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On the Numerical Solution of Integral- Equations.
By E. T. WHITTAKER, F.R.S.

(Received December 27, 1917.)

§ 1. Introductory.

The present communication is concerned with integral-equations of Abel’s

type y
L(ﬁ (8) & (x—s)ds = f(2), (1)
and of Poisson’s type ]

@+ SOk (e—)ds = /(2), @)

where « () is a given function called the nuclews, f(2) is also a given function,
and ¢ () is the unknown function which is to be determined. The object of
the work is to obtain solutions of these equations in forms which can be
made the basis of numerical calculation.

Theoretical solutions of both these equations, in the form of infinite series,
are well known, and have been fully discussed by Volterra* and others.
But in these solutions the nth term of the series is a multiple integral
involving (n—1) integrations with variable limits: and although such series
are valuable for the light they throw on the general properties of the
solution, it iz obvions that they cannot, except in very special cases, be used
in order to compute values of the solution numerically, The only case, so
far as T am aware, in which a solution of an equation of one of .the above
types has been obtained in a form adapted for practical ends is Abel’s
original special form of equation (1),

X
L%%’;—: =) (V<p<l, [F0)=0),
for which he gavet the solution
L. ¥ 5) ds
b (r) = - sinpm L (_,f.ix))lfi

* “Torino Atti,) vol. 31, pp. 311, 400, 557, 693 (1896). For fuller references ¢f-
H. Bateman, “ Report on the Theory of Integral Equations,” ¢ Brit. Assoe. Report,’ 1910.

t ‘(Euvres,’ (ed. 1881), p. 11 (1823) and p. 97 (1826). The fundamental meaning of
Abel's result is most clearly seen if the integrals which oceur in it are interpreted as in
the theory of generalised differentiation : if ¥ (z) is written for r(1—p)¢(z), Abel’s
formula reduces to the simple statement that if

() Y@ =r,

L
then ¥ (2) = (g; )"” 7 (2).
VOL. XC1V,—A. 9
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When f () is given, the values of /'(s) and of the integral last written ma
be obtained without difficulty by the ordinary processes of interpolation
numerical integration.* :

Recently, two friends, one a seismologist and the other an actuary, have
enquired of me whether the integral-equations (1) and (2), which had
occurred in their researches, could be solved in such a way as to obtam
numerical results when the functions x(z) and f(2) are known (ta.bulated)
functions. It was under the stimulus of these enquiries that the methods o
solution which occupy the following pages were devised. It will be seen
that T have departed altogether from the customary methods of solution by
infinite series whose terms are multiple integrals, and on this account the
new solutions, which are formulated in Theorems 1-5 below, and by whieiito
the unknown function may be determined numerically, may perhaps be
found to be not without interest from the standpoint of pure theory.

§ 2. Solution of Integral-Equations of Abel's Type.
Consideriné first the generalised Abel’s integral-equation,

[s@r@-9as=1@), - a

we need only consider the case when the nucleus x(z) becomes infinite at
z =0, for in the simpler case when the nucleus is finite at @ =0, the
equation (1) may be reduced immediately, as we shall see later, to the
type (2), and so may be dealt with by the methods which are given subse-
quently in the paper.

We shall, then, suppose « () to be such that @”«(z) is finite and not zero
at z = 0, where p lies between 0 and 1.

Now if the nucleus «(z), which is supposed to be given by a numerical
Table, has this character, so that it becomes infinite like ™7 at = 0, but is
finite for other values of  within the range of integration, we can in general
(by use of Newton’s or some other interpolation-formula) represent the
function P« () over the range in question by a polynomial in '; the degree
of this polynomial will depend on the nature of « () and the order of
accuracy to which the work is to be carried. We may, then, assume for the
nucleus « () an analytical expression of the form

K (2) = 27 (ag+ mz+ agt* + ... +az®), (0 <p<1).

* It is possible that the elegant solution in power-series which was given by Sonine,
‘ Acta Math.,’ vol. 4, p. 171 (1884), for his generalised form of Abel’s mtegra.l-equltl !
may also be utxhsed for numerical calculation.
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s Now assume® a solution of the form
@ = [/ OK@=9as )

- where K (2) is called the solving fumction. We have on eliminating ¢ (z)
- between this equation and (1)

F(@) = L/c (@—s) { Lf () K (s—?) d:}ds,
o.r, inverting the order of integration,
L FOdt = juf (t) { j’ :x (@—8)K (s—t)ds} dt.
Since / (¢) is an arbitrary function, this gives

j:x(z—s)K(sf—t)(s =1,

022
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Writing s = ¢+, this becomes

r—i
[ e @—t—u)K (u)du = 1,

0

or j“x (a—w) K (w)du = 1,
. 0

where « is arbitrary. From this equation the solving function K (@) is to be
determined.

By (3) this may be written

[~

] L(“—'“')—"{ao+ a(a—u)+az(@—uf+...+a, (a—u)} K (u)du = 1. (5)
Now let JOK (v)dw be denoted by X, (u); let -rKl («)du be denoted by
0

Ky (u), and so on. Then integrating by parts we have
L(u —u)"PK (u)du = (1—p) Jm(u—u)"P K, (u) du,
0
j (0—uf PR (du) = (2—p) r(a—u)l-r K (u) du,
0
= (2—p)(1—p) L(a—u)‘ﬂ Ky (1) du,
and so on. Thus equation (5) may be written
L(a—u)-r {a0 K () +(1 = p) axKs (1) + (1 —p) (2= ) 05K (1) +- ..

+(A=p)(2—p)...(n—p) @, K, (w)}du = 1. (6)
* The legitimacy of this may be inferred at once from Volterra's theory.
262
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Now if r(a—u)‘Ph(u) du = 1, where a is arbitrary and % (») does
0 -
involve @, we have by writing » = as

1

ol I (1—s)"?h (as)ds,

0 .

and, since « is arbitrary, this shows that % (z) = Cu?~', where C is independent
of u.

Substituting in the last equation, we have -

Cmr
sin pr

P=e f :(1 —s)Psp1ds =
and therefore 4
h(u) = si'%’_’ . upl,

Applying this result to equation (6), we have
ay K () + (1 —p) ey Ky () + (1 —p) (2—p) a2 Kg () + ...
+(1=p) @ =) (1—p) anKa(w) = TLLT ot
or, writing % (u) for K, (’u)
ar 1/

al

e o Y 4 (1—p) 2—p) s = L O

+(1=p)(2=p)..n—p)ay = sm"rpvr . WP

This is a linear differential equation in 7, and K, («) is that solution of it
which vanishes, together with its first (n—1) differential coefficients, when
u vanishes.

Now let the polynomial

ay +(L=p) e (1 =p) (2 =p) asi™ 2+ ...+ (1—=p) (2—p)...(n—p) tn ‘

be denoted by F(z): and let its n roots (supposed for the present to be
distinet) be «, B, @, ..., ». Then it is known from the general theory
linear differential equations that the solution of (7) which vanishes, together
with its first (n—1) differential coefficients, when » vanishes is

Ko (1) = [ s‘“qf” -1 . W{u—tydt

evr

F'( 5 F (3) T

where R(p)=




a3
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From (8) we have by successive differentiation

Ke-1{%) = SI—DF P:ﬂ’"‘h' (u—t)dt, since A (0) = 0,

Ki-2(n) = = r:t!"’h" (w—1)dt, since &' (0) = 0,

.............................................

.............................................

K, (u) = s tP“h("“)(u—t) dt, gince A"=9(0) = 0,

ty

N = § ®
K{n) = Sﬂ"rp_lr_{%_*_ ‘(Otﬂ“h(")(u-t)d&}, since A1 (0) = —1~’

Subst.itucing for 7 () from (9) we have K (z) = (1/m) sin p7 L(z), where

-

P Bu %
Lz ~ (P=get it : b | Pl Bl 4 ...
o = +h<) 5 CHETF®)’ [ ki
- x i p—1 ,—rt
+———F, ) ' Lt e " dt.
Now I g e a"’jus”"c" ds;
0 0
and thus if the funetion & r.s!'"c‘* ds
0

(which is well known under the name of the Incomplete Gamma-Function)
be denoted by oy,(zf) we have

ps://royalsocietypublishing.org/ on 04 August 2022
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Combining our results, we have

TrroREM 1.—The solution of the integral-equation

T
( ¢ (8) k (2—s)ds = f(x)
40
where the nuclous x () is supposed to be given nwmerically and to have been
expressed by the ordinary methods of wnterpolation in the form
k() = @ P(ay + @+ ag®+ ... + aat), O<p<Ll)

is $(s) = 20T [ 7 () Lz—s)ds, (10)
where

* Fov 4(r=1) (0) = sum of residues of t=1/F(z) at its singularities a, 8,
= —(residue of this function at @) = 1/a,

aeg ¥

is

(vz), (11)
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and where a, B, ..., v, are the roots of the algebraic equation
F(2) = a" +(1—p) 2" +(1—p) (2—p) as* " +..

+(1—p) (2—20) =2l (1‘

and. vy () denotes the incomplete Gamma-function

v (2) = e’f 1t ds.
0

This may be regarded as a direct extension of Abel's original formula,
which may be derived from it by taking » = 0. It expresses the solution
of the integral-equation #n a finile form in terms of the incomplete
I'-function. The incomplete I'-functions which occur in the solution all
have the same parameter p, and are, therefore, really all the same function,
with different values of the argument ; its values may be tabulated from any
of the expansions which were given for it by Legendre* such as the
absolutely convergent expansion ‘

pptl + ,Bp-i—?
? p(p+1) p(p+1)(p+2)

or (for large positive values of ) the asymptotic expansion
¥p (@) = I'(p) & —a1 {1+7’:_1+(7’ =Ry } |

When this function has been tabulated, and the algebraic equation (12)
solved,} the function L(z) may readily be tabulated from equation (11), and
then the required function ¢(z) is given at once by quadrature from
equation (10). Ini this way Theorem 1 yields a numerical solution of the
generalised Abel’s equation.

It is obvious that when the polynomial ¥ (z) has a pair of equal roota:
certain modifications must be made in the above solution, but it does not
seem necessary to set these forth in detail here.

It may be remarked that by making the degree » of the polynomial in (3)
increase indefinitely, we obtain in the limit the solving-function of the
integral equation, with an arbitrary function as nucleus, in the form of an
infinite series of incomplete I'-functions of the same parameter. In con-
vection with such a solution it would be necessary to discuss convergence,
etc., and it is not proposed to undertake this in the present paper; but the
matter seems worthy to be mentioned in passing, as series of incomplete.
I'-functions have not (so far as I know) presented themselves hitherto i

'Yp()

* *Exerec. de Cale. Int., vol. 1, pp. 338-343 (1811).
t For this Newton's method will probably be found in most cases the most convenient,
if >3 ; or if some of the roots are complex, the Lobachevsky-Graeffe method.

.
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analysis. They may evidently be regarded as an extension of Dirichlet’s
series, i.c,, series of the type '
F(z) = a2 4 be~* +ce~" +...,

which have received much attention in recent years.

§ 3. Solution of Equations of Poisson's Type.
When the nucleus « () of equation (1), instead of being infinite at z = 0 as
we have supposed hitherto, possesses a finite differential coefficient over the
range of integration, we have by differentiating equation (1)

(@) (0)+ j}b (s) &' (z—s)ds = [’ (x)

which is an integral equation included in Poisson’s type(2).* We shall,
therefore, now pass on to consider integral-equations of Poisson’s type, which
we shall take in the form

p@+ [0 nG—nds = /). @)

Since the nucleus «(z) is supposed to be specified by a table of finite
numerical values over the range of values of » considered, we may apply
Prony’s method of interpolation by exponentials in order to represent it
analytically in the form of a sum of g exponentials

x(2) = PePr 4 Qea= + Rer + ... + Vo, (13)

where (P, Q, R, ..., V,p, ¢, 7, ..., v) are constants which are chosen so as
to give the closest possible representation of the given numerical values.

Although Prony's method is more than a century old, it does not appear to be widely
known or to have found its way into any text-book ; and, as his original paper is perhaps
not accessible to many readers, I may be justified in giving here a brief notice of it.

Suppose that k() is given numerically for a certain range of values of #. Take any
set of values of  equally spaced within this range, say z = 0, o, 2@, 3, 4@, ..., and lot
the corresponding values of & (z) be &, &y, ky, Ky, .... Now if «(2) could be represented
exzactly in the form of a sum of g exponentials, say,

Pets 4 Qe+ Re 4, ., 4 Vovs,
then & (#) would satisfy a linear difference-equation of the form
Axndp+ Brntu—1+Crnpu—24.....n + Mk, = 0,
where the roots of the algebraic equation
Ao+ Baow=14Cou—~24 ... +M =0
would be

CPY, 699, &TW . i Y,

* 1t need scarcely be said that if x(0) vanishes we differentiate again.
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Prony’s method, which is based on this fact, is to write down a set of linear equations,

Axy +Bru—1+Cru—3+...... + Mk, = <
Axu4+1+Bry +COkp—14+...... +Mx, = 5
Axu+2+Bry+1+Cry 4.0t +Mk, =0

Awp+3+Brut24+Crusr14 oo+ My =0

..................................................

where the quantities k, &;, ks kj, ..., are known, since x(2) is a known tabulated
function, and by the ordinary method of Least Squares to find the values ¢

A, B, C, ..., M, which most nearly satisfy the equations; then with these values of
A, B, C ..., M, to form the algebraic equation '

At +Baw=14Cop—24,. . 4+M = 0,

and find its roots ; these roots will be erw, eqw, erw, ., etw, and thus p, ¢, 7, ..., v, are
determined. Knowing p, ¢, 7, ..., ¥, we have a set of linear equations to determine
the coefficients P, ), R, ..., V, and these also are to be solved by the method of Least
Squares.

Taking then this form (13) for the nucleus (), we shall show that the
integral-equation (2) may be satisfied by a solution of the form

@ =7 @~ [K@=s7 s (14)
where the solving funetion K (2) is also a sum of u exponentials, say

K (z) = Ae** + Befr 4 Cer* + ... + Ne™. (15)

To prove this, we remark first that the existence-theorems established by
Volterra justify us in assuming for the solution the form (14), where K (z) is
now the function to be determined.

In (14) put « (z) for /' (x): thus

¢ (2) = k(x)— KK (z—3) x(s)ds,

which gives the value of ¢ (2) corresponding to this value of £ (z).
Putting (@—s) for s in the integral, we have

b (@) = x(@)— LI\ (5) ke (& —8) ds.

Comparing this with the integral-equation (2), after replacing f(z) by « ()
in the latter, we have

¢ (x) = K(),
and therefore the pair of functions
¢(2) =K(), J(»)=r@),
satisfy the integral-equation: that is to say,




g E
-S4
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In this equation substitute the value (13) for « () and the value (15) for
K(z). Thus we have

Aest 4 Befx + Ce + ... + Nev*

g r{Ac"+ Bobe 4 Cert ...+ New} {Pers—ps 4 Qeoe=ae 4 ...+ V=) ds
0

= Per+ Qe + Re* + ...+ Ve

Equating coefficients of ¢+ on the two sides of this equation, we have

) : -
R T SR e S

@ —1} a—{ a—9
Similarly by equating coefficients of ¢

-L+—(L+...+—L+l =

B—p B—¢ B—v

and so on: these equations show that =z, 8, v, ..., v, are the roots of the
algebraic equation in »

e i ki, (17)

X—p W=q T=T L=

This enables us to determine =, 8, v, ....
Next equating coefficients of ¢#* on the two sides of the equation, we have

A+B C+...+N+1=07“
a=p Bp G- v—p

and similarly aﬁq+BEq+qu+"'+u§q+l =0
.................................................. r (18)
LS S LT,
a—=7P B—v fy—-/p v—"0 -

Since («, 8, v, ..., »)and (p, ¢, =, ..., v) are known, these equations (18)
enable us to determine A, B, C, ..., N, and we see that if the constants
(2, B, v, ..., ») and (A, B, C, ..., N) are determined by equations (17)
and (18), the equation (16) is satisfied by the value (15) of K ().

The value of K(x) may be obtained in a more explicit form in the

1_‘.
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following manner. If we eliminate A, B, C, ..., N, determinantly from
the equations (15) and (18), we have

K@] 1 1 I ==¢*]4 1 1 | =] 1 1 1 |-
a—p B—p v—p B—p v—p a—p v—p
1 1 1 1 1 1 1 1 1
a—qB—q v—gq B=g v=4 a—g iy
1 1 1 1 i ! 1 1 1
a—v B—v  r—u B—v "v—uv a—v v=—0

The determinants which occur in this equation are of the kind known as

alternants, and may be factorised by known methods.* Performing the
factorisation, we have
R = _(“__P(“—Q)(“_"')"'(“—"J)eu
@) (a—B)(ax—ry)..(z—V)

_(B=p)B=9B=7)...AB=) jpr
(B=2)(B—7)...(B—)

_(=p)(r—g)(v—=7)...(r—2) -

(=) (v—RB)...(v—p)

Combining our results we have

THEOREM 2.—T'he solution of the integral-equation
@)+ [ SO e@—)ds =/ @)

where the nucleus k(x) is supposed to be given numerically, and to have been
expressed by Prony’s method of interpolation in the form

Kk (x) = Pe?*+ Qe™ + Re* 4 ... + Ve,

is b(@) =7 @) [ K@—97@)ds,
where
Ko — _(@=P)(E=0).(e=7) oo (B=p)(B=0)...(B=0) jur_
©) = =B a—na=n"  E= BB
_(=p)@=9)...r—1) 19
=R
and where a, 8, v, ..., v, ave the voots of the algebraic equation in »
e B0 B
r—p x—q T—T 2—7

* The evaluation of alternants of this type is due to Cauchy, ¢ Exercices d’An.,” vol. 2,
p. 151 (1841), 3

+1=0.
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It is obvious from the last equation that if p, ¢, », ..., v, are arranged in
ascending order of magnitude, and, if P,Q, R, ..., V, are all positive, then the
lowest root « is less than p, the next root 3 is between p and g, and so on.

If the number of exponential terms in (13) is supposed to increase
indefinitely, the representation of the nucleus « (#) becomes a Dirichlet's
series, and by (19) the solving function K () is then also a Dirichlet’s
series, formed with exponentials ¢**, ¢, ¢ ... whose exponents «,/3,, ...,
are the roots of equation (17), which now becomes a transcendental equation.
A rigorous examination of convergence, etc., in this limit-process would be
necessary to establish the theorem which appears to be indicated, namely, that
an the solution of a Poisson’s integral-equation whose nucleus is cxpressible as a
Divichlet's series, the solving-function is also expressible as a Dirvichlet’s servies, but
with a different set of exponents for the exponentials.

§ 4. An Alternative Solution of Integral-Equations of Poisson’s Type.

- Theorem 2 above supplies what I think will be found to be in general the

most convenient method of solving integral-equations of TPoisson's type
numerically. But in certain cases the nucleus x(#) may be given as a
polynomial, or it may happen, when « () is given in the form of a numerical
table, that it is preferred for some reason to apply ordinary interpolation
and express «(z) approximately as a polynomial, rather than to apply
Prony’s method of interpolation and express « () as a sum of exponentials.*
We shall therefore now consider the problem of integrating an integral-
equation of Poisson’s type

¢ (v)+ j:(p (8)k (—s)ds = [ (=) (2)

when the nucleus x (2) is expressed as a polynomial.

The solution of this problem may be deduced as a limiting case from that
solved in § 3. For, in equation (13), suppose that p, ¢, 7, ..., » (being % in
number), each tends to zero, while P, Q, R, ..., V, increase indefinitely in such
a way that

P+Q+R+-~-+V = Ko

{

Pp+Qg+Rr+...4+ Vo = x; ’
...................................................... > (20)

|

......................................................

" One great advantage of Prony’s method is that each exponential term involves ¢wo
-dmp?asltle constants (e.g., the term Pe’ involves P and p), whereas a term of a poly-
noml.n.l involves only one disposable constant (e.g., pa® involves only p), and therefore
At is in ge.nera.l possible to obtain as high a degree of accuracy in approximating with »
«exponential terms as with a polynomial of 22 terms,
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where xg, k1, K2, ..., ka—1, are finite. Then from equation (13) we have

x(x) =P <1+11n+1”::g;2 >+Q<1+qx+ﬂ >+

+V (140 + 224 )
K,.-l.’l.'"-l
(n—1)1"
the terms in higher powers of # vanishing,
Moreover, the equation (17), whose roots are «, 3, v, ..., », may be written:

- p(lplal o Nea(leld o ) 0 ? ) o
P(w+:7?+.?:3+"')+Q(\a;+a:”+w3+"' +.o.4V +z,+a_.,+ +1=0,

—xo+/m+"”b + .t

which by (20) becomes

/c,._

—+ +"”+ A+ 41 =0,

the terms in higher powers of (1/2) vamshmg, so that «, 8,4, ..., v, are now
the roots of the algebraic equation
ke 1 12" k-1 = 0. \
The equation (19) for the determination of the solving function K (z) now
becomes
K(z)= — z - ¢*F — g Fr—
R P o ot e M T o -2
yn \ pyr

T =) —B)...(—p)

e ————————————

and thus, collecting our results, we have
TurorREM 3.—The solution of the integral-equation

¢ (@) + j:qb (5) k (v—s)ds = f (2),

where the nuclevs x () 1s supposed to be given wwmerically, and to have been
expressed by the ordinary methods of interpolation in the form

k(%) = ro+xya+2" +"§’fg+ +’Z’;f:)-l : (21)
is ¢ (@) = f(@)— KK (2—8) £ (5) ds, (22)
where
K(.’L') = - a? B"

BT —
@B =)= B=a)B—).B—7)

& "" o 9
(v—a)(v—P)...(v—p) (23
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and where &, B, ..., v, ave the rools of the algebraic equation in &

o g 2" - = 0. (24)

| If this equation (24) has a pair of equal roots, terms of the type 22 will
oeccur in K (@), thus, if
k() = —2p+p,

¥ we find K(2) = —p(2+4pr)er=

i An interesting expansion is obtained by making » increase indefinitely in
,g this theorem. We then have the solving problem K (z) of the general
% Poisson’s integral-equation expressed in the form of a Dirichlet’s series, or,
‘z:a at any rate, a series of exponentials with real or complex arguments. This

appears to indicate a new field of analysis, in which Dirichlet’s series present
themselves naturally. But a thorough investigation of convergence would
be necessary for the rigorous establishment of this result, and, indeed, we
«ean show by simple examples that the expression obtained by making » tend
to infinity will not necessarily be s Dirichlet’s series, even though, for all
finite values of #, it is a sum of exponentials. For instance, if

-

& p 3‘1’.2 ])4‘”’1 puvcn-l
s@=pioetbribrt

80 that K = P, Xy =9 Ky = pb, S Kn—3 = D%
we see from (23) and (24) that K () is equal to the sum of the residues of

_(=ptyer
1 _pn-l»l//n-n

Downloaded from http.s://royalsecietypublishing.ergf on 04 Au

at its » poles, which are the (n+ 1)th roots of upity other than unity itself.
This sum of residues is evidently a sum of exponentials in 2, one corre-
sponding to each pole, so long as 7 is finite, but, when 7z increases indefinitely,
we have

K () = coefficient of 1/t in —(1—p/t)e* = p,

-80 that when the nuclens is x (z) = per”, the solving function is K (z) = p,
which is not a series of exponentials.

§ 5. A Further Alternative Solution of Integral-Equations of Poisson's Type.

Hitherto we have supposed the nucleus of the integral-equation to be given
by a numerical table, and to be represented, by use of the methods of the
interpolation theory, as a sum of exponentials, or as a polynomial. If
however, in an equation of Poisson’s type

$@+ [ K@= @) ds = /()

15
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the expansion of the nucleus «(z) as a Taylor’s series is known, say

Ka®
31!

then we shall show that the solving-function K(z) may be written down af
once as a Taylor’s series. For, the solution of the integral-equation in terms
of the solving-function being

$(0) = /@)= [ K@=2)f @)ds,
we have already in equation (16) shown that

K (z)+ j:K () (x—3s)ds = «k(2).

k(x) = Ko+ 12+ ——+ C i (

Putting @ = 0 in this, we have

Ky = xq, (26)

where Ky, Ky, K, ..., are used in ordér to denote the values of K(z) and its

successive differential coefficients at 2z = 0.
Differentiating (16), we have

K’ (@) + xo K (2) + LK h e o @1

Putting « = 0 in (27)

Ki+x Ky = x1. (28)
Differentiating (27)

K" @)+ 0K’ (@) + 0K @)+ LK (K" (z—s)ds = " (). (200
Putting = = 0 in (20),
Kot Ki+ 1 Ko = 2. (30)

If now the linear equations (26), (28), (30), ..., be solved for K, K, Ky, ...,
we obtain

Ko = xo
K] ! Ko 1
LS. ]
Ko =il xg AW
K1 Ky 1
Ka K1 Ko |, etec.

Let us now consider the convergence of the series

K0+K1$+sz2+%w"+
This series will evidently be absolutely convergent for all finite values of @
provided the series

Ko+ Kiz+4 Kor? + Kaz? + ...
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converges within a circle of non-zero radius. But the equations (26), (28),
(30),..., may be comprehended in the single formal equation

(ko + w0+ kst + ...) (14 kot + ke + 602’ + .. ) = Ko+ Kaz + Koz + ..
or

: R 1 }
K0+K1-1:+K2'”’+1\31"’+---—m {1 1+ ko2 + 6@+ xs® + ... J

and the expression on the right-hand side of this equation represents a
holomorphic funetion within a circle of non-zero radius having the origin as
centre, provided the power-series

1+ w4+ wre® + ko + ..
converges within a circle of non-zero radius and so represents a function
whose singularities and zeroes are all at a finite distance from the origin.

Subject to this last condition, then (which is, as a matter of fact, unnecessarily
stringent), the series

w*

e
I{U+K1;v+K2—+K3%+...

21

converges absolutely for all finite values of . We shall assume that it
converges, since the computer will not make use of this method unless the
convergence of this series is so rapid as to be obvious. Then, combining our
results, we have

TaEOREM 4.—The solution of the integral-equation

b (v)+ ﬁ¢ (s)k (v—s)ds = f(2)

where the nueleus x () is supposed to be expansible in a Taylor series

R =y
w ()= K0+K1il‘+’%a; +";—’|
B $@) =1 (@)= K@—s) /() ds
0
where
: @ 10 0]
K@) = xg— | X 1Llae+]w 10 @ | & 2, (31
ol"lxo x x 1| 2! k1 x5 1 0] 3! (ak)
Ka K1 Ko K2 K1 Ko 1

K3 K2 K1 Ky

For the benefit of those who may find it convenient to use this solution, it may be
well to add some remarks on the computation of the determinantal coefficients which
oceur in it. A numerical determinant should never, or scarcely ever, be evaluated by
expanding it ; it should be evaluated by reducing it successively to determinants of
lower order, without expanding. To do this, we first notice whether any of the
elements in the determinant is unity ; if not, we reduce one of the elements to unity

18
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by dividing the row or column which contains it by that element. Having done
to evaluate, e.g., the fifth-order determinant

1 a ¢ o a
by by b
Cg € Cg
dy dy dy

€y € €

RO =
e
~ -~
£ 8 W

g
b2
0

the rule is: Strike out the row and column which contain the unit element, and
subtract from each of the other elements the product of the elements which are
situated at the feet of the perpendiculars from this element on the deleted row and
column. Thus the above determinant becomes

by—ash, by—aghy by—ady  by—agh,
Cg—Qaty C3— 0Oyl Og—a4¢r  C5— ¢
dy—ayd, dy—aydy dy—ad, d,—ad,

Ga =0l Gy—as8y G —Af1 G

and in the same way we may reduce this fourth-order determinant to a third-order I
determinant, and so on. '

If the unit element is not the leading element, we must multiply the whole deter-
minant by +1, according as the sum of the row-number of the deleted row and
column-number of the deleted column is even or odd.

_— - ——

§ 6. A4 Combination of the Solution of § 4 with that of § 5.

A form of solution which in some cases proves useful is obtained by com-
bining the solution of §4 with that of §5. This happens when the graph of
the nucleus «(2) in the part of it over which the integration takes place, is
not very different from that of a polynomial of low degree, so that the firs
few of the coefficients g, k1, s, ..., ave of preponderant importance ascom-
pared with those that succeed them. In this case it is advantageous to take
out of the series (31) the terms which depend solely on these important
coefficients, and, by summing them, to obtain a new form for K(2) which can’
be more readily computed ; this, as we shall now show, may be done,
extracted part of K(z) being in the exponential form which was obtained
in § 4.

S ————— e ——

coefficients s, x3,... are comparatively small. The terms in (31) which
depend only on «; and &, are evidently

x 1 W 1 0] |#x 100}
Ky— B e S =t !
K1 Ko l ; k1 ky 1 2! R e (1) 3! ( '

0 Ky Ky 0 K1 Ky 1

0 0 K1 Kp
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Now if u, denote the determinant

(=1} 1T 0 0 0.
/o R N 3

IR R SR | (R

Jvs

........................... (n rows)

we have by expanding in terms of the elements of the first row
Uy = — Ko Uny—1 — K1 Un—2
The solution of this difference-equation is
uy = Aa™-+BE"
where « and 8 are the roots of the quadratic #*+ xge+x = 0,and Aand B
are independent of ». Moreover, since

i__ A3
= kp= —(2+8)= — “a_g__
3__AQ38

EE..r > _‘—_—ﬂ

we see that A B B s
ntl __ Qntl
and therefore e g
B

The expression (32) may thus be written
=g LA = =t at—p "‘i‘.{.
=8 a—8 a—B821 «—8 31 "
“26::_32631

Thus, we have 2
TarOREM 6.—1In Theorem 4 the formula (31) may be replaced by
K (.U) o S “2601 34 Bseﬂz
a—fB B—a
where a and B are the roots of the quadratic 2* + xox+ x; = 0. This form of
K(2) is preferable for purposes of computation when x, and x; are of pre-
ponderant importance as compared with xg, &3, ....

We may in this way replace the terms of (31) to any extent by exponen-
tials, and it is evident that when the terms thus replaced are those which
involve &g, &1, ... ka—3 without involving &, Ku+1, ..., the exponential terms
which are obtained are precisely those which would be obtained as the value
of K(z) in Theorem 3, if «(x) were the polynomial

or —

z2 : 28
+ Ko — + (k3 — 2x0ks) 5+ ...
21 3!

e
(n—1)1"
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