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On the Numerical Simulation of Metasurfaces with
Impedance Boundary Condition Integral Equations

Matteo Alessandro Francavilla, Member, IEEE, Enrica Martini, Senior Member, IEEE, Stefano

Maci, Fellow, IEEE, Giuseppe Vecchi, Fellow, IEEE

Abstract—Metasurfaces are thin metamaterial layers charac-
terized by unusual dispersion properties of surface/guided wave
and/or reflection properties of otherwise incident plane waves.
At the scales intervening in their design, metasurfaces can be
described through a surface impedance boundary condition. The
impedance, possibly tensorial, is often ”modulated” i.e. it can
vary from place to place on the surface (by design). We investigate
on different integral equation formulations of the problem, with
special attention to the stability properties of the resulting system
matrix.

Index Terms—Metasurfaces, Moment methods (MoM), integral
equations, impedance boundary condition (IBC), anisotropic
surface impedance.

I. INTRODUCTION

In recent years metamaterials have inspired several appli-

cations in designing antennas and microwave components,

thanks to the possibility of achieving electromagnetic proper-

ties impossible to find in nature. Metasurfaces are thin meta-

material layers characterized by unusual reflection properties

of plane waves and/or dispersion properties of surface/guided

waves [1], [2]. Metasurfaces can be realized at microwave

frequencies by printing a dense periodic texture of small

elements on a grounded slab, with or without shorting vias;

in the following, we will refer with the term metasurface to

the combination of grounded slab and printed metalizations

on top of it. Because the patterning is sub-wavelength, wave

phenomena on the metasurface can be suitably approximated

in terms of an equivalent surface impedance relating the tan-

gential components of the average electric and magnetic fields.

This surface impedance typically takes on space-dependent

values to realize guiding or radiating components [3]–[5]. By

modulating the equivalent surface impedance it is possible to

engineer the interaction of a given incoming field with the

metasurface so as to design a large number of devices [6]. For

instance, metasurfaces can be used to change the propagation

constant of surface waves, thus realizing planar lenses [7], or

leaky-wave antennas [3]–[5]. The very effect of metasurface

antennas and lenses derives from the spatial variability of the

(tensorial) surface impedance, sought by design.
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The metasurface modulation can be obtained by gradually

changing the geometry of the elements in contiguous cells,

while maintaining the period unchanged and very small in

terms of a wavelength. Macroscopically, this results in a

modulation of the equivalent impedance of the metasurface,

that, due to the small dimensions of the unit cell, can be

assumed to be almost continuous. Metasurfaces consisting

of electrically small printed patches with a symmetric shape

result in a surface impedance that is mostly scalar. By using

asymmetric constituent elements, however, it is possible to

design metasurfaces with specific anisotropic behaviors. This

kind of artificial surfaces can be effectively described through

an equivalent impedance tensor. It has been recently suggested

that modulated anisotropic metasurfaces can be used to re-

address the propagation path of an incident surface wave [8].

This approach provides effects similar to those obtained by

applying Transformation Optics in volumetric inhomogeneous

metamaterials, but with a significant technological simplifica-

tion.

The typical design of a metasurface device starts from an

analytic determination of the surface impedance (e.g. [5], [9])

which rests on some approximation; this surface impedance

is then realized by appropriately sized cells, with this design

phase usually based on a local periodicity assumption. It

is therefore desirable to have an intermediate tool to assist

antenna engineers during the design phase: such tool shall

be able to predict the electromagnetic behavior of a given

surface impedance profile without further approximations; the

cell design process can thus start after the surface impedance

has proven to produce the desired performances. During all

retuning of the metasurface, only the impedance profile needs

be updated, with no mesh change necessary, and without the

explicit CAD drawing of all cells. This drastically reduces the

time needed to optimize sizes, shapes and locations of the

single elements. Likewise, the necessary full-wave analysis of

the actual structure will be typically carried out only at the end

of the design process, with minimal retuning of the individual

cells.

Motivated by this, we investigate on the full-wave solu-

tion of the boundary-value problem for the IBC in realistic

geometries employing the integral-equation formulation (with

Method of Moments (MoM) discretization). In particular, we

address the stability properties of the associated numerical

problem, which play a crucial role in the analysis of the

metasurface. Obviously, we are not addressing here the prob-

lem of how to design a reactance profile satisfying some

goal requirements. However, we hope that our finding will
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expedite the design process. Finally, we remark that during

design retuning where only the impedance profile is changed,

key components of the MoM matrix need not be re-computed

(even when using fast factorizations), significantly expediting

this optimization phase.

A recent paper [10] has addressed the problem of scat-

tering from IBC surfaces in a very efficient and promising

way, by discretizing both electric and magnetic currents and

thanks to a self-dual formulation stable with frequency and

impedance. However, applying [10] to thin layer problems,

as the ones arising from metasurface analysis, is non-trivial.

Here, we explore different formulations to analyze the very

specific problem of metasurfaces, including how to extend the

validity of the IBC itself (i.e. how to better cope with spatial

dispersivity).

Finally, it is worth mentioning here that Generalized Sheet

Transition Conditions (GSTC) [11], [12] generally provide

a more general description of the metasurface; there is a

connection between the GSTC and IBC, which is discussed

in [2]. Further, we remark here that the aim of this work is

not discussing under which conditions the IBC is applicable;

on the contrary, we address the numerical issues arising in

dealing with the IBC when this is satisfactorily applicable.

There is indeed a vast literature discussing the validity of the

IBC model (see, e.g., [13] and references therein).

The remainder of the paper is organized as follows: in

Section II, we introduce three different integral formulations

to address metasurfaces; Section III discusses the stability

properties of the formulations, and in Section IV a set of real-

life metasurfaces is presented to analyze the performance of

these formulations. Preliminary results and applications of the

proposed approach have been presented in conference papers

[14], [15]. Finally, a brief conclusion is given in Section V.

II. FORMULATION

With reference to Fig. 1, the (tensor) surface Impedance

Boundary Condition (IBC) on a surface Σ can be written in

two ways:

a) relating the rotated tangential traces of the fields on the

exterior of a closed surface (or half-space) [10], [16]–[20]

n̂×EΣ+ = n̂×
[

Z
s
· (n̂×HΣ+)

]

(1)

where n̂ is the (outward) unit vector normal to the surface

Σ, Z
s

is the tensorial surface impedance, and the subscripts

Σ+ and Σ− indicate whether the field is evaluated in the

limit approaching Σ from the direction identified by n̂ or −n̂,

respectively; or

b) relating the rotated tangential trace of the average electric

field to the rotated tangential trace of the magnetic field jump

across an infinitely thin surface [2], [12]

n̂× Eav = n̂×
[

Z
s
·
(

n̂× (HΣ+ −HΣ−)
)]

(2)

Equations (1) and (2) are sometimes denoted as zeroth order

IBCs [13], and the impedance parameters are valid only

for single incidence (typically, normal incidence for scatter-

ing, and surface wave incidence for metasurface antennas);

higher order IBCs provide a more accurate modeling of the

impedance surface, at the additional cost of being non local.

In the following, we will not discuss higher order IBCs, as

the subject goes beyond the scope of the paper; rather, we

will focus our attention on the numerical stability of the

zeroth order IBCs, specifically in the presence of a reactive

impedance boundary condition, extending its validity beyond

the single incidence.
Our aim is to solve (1) or (2) by means of the Method

of Moments (MoM). We start by expressing the electric and

magnetic fields as a function of the tangential components of

the fields on the equivalent surface Σ = Σ+ ∪ Σ−, a closed

boundary enclosing the metasurface (shown in fig. 1), in virtue

of the uniqueness and Love theorems. To this aim we resort

to Stratton-Chu formulation [21] for the scattered fields:

E
s =

∫

Σ

Gej(r, r′) ·
(

n̂Σ ×HΣ(r
′)
)

dr′+
∫

Σ

Gem(r, r′) ·
(

− n̂Σ × EΣ(r
′)
)

dr′

H
s =

∫

Σ

Ghj(r, r′) ·
(

n̂Σ ×HΣ(r
′)
)

dr′+
∫

Σ

Ghm(r, r′) ·
(

− n̂Σ ×EΣ(r
′)
)

dr′

(3)

where Gej , Gem, Ghj and Ghm are suitable (i.e. problem

dependant) dyadic Green’s functions.

A. Opaque IBC-EFIE

Let’s consider the opaque or one-sided IBC of eq. (1):

this model assumes that the impedance sheet is impenetrable,

which in turn implies that fields on the negative side Σ− are

null, and substitution of (3) into (1) yields:

n̂×E
inc
Σ+ + n̂×

∫

Σ

Gej ·
(

n̂×HΣ+

)

dr′+

n̂×
∫

Σ

Gem ·
(

− n̂×EΣ+

)

dr′ = n̂×
[

Z
s
· (n̂×HΣ+)

]

(4)

with n̂ ≡ n̂Σ+ . In the opaque model, the tensor Z
s

accounts

for the sheet impedance (e.g., the patches) and the grounded

dielectric slab; consequently, the sheet currents J = n̂×HΣ+

and M = −n̂×EΣ+ = −n̂×
(

Z
s
· J

)

radiate in free space,

and the appropriate Green’s functions are:

Gej (r, r′) = jk

[

I +
∇∇′

k2

]

e−jkR

4πR

Gem (r, r′) = ∇×
(

e−jkR

4πR
I

)

with R = ‖r− r
′‖, and k = ω

√
ε0µ0. Note that, when the

surface Σ+ is planar, the principal value of n̂×
∫

Σ
Gem ·M dr′

vanishes, and the integral reduces to −1/2M. This assumption

is always valid for the planar metasurfaces considered here,

and substitution of eq. (1) into eq. (4) yields the following

modified Electric Field Integral Equation (EFIE):

n̂×E
inc = −n̂×

∫

Σ

Gej · J dr′ +
1

2
n̂×

(

Z
s
· J

)

(5)

Eq. (5) is an equation in one unknown (the equivalent electric

current density J = n̂×HΣ+ ), which can be discretized and

solved by means of the MoM.
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Fig. 1. The geometry for deriving the integral equation describing the
metasurface (identified in red).

B. Transparent IBC-EFIE

Conversely, if one aims to solve eq. (2), after expressing the

left hand side as n̂×Eav =
1

2
n̂×

(

EΣ+ +EΣ−

)

, analogous

derivations and the introduction of the two equivalent current

densities J = n̂×(HΣ+−HΣ−) and M = −n̂×(EΣ+−EΣ−)
yield:

n̂×E
inc =− n̂×

∫

Σ

Gej · J dr′−

n̂×
∫

Σ

Gem ·M dr′ + n̂×
(

Z
s
· J

)

(6)

Differently from the opaque case, Z
s

now does not take

into account the grounded slab, as it only describes the field

jump across the sheet of patches. The effect of the slab,

on the other hand, has to be accounted for by the Green’s

functions. Several formulations are well known in literature for

modeling the Green’s functions in layered media; a discussion

about them goes beyond the scope of the present paper, and

we will only mention that the formulation employed in the

remainder of the paper is the Mixed-Potential formulation

by Michalski [22]. Obviously, once the characteristics of the

grounded dielectric slab are chosen (i.e., its thickness h and its

permittivity/permeability), there is a one-to-one relation [23]

between the two impedance tensors of eq. (1) and (2), which

is particularly simple when a TE/TM basis is fixed:

Y opaque

s
= Y transp

s
+

[

Y TM
slab (ks) 0

0 Y TE
slab(ks)

]

(7)

where Y
s
= Z−1

s
, and the admittances of the slab Y TM

slab and

Y TE
slab explicitely depend on the (local) wavenumber ks of the

guided wave:

Y TM
slab = −j

ωε

kz
cot(kzh)

Y TE
slab = −j

kz
ωµ

cot(kzh)
(8)

where kz =
√

k2 − k2s . Note that, for normal incidence,
ωε

kz
=

kz
ωµ

=

√

ε

µ
, and Y TM

slab = Y TE
slab, as expected (the two

polarizations are indistinguishable). It is worth noting here that

ks in eq. (7) is the transverse wavenumber of the surface wave

locally supported by the structure, and it is obtained by solving

the local resonance equation [6].

Eq. (6) is an equation in two unknowns (J and M), and

requires an additional condition to be enforced, e.g. the dual

of eq. (2), relating the average magnetic field to the jump of

the electric field:

n̂×Hav = n̂×
[

Y
ms

·
(

− n̂×(EΣ+ −EΣ−)
)]

(9)

Note that the surface magnetic admittance Y
ms

is a tensor

independent from Z
s

(see [2] and references therein). How-

ever, under the assumption that the patches synthesizing the

metasurfaces are thin, the tangential electric field is continuous

(null on metalizations, continuous across a dielectric inter-

face), yielding M = n̂×(EΣ+ − EΣ−) = 0. In the following

we will restrict our attention to the case where this assumption

is valid, so that the term
∫

Σ
Gem ·M dr′ does not contribute

to radiation, and eq. (6) can be solved for the sole unknown

J.

It is worth mentioning here that the formulation of eq. (6) is

general, and is not limited to planarly layered media; however,

in the presence of different backgrounds, Green’s functions

are available only in a few cases (e.g., in the case of coated

cylinders [24]). On the other hand, when the Green’s function

of the problem is not available, the numerical solution of eq.

(2) requires discretization of the interfaces between different

media (see, e.g., [10], [17]). In the rest of the paper, without

loss of generality, we will focus on planar stratifications only.

C. Alternative IBC-EFIE

A slightly different formulation to discretize eq. (1) is also

possible: with reference to Fig. 2, the equivalence surface

is built to enclose the dielectric slab, with its boundary

represented by the metasurface (Σ+ in figure), the metallic

ground plane (Σ−), and the closure where the slab is truncated

(Σe). For thin substrates it is typically reasonable to neglect

the effects of the currents on sidewalls Σe, and the following

equations can then be derived:

n̂Σ+ ×EΣ+ = n̂Σ+ ×
[

Z
s
· (n̂Σ+ ×HΣ+)

]

on Σ+

n̂Σ− ×EΣ− = 0 on Σ−

(10)

These boundary conditions require the presence of electric

currents J
− = n̂Σ− ×HΣ− on Σ−, and electric and magnetic

currents, J
+ = n̂Σ+ × HΣ+ and M

+ = −n̂Σ+ × EΣ+ =
−n̂Σ+ ×

(

Z
s
·J+

)

, on Σ+. As in the case of eq. (5), magnetic

currents are expressed in terms of electric currents, and (10)

is a system of two equations in two unknowns (J+ and J
−).

Love’s equivalence theorem applied on Σ+ ∪ Σ− allows to

remove the dielectric slab and fill the interior volume with

free space; consequently, J+ and J
− radiate in a homogeneous

medium, with the same Green’s functions as in eq. (5).

III. STABILITY OF THE FORMULATIONS

A. Condition properties of the IBC-EFIE formulations

In order to focus on the relevant properties of the formu-

lations, tests have first been carried out with the smallest

meaningful size; we considered a square patch of size 0.1λ
(the frequency of analysis is f0 = 7.5GHz), discretized with

4 triangles and analyzed by means of a MoM discretization

with Rao-Wilton-Glisson (RWG) [25] basis functions and

tested onto n̂×RWG. The surface impedance is constant and
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isotropic, i.e., Z
s
=Zs I , with I the identity dyad. The condi-

tion number of the MoM matrix is studied as a function of the

impedance value Zs; Fig. 3(a) summarizes the behavior of the

condition number, when the real and imaginary components of

the surface impedance Zs vary in the interval [−10Z0, 10Z0],

with Z0 =

√

µ0

ε0
the wave impedance in vacuum; three

distinct peaks of the condition number are clearly visible on

the imaginary axis of Zs. When increasing the discretization,

the number of peaks in the condition number increases too

(see fig. 4(a), referring to a square plate discretized with

313 unknowns); eventually, for very dense discretizations, the

problem is ill-posed in a continuous interval on the positive

imaginary axis. By looking at the spectrum of the discretized

operator for the problem with 4 unknowns (fig. 3(b)), it is

clear that some imaginary impedance values have the effect

of moving one singular value of the system matrix to the

origin, accordingly making the system ill conditioned. Note

that typical values of reactance required to support surface

waves in a metasurface fall into the ill-conditioned interval.

We stress that the above analysis is merely a study of the

numerical properties of the discretization of the IBC equations;

consequently, some values of Zs in the considered range

may not correspond to realistic structures (e.g., Rs < 0).

It is worth noting that the problem is intrinsically linked to

the specific reactance values implied by metasurfaces, which

are in turn solutions of a transverse resonance problem (see,

e.g., [8] and references therein); conversely, it does not show

up when studying the scattering from a surface described

through reactive IBCs (e.g., successfully analyzed with the

one-sided IBC-EFIE in [26]), nor for real values of the surface

impedance Zs ∈ R [16], [17], [27].

Conversely, different properties of the IBC-EFIE are ob-

tained when eq. (6) is enforced. Despite the equation has

still the same form of the one-sided IBC-EFIE in (5), and

as a consequence instability regions for some values of Zs

are expected, it can be verified that the region where the

transparent IBC-EFIE is unstable is different from the region

where the one-sided IBC-EFIE is unstable, as shown in fig.

4(b), where the condition number of the IBC-EFIE is studied

as a function of the normalized reactance
Xs

Z0

. The results

show how the instability region is shifted; most important,

typical values of Xs involved in metasurfaces lie in the

instability range of the one-sided IBC-EFIE, but not in the

Fig. 2. Alternative application of the equivalence theorem to derive the
integral formulation of the IBC on the metasurface (identified in red): the
equivalence surface (the blue dashed line in figure) is split into: a) Σ+, where
the one-sided IBC is enforced; b) Σ−, where the PEC condition is enforced;
c) Σe, the lateral edges of the closed surfaces, which are neglected.

instability range of the transparent IBC-EFIE.

Consequently, the transparent IBC has a twofold benefit

over the opaque IBC:

• it yields a well-conditioned matrix equation for typical

metasurface reactances, as shown in fig. 4(b).

• the spatial dispersion in the dielectric slab is taken into ac-

count by the layered Green’s functions (and, therefore, the

slab admittance Y TM
slab extracted in (7) depends explicitly

on ks); this is not true for the case of the one-sided IBC,

where the spatial dispersion is neglected, which is both

incorrect and unphysical. Note that the dispersion of the

impedance sheets (typically realized with sub-wavelength

metallic patches) is always neglected; however, it can be

verified that the dispersion of the patches is typically

negligible. The importance of spatial dispersion and its

effects on metasurface problems have been discussed in

two recent works [28], [29].

We observe that this formulation, while different, is in agree-

ment with the recommendations of [2] on the descriptors of

the IBC.

B. Isotropic surface impedance: planar Luneburg lens

We next consider the case of an impedance profile corre-

sponding to the Luneburg lens:

Zs = jZ0

√

k2s
k2

[

2−
(

ρ

R

)2]

− 1 (11)

where ρ is the distance from the center, R = 12.5cm is

the radius of the lens, and ks is the wavenumber of the TM

guided wave supported by the structure (a PEC-backed dielec-

tric slab). The lens has been discretized with 12’510 RWG

functions, and analyzed at the frequency of 7.5 GHz. The

impedance profile described by (11) possesses the property

of focusing parallel rays into a single point on the edge of the

lens (or, reciprocally, transforming rays launched by a point

source on the edge into a plane wavefront on the opposite side

of the lens). If one applies the one-sided IBC (5) to analyze the

structure the resulting MoM matrix is very ill-conditioned, and

an iterative solution fails to converge (see fig. 5). On the other

hand, if one uses the transparent IBC (6) the resulting system

matrix is well-conditioned, and the system converges to the

correct solution, as in Fig. 6. This option requires explicitly

taking into account a specific dielectric slab, and evaluating

the Green’s functions in a layered medium; Fig. 6 shows the

current density on the lens with an Arlon AR 1000 dielectric

substrate (εr = 9.8, thickness h = 1.575mm) and excited

through a point source placed in (x = R, y = 0), when eq.

(6) is enforced: as expected, the correct focusing behavior of

the Luneburg lens is satisfactorily captured. Conversely, when

eqs. (5)-(10) are enforced, it is impossible to correctly predict

fields on the surface of the lens (see Figs. 7-8).

An explanation of the reason why the opaque IBC-EFIE

fails to correctly model the metasurface can be given as

follows: when applying eq. (1), one is analyzing a resonant

problem (as a matter of fact, the surface reactance Xs is

obtained as a solution of a resonant problem). On the other

hand, when the problem is modeled by means of eq. (2), one
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(a) log10 of condition number vs (constant) surface impedance.
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(b) Eigenvalues (absolute value) of the system matrix when Zs = jXs.

Fig. 3. Square plate - NDoF = 4.

is analyzing field jumps across the dielectric interface, and

the fields above and below Σ can be correctly reconstructed

at the cost of a more expensive Green’s function computation.

The latter, together with the correct handling of the spatial

dispersion in the dielectric slab (key point in guided wave

phenomena), indicates that metasurfaces shall be analyzed

through the transparent IBC-EFIE of eq. (6).

IV. NUMERICAL EXAMPLES

The previous analysis has been carried out for isotropic sur-

face impedances but the results can be applied to the tensorial

case. We remark that we have employed our formulation to

significant anisotropies (see Sec. IV-B) without problems.

All the numerical results presented in the following sections

have been obtained with the formulation of eq. (2); previous

sections proved how this is the only formulation capable of

handling metasurface problems.

(a) Condition number (log10) of the opaque IBC-EFIE.
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different IBC-EFIE formulations.
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Fig. 5. Convergence of the GMRES solver for the planar Luneburg lens at
7.5 GHz.

A. Isotropic surface impedance: a planar Maxwell’s fish-eye

lens

In this section, a planar lens implementing the impedance

profile of a Maxwell’s fish-eye lens is considered:

Zs = jZ0

√

√

√

√

√

√

√

√

4

(

ks

k

)2

[

1 +

(

ρ

R

)2]2
− 1 (12)
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Fig. 6. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (6).

Fig. 7. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (5).

where ρ is the distance from the center, R = 12.5cm is

the radius of the lens, and ks is the wavenumber of the

TM guided wave supported by the structure (a PEC-backed

dielectric slab). The lens has been discretized with 27’866

RWG functions, and analyzed at the frequency of 7.5 GHz.

The impedance profile described by (12) possesses the prop-

erty of focusing each point on its circumference to the point

diametrically opposed to it. The lens has been realized on

the same substrate of Sec. III-B; it has been excited with a

ẑ−polarized point source located in (x = 13cm, y = 0). Fig. 9

shows the real part of the vertical component of the electric

field, on a plane z=5mm (i.e., 3.425mm above the lens): the

focusing property of the lens is correctly predicted by the IBC

model.

The lens has also been implemented with circular patches

with a square slot (possibly null) in the middle, printed on

the substrate; the size of the patches and of the slots is varied

locally to reproduce the variable impedance profile of eq. (12).

The vertical component of the electric field of the actual

realization is reported in fig. 10: excellent agreement with the

results predicted by the IBC model can be verified (details

about the actual realization with patches of the lens can be

found in [30]).

B. Anisotropic surface impedance: a beam shifting surface

In this section, a planar beam-shifter based on transforma-

tion optics and on the work in [9], is studied through the IBC-

EFIE formulation. The beam-shifter is realized with a (con-

Fig. 8. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (10).

x [m]

y
 [
m

]

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 9. Planar Maxwell’s fish-eye lens: the vertical component (real part) of
the electric field (V/m), on a plane 3.425mm above the lens. Results obtained
with the IBC model; the circumference delimits the lens region.

stant) anisotropic surface impedance printed on a grounded

dielectric slab, as depicted in Fig. 11. The anisotropic region

is designed such as to bend by 13◦ an incident Gaussian beam

traveling in the direction +x̂ and vertically polarized (along

ẑ), at a frequency of 9 GHz. The beam-shifter is realized

with a grounded dielectric slab of thickness h = 1.55mm
and permittivity εr= 14; on top of the dielectric slab the the

anisotropic region has a tensorial reactance, when a Cartesian

basis is fixed, described by:

[Z s ] =

[

jXxx jXxy

jXyx jXyy

]

(13)

with Xxx = −1300Ω, Xyy = −1626Ω, and Xxy = Xyx =
1215Ω. Fig. 12 shows the y-component of the magnetic field

Hy = ŷ ·H on the beam-shifting surface. The Gaussian beam,

launched in the isotropic region, excites a surface wave in the

grounded slab, which is refracted by 13◦ when encountering

the anisotropic region.

C. Anisotropic surface impedance: an holographic antenna

To prove the effectiveness of the approach, we apply it to

the analysis of a holographic antenna based on the work in

[5]. The antenna is a circular disc with diameter D = 54 cm,
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Fig. 10. Planar Maxwell’s fish-eye lens: the vertical component (real part) of
the electric field (V/m), on a plane 3.425mm above the lens. Results obtained
with a full-wave simulation of the actual realization of the lens with patches;
the circumference delimits the lens region.

Fig. 11. A beam-shifting surface is realized with a (constant) anisotropic
surface impedance printed on a grounded dielectric slab. The anisotropic
region is designed to bend an impinging Gaussian incident beam, traveling in
the direction +x̂ and vertically polarized (along ẑ), by 13◦ with respect to
the x-axis.

corresponding to about 15 λ at the frequency f0 = 8.425 GHz,

with an anisotropic impedance profile which, fixed the basis

in cylindrical coordinates, takes the following form:

[Z s ] = jZ0

[

ηρρ ηρφ
ηφρ ηφφ

]

(14)

with
ηρφ = ηφρ = ηs m cos(Kρ)

ηρρ = ηs
[

1 +m sin(Kρ)
]

ηφφ = ηs
[

1− m

2
sin(Kρ)

]

(15)

In the above, ηs = 0.55, m = 0.3, K= 2π/d, and d=0.87λ=
31mm is the radial period of the modulation. The antenna

is discretized with 33678 triangular facets, corresponding to

50’079 RWG basis functions, and analyzed with eq. (6) in the

Fig. 12. Hy [A/m]: y-component of the magnetic field on the beam-shifting
surface; the incident gaussian beam is bent by 13◦ .

presence of the Arlon AR 1000 dielectric substrate actually

assumed in the rest of the design (εr = 9.8, thickness h =
1.575mm).

This design has next been implemented with circular

patches realizing the reactance of eq. 14 (not reported here),

and a simulation of the actual antenna has been carried out,

modeling each patch realizing the impedance profile; Fig. 13

shows the comparison between the two models (IBC and actual

antenna) for the directivity pattern in the plane ϕ = 0◦.

The excellent agreement between results shows that the IBC

model can be considered as a very good approximation of the

actual behavior of the metasurface antenna. Its advantages are

particularly evident in the design phase, where fast analysis

of an impedance surface can be carried out without the need

of designing and drawing in the CAD model each patch

individually, a process which can be very time consuming, es-

pecially when an optimization is required. Note that a variable

impedance profile intrinsically requires the single elements

to be different from each other (e.g., circular patches with

different diameters), even though it is often possible to place

them in a periodic (regular) arrangement. It is then clear that

an optimization process during design is highly accelerated

when only the impedance profile shall be simulated.

It is worth noting that a change in the impedance profile

does not require to recompute the system matrix, typically the

most time consuming step (especially in the presence of a

layered medium, in which Green’s functions are non-trivial);

it is indeed sufficient to recompute the last term of eq. (6),

namely n̂×
(

Z
s
· J

)

.
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Fig. 13. Directivity pattern of the holographic antenna in a cut in the xz
plane (ϕ = 0); the antenna is fed with a vertical pin, placed in the origin of
the reference system (the center of the antenna); RHCP and LHCP refer to,
respectively, right hand and left hand circular polarizations.

V. CONCLUSION

We studied different numerical discretization schemes,

based on an integral formulation and on a surface impedance

model, for problems involving metasurfaces and guided wave

phenomena. Two of the three considered formulations suffer

of instability problems in the cases of interest, while the

transparent model of the IBC, which only models the thin

sheet of patches, yields a stable discretization and accurate

results. Results proving the effectiveness of the transparent

IBC-EFIE are shown for realistic problems.
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