth largest eigenvalue of nΓ
m as n approaches

infinity. First observe from (4.3) that

λk(nA) = 2 +
k2π2

(n+ 1)2
+O(n−4),

where k is assumed constant in this expression. Using this expansion in (4.4), we can
get an expansion for the corresponding eigenvalues of nΓ

ln:

λk(nΓ
ln) =

(
1− kπ

n+1 +O(n−2)

1 + kπ
n+1 +O(n−2)

)ln

.

Taking the limit, we obtain

lim
n→∞λk(nΓ

ln) = e−2klπ .

Therefore we see that γ can be taken to be e−lπ/2 in this case for Assumption 8 to
hold.

4.3. Nine-point stencil. What about the nine-point stencil case? In this case,
too, we have nS0 = nA, and Assumption 7 is true by picking μ = 0.5. The eigenvalues
of nA and nB are

λj(nA) = 20− 8 cos

(
jπ

n+ 1

)

and

λj(nB) = −4− 2 cos

(
jπ

n+ 1

)
for j = 1, . . . , n.
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Note that

λj(nA)

|λj(nB)| =
20− 8 cos

(
jπ
n+1

)
4 + 2 cos

(
jπ
n+1

)
is increasing with the index j. Since

λj(nΓ) = f

(
λj(nA)

|λj(nB)|
)
,

it follows that λj(nΓ) is decreasing with increasing j. For fixed k and large values of
n we have the expansion

λk(nA)

|λk(nB)| =
12 + 4 k2π2

(n+1)2 +O(n−4)

6− k2π2

(n+1)2 +O(n−4)
= 2 +

k2π2

(n+ 1)2
+O(n−4).

Therefore we again find that

lim
n→∞λk(nΓ

ln) = e−2klπ ,

and hence we can take γ in Assumption 8 to be e−lπ/2.

4.4. Mixed conditions. Also consider the case of a mixed problem with a
Neumann condition on the leftmost side of the grid. The five-point discretization of
the Laplacian with such mixed conditions leads to a system of the type

nmG =

⎛
⎜⎜⎜⎜⎜⎜⎝

nA −2I
−I nA −I

−I
. . .

. . .

. . .
. . . −I
−I nA

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with

nA =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −1
−1 4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that since we have a −2I on the first row, we simply start the recursion from
the second row. Hence the starting Schur complement is nS0 = nA − 2nA

−1 in this
case. Assumptions 3, 4, 5, 6, and 8 are the same as in the five-point Dirichlet case.
We just need to verify Assumption 7 by some simple algebra. Since

μnΞ+ + (1− μ)nΞ− = μ
nA+

√
nA

2 − 4I

2
+ (1 − μ)

nA+
√

nA
2 − 4I

2

=
nA

2
+

2μ− 1

2

√
nA2 − 4I,
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with μ = 0.5 we get

μnΞ+ + (1 − μ)nΞ− =
nA

2
.

Since nA
2 − 4I > 0, it implies that

nA
2 − 2I

nA
>

nA

2

and

nS0 = nA− 2nA
−1

=
nA

2 − 2I

nA
.

Therefore, nS0 > nA
2 , which proves Assumption 7.

Now consider a mixed condition such as Neumann on the top and left sides of the
grid. In that case we get a system of the form

nmG =

⎛
⎜⎜⎜⎜⎜⎜⎝

nA −2I
−I nA −I

−I
. . .

. . .

. . .
. . . −I
−I nA

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with

nA =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −2
−1 4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Again, we have a −2I on the first row, and we start the recursion from the second
row. So the starting Schur complement is nS0 = nA− 2nA

−1. The eigenvalues of nA
are given by

λj(nA) = 4− 2 cos

(
(2j + 1)π

2n

)
for j = 0, . . . , n− 1.

Note that the eigenvalues of nA are bounded between 2 and 6. Also, nA is no longer
symmetric, but nA can be made into a symmetric matrix by a diagonal matrix of the
form

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2

1
. . .

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Since R−1
nAR is symmetric it has orthogonal eigenvectors. Suppose we denote this

eigenvector matrix by T . Then we can pick the eigenvector matrix nV of nA such
that nV = RT . So we have

‖nV ‖ = ‖RT ‖
≤ ‖R‖
=

√
2

and

‖nV −1|| = ‖T TR−1‖
≤ ‖R−1‖
= 1.

Therefore, ‖nV ‖‖nV −1‖ ≤ √
2. This proves Assumption 4. As in the earlier case,

take μ = 0.5 to satisfy Assumption 7. We need to verify Assumption 8. To this end
note that the largest eigenvalue of nΓ occurs with the very first eigenvalue of nA, i.e.,
λ0(nA) = 4− 2 cos

(
π
2n

)
. So we have

λ0(nΓ
ln) =

(
1− π

2n +O(n−2)

1 + π
2n +O(n−2)

)ln

.

Taking the limit we obtain

lim
n→∞λ0(nΓ

ln) = e−lπ.

4.5. nSln. Now that we have confirmed that our assumptions hold in the model
cases of interest, we can continue with our analysis of nSln. The analysis proceeds
almost exactly as before, with some important changes. We proceed briskly through
the similar parts. The Schur complements are given by

nSm+1 = nA− nC nB

nSm
.

We can write this as a recursion in the eigenvalues

nDm+1 = nDA − nDC nDB

nDm
,

where nDm, nDA, nDB, nDC are diagonal matrices of the eigenvalues of nSm, nA,

nB, and nC. We can consider this as the power iteration(
nPm+1

nQm+1

)
=

(
nDA −nDC nDB

I 0

)(
nPm

nQm

)

=

(
nDA −nDC nDB

I 0

)m+1(
nP0

nQ0

)
,

where

nDm =
nPm

nQm
.
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We now write this as the eigendecomposition

(
nPm

nQm

)
=

(
nX+ nX−
I I

)(
nX+ 0
0 nX−

)m(
nX+ nX−
I I

)−1(
nP0

nQ0

)
.

Noting that

(
nX+ nX−
I I

)−1

=
I

nX+ − nX−

(
I −nX−
−I nX+

)

is well defined by (4.1), we get

nDm =

(
nX

m+1
+ − nX

m+1
−

)
nP0 +

(
nX

m+1
− nX+ − nX

m+1
+ nX−

)
nQ0(

nXm
+ − nXm−

)
nP0 +

(
nXm− nX+ − nXm

+ nX−
)
nQ0

=
nX

m+1
+

(
nP0 − nX−nQ0

)
+ nX

m+1
−

(
nX+nQ0 − nP0

)
nXm

+

(
nP0 − nX−nQ0

)
+ nXm−

(
nX+nQ0 − nP0

)
=

nX
m+1
+

(
nD0 − nX−

)
+ nX

m+1
−

(
nX+ − nD0

)
nXm

+

(
nD0 − nX−

)
+ nXm−

(
nX+ − nD0

) .

In order for the iteration to be well defined, we need to ensure that nDm is not zero
at any point in the iteration. If nDm = 0, we get the condition

nX
m+1
+

(
nD0 − nX−

)
+ nX

m+1
−

(
nX+ − nD0

)
= 0,

which leads to

nD0 =

(
nX

m+1
+ nX− − nX+nX

m+1
−

nX+
m+1 − nX

m+1
−

)

=

(
nX

m
+ − nX

m
−

nX
m+1
+ − nX

m+1
−

)
nX+nX−

=

(
I − nΓ

m

I − nΓm+1

)
nX−

< nX−.

Since by (4.2), nD0 > nX−, nDm is well defined. We can now write the above equation
as

nDm = nX+

⎛
⎝I −

(
nD0−nX+

nD0−nX−

)
nΓ

m+1

I −
(

nD0−nX+

nD0−nX−

)
nΓm

⎞
⎠

= nX+

(
I − nK nΓ

m+1

I − nK nΓm

)
,

where

nK =
nD0 − nX+

nD0 − nX−
.
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Now we have

‖nSm − nΞ+‖ =

∥∥∥∥nV
(

nX+

(
I − nK nΓ

m+1

I − nK nΓm
− I

))
nV

−1

∥∥∥∥
≤ ‖nV ‖‖nV −1‖

∥∥∥∥nX+

(
nK nΓ

m (I − nΓ)

I − nK nΓm

)∥∥∥∥
≤ ‖nV ‖‖nV −1‖‖nX+‖

∥∥∥∥ nK

I − nK nΓm

∥∥∥∥ ‖nΓm (I − nΓ) ‖.

Assumptions 6 and 7 imply that
(
μ−1
μ

)
< nK and nK < 1. Therefore, we have that

‖nK‖ < max

(∣∣∣∣μ− 1

μ

∣∣∣∣ , 1
)

and ∥∥∥∥ nK

I − nK nΓm

∥∥∥∥ ≤ ‖nK‖ (1− γ)
−1

.

So,

‖nSm − nΞ+‖ ≤ ‖nV ‖‖nV −1‖‖nX+‖‖nK‖ (1− γ)
−1 ‖nΓm (I − nΓ)‖ .

From Lemma 3 we see that this upper bound approaches zero in the limit as n
approaches infinity.

4.6. Neumann problem. We will now consider the purely Neumann case and
the mixed problem with Neumann conditions on three sides of the grid. These prob-
lems are different from the cases considered earlier in that nA

2 − 4nCnB is only
positive-semidefinite, and Assumptions 6, 7, and 8 will no longer hold. We will pro-
ceed by breaking the analysis of nSm into two parts. Suppose λ(nA), λ(nB), λ(nC)
denote the eigenvalues of nA, nB, and nC. We will first consider the iterations due
to those eigenvalues such that λ2(nA) − 4λ(nC)λ(nB) = 0. Second, we will con-
sider a reduced system, excluding the degenerate eigenvalues considered in the former
case. This latter case will proceed as in the Dirichlet problem of section 4.5, with
Assumptions 6, 7, and 8 being valid.

4.6.1. Five-point stencil. Consider the purely Neumann problem with a five-
point discretization of the Laplacian. This leads to a system of the form

nmG =

⎛
⎜⎜⎜⎜⎜⎝

nA −2I
−I nA −I

. . .
. . .

. . .

−I nA −I
−2I nA

⎞
⎟⎟⎟⎟⎟⎠ ,

where nA is given by

nA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −2
−1 4 −1

−1 4
. . .

. . .
. . .

. . .

−1 4 −1
−2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The mixed problem with Neumann on three sides of the grid with a Dirichlet condition
on the rightmost side gives the same system, except that nmG would look like

nmG =

⎛
⎜⎜⎜⎜⎜⎝

nA −2I
−I nA −I

. . .
. . .

. . .

−I nA −I
−I nA

⎞
⎟⎟⎟⎟⎟⎠ .

The eigenvalues of nA are given by

λj(nA) = 4− 2 cos

(
πj

n− 1

)
for j = 0, . . . , n− 1.

Since we have a −2I on the first row, we take the starting Schur complement
to be S0 = nA − 2nA

−1. Note that nA can be made into a symmetric matrix by a
diagonal matrix of the form

R =

⎛
⎜⎜⎜⎜⎜⎝

√
2

1
. . .

1 √
2

⎞
⎟⎟⎟⎟⎟⎠ ,

with R−1
nAR being symmetric. Therefore, we can pick the eigenvector matrix nV of

nA such that ‖nV ‖‖nV −1‖ ≤ √
2. This proves Assumption 4.

Looking at the eigenvalues of nA, we see that if we drop the first eigenvalue of 2,
then Assumptions 6 and 7 are valid. Moreover, Assumption 8 is also valid since the
kth eigenvalue of n−1Γ is given by

λk(n−1Γ) =
λk(nA)−

√
λ2
k(nA)− 4

λk(nA) +
√
λ2
k(nA)− 4

,

and for k > 0

lim
n→∞λk(n−1Γ

ln) = lim
n→∞

(
1− kπ

n−1 +O(n−2)

1 + kπ
n−1 +O(n−2)

)ln

= e−2lkπ

< 1.

4.6.2. nSln. We proceed by breaking the analysis into two parts. We will first
treat the recursion due to the first eigenvalue separately.

Consider now the case when λ2(nA) − 4λ(nC)λ(nB) = 0. The recursion of such
an eigenvalue is then given by

dm+1 = λ(nA) − λ(nC)λ(nA)

dm
,

where dm is the corresponding eigenvalue of nSm. Define the power iteration(
pm+1

qm+1

)
=

(
λ(nA) −λ(nC)λ(nB)

1 0

)m(
p0
q0

)
.
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We can write the above 2× 2 matrix in its Jordan form, with α =
√
λ(nC)λ(nB), as

J =

(
λ(nA)

2 1

0 λ(nA)
2

)
,

S =
1

α

(
α2 2α
α 1

)
,

S−1 =
1

α

(−1 2α
α −α2

)
,

with

SJS−1 =

(
λ(nA) −λ(nC)λ(nB)

1 0

)
.

From this we can write,(
pm+1

qm+1

)
= SJmS−1

(
p0
q0

)

=
1

α2

(
α2 2α
α 1

)(
αm mαm−1

0 αm

)⎛⎝−1 2α

α −α2

⎞
⎠(p0

q0

)

=

(
(m+ 1)αm −mαm+1

mαm−1 −(m− 1)αm

)(
p0
q0

)
.

Therefore, we have that

dm =
pm
qm

=
(m+ 1)αmp0 −mαm+1q0
mαm−1p0 − (m− 1)αmq0

= α
(m+ 1)d0 −mα

md0 − (m− 1)α

= α
m(d0 − α) + d0
m(d0 − α) + α

.

Note that dm can become zero only if m(d0 − α) + d0 = 0, in which case we have

d0 =
m

m+ 1
α

< α.

Therefore, we require that d0 ≥ α, which is true. Now consider the recursions

n−1Dm+1 = n−1DA − n−1DC n−1DB

n−1Dm
,

where n−1DA, n−1DB, n−1DC , and n−1Dm are diagonal matrices of the eigenvalues
of nA, nB, nC, and nSm from j = 1, . . . , n − 1, excluding the first eigenvalue cor-
responding to j = 0. Then following the same procedure as in section 4.5, we can
consider this as the power iteration(

n−1Pm+1

n−1Qm+1

)
=

(
n−1DA −n−1DC n−1DB

I 0

)m(
n−1P0

n−1Q0

)
,
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where in the Neumann case

n−1P0 = n−1D
2
0 − 2I,

n−1Q0 = n−1D0.

We can now write this as the eigendecomposition(
n−1Pm+1

n−1Qm+1

)
=

(
n−1X+ n−1X−

I I

)(
n−1X+ 0

0 n−1X−

)m(
n−1X+ n−1X−

I I

)−1(
n−1P0

n−1Q0

)
,

from which we get

n−1Dm = n−1X+

(
I − n−1K n−1Γ

m+1

I − n−1K n−1Γm

)
,

where

n−1K =
n−1D0 − n−1X+

n−1D0 − n−1X−
.

Now we have

nSm − nΞ+ = nV

(
α d0−α

m(d0−α)+α

n−1X+

(
I− n−1K n−1Γ

m+1

I− n−1K n−1Γm − I
))

nV
−1.

Therefore,

‖nSm − nΞ+‖ ≤ ‖nV ‖∥∥nV −1
∥∥
∥∥∥∥∥
(
α d0−α

m(d0−α)+α

n−1X+

(
n−1K n−1Γ

m(I− n−1Γ)
I− n−1K n−1Γm

))∥∥∥∥∥ .
We see that the term on the right-hand side goes to zero for large n, and therefore

nSm approaches nΞ+ as n gets larger.

4.7. Main theorem. We have now proved that the Schur complements nSm

approach nΞ+ in the limit of large n for the model cases of interest. Therefore, we
can now state the main result of this paper.

Theorem 6. Under Assumptions 3 to 8, the ε-rank of the Hankel blocks of nSln,
in the limit of large n, is bounded by

r

(
1 + 8 ln4

(
3W

ε

))
.

5. The three-dimensional problem. In the previous sections it was shown
that the Hankel block ranks of the Schur complements that arise from finite-difference
discretizations in two dimensions were bounded independent of the grid size. In this
section we shall consider the three-dimensional problem for the constant coefficient
Laplacian.

5.0.1. Seven-point discretization with Dirichlet conditions. The seven-
point discretization of the Laplacian with Dirichlet conditions leads to a system of
linear equations of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ã −I

−I Ã −I
. . .

. . .
. . .

. . .
. . . −I

−I Ã

⎞
⎟⎟⎟⎟⎟⎟⎠

nmk×nmk

,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCHUR COMPLEMENTS OF DISCRETIZED ELLIPTIC PDEs 2281

where

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

A −I
−I A −I

. . .
. . .

. . .

. . .
. . . −I
−I A

⎞
⎟⎟⎟⎟⎟⎟⎠

nm×nm

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

6 −1
−1 6 −1

. . .
. . .

. . .

. . .
. . . −1
−1 6

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

,

with n,m, and k denoting the grid sizes in the x, y, and z directions. We could write
Ã in tensor notation as

Ã = Im×m ⊗An×n + Ĩm×m ⊗ Ik×k,

where

Ĩ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1
−1 0 −1

. . .
. . .

. . .

. . .
. . . −1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From the above equation, and using the fact that the eigenvalues of the above
Kronecker sum are equal to the sum of the eigenvalues of A and Ĩ [9], we see that the
eigenvalues of Ã are given by

(5.1) λÃ = λA + λĨ = 6− 2 cos

(
iπ

n+ 1

)
− 2 cos

(
jπ

m+ 1

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The eigenvalues of Ã are therefore bounded between 2 and 10.

5.0.2. Seven-point discretization with Neumann conditions. The seven-
point discretization of the Laplacian with Neumann conditions leads to a system of
linear equations of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ã −2I

−I Ã −I
. . .

. . .
. . .

−I
. . . −I

−2I Ã

⎞
⎟⎟⎟⎟⎟⎟⎠

nmk×nmk

,
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where

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

A −2I
−I A −I

. . .
. . .

. . .

−I
. . . −I
−2I A

⎞
⎟⎟⎟⎟⎟⎟⎠

nm×nm

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

6 −2
−1 6 −1

. . .
. . .

. . .

−1
. . . −1
−2 6

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

,

with n, m, and k denoting the grid sizes in the x, y, and z directions. We could write
Ã in tensor notation as

Ã = Im×m ⊗An×n + Ĩm×m ⊗ Ik×k,

where

Ĩ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −2
−1 0 −1

. . .
. . .

. . .

−1
. . . −1
−2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of Ã are given by

λÃ = λA + λĨ

= 6− 2 cos

(
iπ

n− 1

)
− 2 cos

(
jπ

m− 1

)
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1.(5.2)

5.1. The nested dissection ordering. Note that the Schur complements of Ã
are of size N = mn, which would require O(N3) flops for direct Gaussian elimination
at each step. If we consider this matrix in columnwise ordering of the unknowns,
the structure considered previously would give us an O(N2) algorithm at each step.
However, in this case we could do better by considering the matrix obtained by a
nested dissection (ND) ordering of the two-dimensional plane. This would lead to a
finer hierarchically semiseparable (HSS) matrix structure that could be exploited to
produce an O(N1.5) solver for the inversion of each Schur complement [3]. Therefore,
we aim to show that the Schur complements of the matrix obtained by an ND ordering
have an HSS structure.

We will call the block rows (columns) excluding the diagonal blocks of the ND or-
dered matrix its strip-row (column) Hankel blocks. For example, consider the following
3× 3 block matrix: ⎛

⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ .
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Fig. 1. ND ordering.

Then a strip-row Hankel block is (
A21 A23

)
,

and a strip-column Hankel block is

(
A12 A32

)T
.

We make note of a useful fact here. Any strip-row Hankel block can be moved into
the position of the upper rightmost row block, and the diagonal block can be moved
into the position of the first diagonal block by means of a symmetric permutation.
For example, the first row of the above matrix can be made to look like⎛

⎝0 I 0
I 0 0
0 0 I

⎞
⎠
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠
⎛
⎝0 I 0
I 0 0
0 0 I

⎞
⎠ =

⎛
⎝A22 A21 A23

A12 A11 A13

A32 A31 A33

⎞
⎠ .

We will denote such a permutation matrix that moves any jth row to the first row in
this manner as Pj .

Consider the two-dimensional grid in columnwise ordering. With the five-point
stencil in the plane, each interior node talks to the nodes immediately above and
below it, as well as to the nodes to its left and right. Now consider a division of the
grid into a 2 × 2 partition. We choose to label the variables in each block partition
locally before proceeding to the next block (i.e., in Figure 1 (left), we would first
label the variables in block B1 followed by B2, B3, and B4). Each of these blocks
would correspond to a strip-row (or column) of the discretization matrix. Note that
with such an ordering the rank of any strip-row (column) Hankel block would just be
the number of boundary nodes in that block. That is, with this above partition each
strip-row (column) Hankel block in the matrix would have rank equal to the perimeter
of the corresponding block in the grid. Next, we can divide each block above into
a 2 × 2 partition as before. Again, we choose to label the variables block by block
(i.e., in Figure 1 (right), we would label the blocks in the order B1;1, B1;2, B1;3, B1;4,
B2;1, etc). We can continue these recursive partitions up to some level K, where at
the Kth level the strip-row (and column) Hankel blocks would have ranks equal to
the perimeter of the blocks in the grid after K partitions. We will call any strip-row
(column) Hankel block of the ND ordered matrix, corresponding to a block at the jth
level partition of the grid, a jth strip-row (column) Hankel block.
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The idea behind a fast HSS solver is to exploit the relative low ranks of the
strip Hankel blocks as compared to their size. Therefore, the number of partition
levels would depend on the relative size of the block to its rank. Now we look at the
computational cost of an HSS solver. Consider a matrix that has been partitioned
into K levels. We will assume an n × m grid with m = l × n for some constant l.
Then the total computational cost of a fast HSS solver is bounded by [3]

98m3 + 70lm2 +m2
(
4 (2K + log2 l)

2
+ 11 (2K + log2 l) + 28

)
.

Let ÃND be the ND ordered matrix. We aim to show that the strip Hankel block
ranks of the Schur complements are bounded in terms of the strip Hankel block ranks
of ÃND in the limit of large n. That is, we aim to show that the Schur complements
also retain the HSS structure, allowing us to use the HSS solver. The effect of an ND
ordering of the grid is just a multiplication of Ã by permutation matrices on the left
and right. As such, the Schur complements of G are multiplied from the left and right
by a permutation matrix PND:

Si+1 = Ã− S−1
i ,

S̃i+1 = PT
NDSi+1PND,

where Si is the ith Schur complement of G, and S̃i is the ith Schur complement of
the ND ordered matrix. Therefore, we first look at the asymptotic behavior of Si.

5.2. Schur complements in the limit as k → ∞. We will start by consider-
ing the Dirichlet problem when we let the grid size grow to infinity in the z direction.
Therefore, the matrix G would look like

G =

⎛
⎜⎜⎜⎜⎝

Ã −I

−I Ã −I

−I Ã
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

The Schur complements of G are

S0 = Ã.

Sk+1 = Ã− S−1
k .

Note that each Sk is Hermitian since Ã is Hermitian, and positive-definite since the
eigenvalues of Sk are bounded below by 0.1. Moreover, each Sk commutes with Ã.
We make the following definitions:

Ξ+ =
Ã+

√
Ã2 − 4I

2
,

Ξ− =
Ã−

√
Ã2 − 4I

2
.

Following the technique used before, we can write Sk in terms of a power iteration.
To that accord, we define matrices Pk and Qk as follows:(

Pk+1

Qk+1

)
=

(
Ã −I
I 0

)(
Pk

Qk

)
,
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with P0 = Ã and Q0 = I. Since P0 and P1 are invertible, each Pk and Qk are also
invertible. Note that Sk+1 = PkQ

−1
k . Let

T =

(
Ã −I
I 0

)
.

Then (
Pk+1

Qk+1

)
= T k

(
P0

Q0

)
,

and the eigendecomposition of T is

T =

(
Ξ+ Ξ−
I I

)(
Ξ+ 0
0 Ξ−

)(
Ξ+ Ξ−
I I

)−1

.

The above power iteration converges to the eigenvector block corresponding to the
largest eigenblock Ξ+. Therefore, we have that limk→∞Sk = Ξ+.

ÃND is the ND ordering of Ã. There exists a permutation matrix PND such that

ÃND = PNDÃP
T
ND.

Furthermore, note that any jth strip-row Hankel block of ÃND can be made into an
upper right off-diagonal block by a symmetric permutation Pj . That is, consider Bj

where

Bj = PjÃNDP
T
j = PjPNDÃPT

NDP
T
j .

Bj contains the jth strip-row Hankel block of ÃND on its upper rightmost block, and
the jth diagonal block in the position of the first diagonal block . Now, Lemmas 1 and
2 apply to Bj . From this it follows that the lemmas also apply to any jth strip-row

Hankel block of ÃND. Now, we have

S∞ = Ξ+,

S̃∞ = PNDΞ+P
T
ND

=
ÃND +

√
Ã2

ND − 4I

2
.

Applying Theorems 4 and 5, we prove the following extension to Theorem 3.
Theorem 7. The ε-rank of the strip-row (strip-column) Hankel blocks of S̃∞ at

the jth level is bounded by

rj

(
1 + 8 ln4

(
3‖Ã‖
ε

))
,

where rj is the rank of any jth strip-row (strip-column) Hankel block of ÃND.

5.3. An asymptotic bound as the grid grows in every direction. We now
consider the case when the grid size grows in all directions. We shall assume that the
grid sizes in the y and z directions are constant multiples of the grid size in the x
direction. Let m = l × n and k = q × n, where l, q are positive integers. We will
indicate the size of a matrix as a left subscript on the name of the matrix. As before,
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we first look at the asymptotic behavior of nmSk. We proceed to prove the following
lemma.

Lemma 4. In the limit of large n, the Schur complement nmSk converges in norm
to nmΞ+.

The proof of Lemma 4 is the same as in section 4.5 for the Dirichlet case and
as in section 4.6 for the Neumann case. We need to verify the validity of the key
assumptions as listed in section 4.1.

5.3.1. Dirichlet problem. In this case we have nmS0 = nmÃ, nmB = I, and

nmC = I. Since nmÃ is symmetric and its eigenvalues are bounded, nmÃ is bounded.
This verifies Assumptions 3 and 4. Looking at (5.1), we see that Assumption 6 is
true. Assumption 7 is true by picking μ = 0.5. We proceed to prove Assumption 8.
Note that

‖nmΓ‖ =

∥∥∥∥nmX−
nmX+

∥∥∥∥
=

λmin −√λ2
min − 4

λmin +
√
λ2
min − 4

,

where λmin = 6− 2
(
cos
(

π
n+1

)
+ cos

(
π

ln+1

))
, is the minimum eigenvalue of nmÃ. We

note the following upper bound on cos(θ) for 0 ≤ θ ≤ π/2:

cos(θ) ≤ 1− θ2

2π2
.

From this, it follows that

cos

(
π

n+ 1

)
+ cos

(
π

ln+ 1

)
< 2− 1

(ln+ 1)2
.

Let

λ̃ = 6− 2

(
2− 1

(ln+ 1)2

)

= 2

(
1 +

1

(ln+ 1)2

)
.

Then λ̃ < λmin. Consider the function f(λ) = λ−√
λ2−4

λ+
√
λ2−4

and note that ‖nmΓ‖ =

f(λmin). Since f is a monotonic decreasing function, f(λ̃) > f(λmin) and

‖nmΓqn‖ = ‖nmΓ‖qn = (f(λmin))
qn ≤ (f(λ̃))qn.

Now we can produce a bound on (f(λ̃))qn as follows:

√
λ̃2 − 4 =

2
√
2

ln+ 1

√
1 +

1

2(ln+ 1)2

=
2
√
2

ln+ 1
+ o(n−3).

Hence

λ̃±
√
λ̃2 − 4 = 2

(
1±

√
2

ln+ 1

)
+ o(n−2).
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Therefore

(f(λ̃))qn =

⎡
⎣
(
1−

√
2

ln+1

)
+ o(n−2)(

1 +
√
2

ln+1

)
+ o(n−2)

⎤
⎦
qn

and

lim
n→∞(f(λ̃))qn = e−2

√
2 q

l < 1.

5.3.2. Neumann case. Here we have nmS0 = nmÃ−2 nmÃ−1. The eigenvalues
of nmÃ are given by (5.2). Let

R =

⎛
⎜⎜⎜⎜⎜⎝

√
2

1
. . .

1 √
2

⎞
⎟⎟⎟⎟⎟⎠ .

Then (I ⊗R)
−1

nmÃ (I ⊗R) is symmetric. Therefore, we can pick the eigenvector
matrix nmV such that ‖nmV ‖, ‖nmV −1‖ ≤ √

2. This proves Assumptions 3 and 4.
Looking at (5.2), we can see that nmÃ has an eigenvalue at 2. Therefore, just

as in section 4.6, we can analyze this iteration separately. Then Assumptions 6 and
7 hold for the reduced system obtained by disregarding this eigenvalue. We have to
verify Assumption 8 for the reduced system. To this end, note that

‖nm−1Γ‖ =

∥∥∥∥nm−1X−
nm−1X+

∥∥∥∥
=

λmin −√λ2
min − 4

λmin +
√
λ2
min − 4

,

where λmin = 4− 2 cos
(

π
ln−1

)
. So we get

lim
n→∞‖nm−1Γ

qn‖ = lim
n→∞(f(λmin))

qn

≤ lim
n→∞

⎡
⎣
(
1−

√
2

ln−1

)
+ o(n−2)(

1 +
√
2

ln−1

)
+ o(n−2)

⎤
⎦
qn

= e−2
√
2 q

l

< 1.

From these observations, and following the exact procedure outlined in sections 4.5
and 4.6, we complete the proof of Lemma 4. Now we can extend Theorem 6 to the
seven-point Laplacian.

Theorem 8. The ε-rank of the strip Hankel blocks of nmS̃k at any jth level
partition, in the limit of large n, is bounded by

rj

(
1 + 8 ln4

(
3‖Ã‖
ε

))
,

where rj is the rank of any jth strip Hankel block of ÃND.
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6. Numerical results. We tabulated some numerical results on the ranks of the
Hankel blocks for some two-dimensional model problems for different grid sizes. The
first column in each table indicates the grid size, and the last two columns indicate
the number of singular values that are greater than 10−6 and 10−12.

Table 1 shows the Hankel block ranks of the Schur complement for the five-point
stencil with constant coefficients and Dirichlet boundary conditions. Table 2 shows
the Hankel block ranks of the Schur complement for the constant coefficient Neumann
problem with a five-point stencil. Tables 3 and 4 show the ranks for the constant
coefficient nine-point stencils. Note that the theoretical bounds on the ranks for these
examples are of the order 105.

We also tabulated below the Hankel block ranks for a variable coefficient PDE of
the form

∂

∂x

(
p(x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
q(x, y)

∂

∂y
u(x, y)

)
,

where p(x, y) and q(x, y) were generated from a uniform distribution on the interval
(0, 1). The numbers represent the maximum ranks over five trial runs. The ranks for
this case over a square domain are tabulated in Tables 5 and 6.

Table 1

Hankel block ranks for the constant coefficient Dirichlet problem with a five-point stencil.

n 10−6 10−12

100 7 11
250 8 14
500 8 16
1000 9 17

Table 2

Hankel block ranks for the constant coefficient Neumann problem with a five-point stencil.

n 10−6 10−12

100 7 12
250 8 14
500 9 16
1000 10 18

Table 3

Hankel block ranks for the constant coefficient Dirichlet problem with a nine-point stencil.

n 10−6 10−12

100 7 12
250 8 14
500 9 16
1000 9 18

Table 4

Hankel block ranks for the constant coefficient Neumann problem with a nine-point stencil.

n 10−6 10−12

100 8 13
250 9 17
500 9 15
1000 10 19
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Table 5

Hankel block ranks for the Dirichlet problem with a five-point stencil and random coefficients.

n 10−6 10−12

100 8 14
250 9 16
500 10 19
1000 9 18

Table 6

Hankel block ranks for the Neumann problem with a five-point stencil and random coefficients.

n 10−6 10−12

100 9 14
250 10 17
500 13 18
1000 9 19

Table 7

Hankel block ranks for the Dirichlet problem with random coefficients on a nonconvex polygonal
domain.

n 10−6 10−12

100 5 8
250 6 10
500 8 14
1000 7 11

Fig. 2. Nonconvex polygonal domain.

Table 8

Hankel block ranks for the Dirichlet problem with random coefficients on a random domain.

n 10−6 10−12

680 7 12
608 6 11
3630 6 10
1895 7 12

Table 7 represents the Hankel block ranks for a nonconvex polygonal region as
shown in Figure 2. A five-point approximation was used. We also tabulated the ranks
for a case in which the size of a block on the next step of elimination is taken as a
random number between ±10 percent of the current block size. This is an interesting
example in that the ratio of the difference in the sizes of two consecutive blocks
relative to the grid size does not go to zero, which is not the case for any reasonably
smooth domain (i.e., all the other examples considered so far). Table 8 reports these
numbers corresponding to starting block sizes of n = 100, 250, 500, 1000. Note that the
tabulated block sizes correspond to the size of the final Schur complement. Although
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not covered by our present theory, we see clearly that the Schur complements exhibit
low rank Hankel blocks even in these cases.

7. Conclusion. The methods of this paper are also applicable to piecewise con-
stant coefficient PDEs. They can also be extended to handle some special indefinite
problems. These matters will be published elsewhere.
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