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ON THE NUMERICAL SOLUTION OF THE
EIGENVALUE PROBLEM OF THE LAPLACE OPERATOR
BY A CAPACITANCE MATRIX METHOD*

Wlodzimierz Proskurowski

Lawrence Berkeley Laboratory
University of California

Berkeley, California
September 1976

ABSTRACT

The problem of finding several eigenfunctions and eigenvalues of
the interior Dirichlet problem for Laplace's equation on arbitrary
bounded plane regions is considered. Two fast algorithms are
combined: an iferative Block Lanczos method and.a capacitance matfix
method. Thevcapacitance matrix is generated and factored only once
for a giveh problem. In each iteration of the Block Lanczos method,
a discrete Helmholtz equatidn is solved twice on a rectangle at a

cost of the order of nzlogzn operations where n is the number of mesh

points across the rectangle in which the region is imbedded.

*Revised version of TRITA-NA-7609. This work was done With support

- from the U.S. Energy Research and Development Administration.
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1. INTRODUCTION

In spite of its apparent simplicity, the eigenvaloe problem for
the Laplace operator appears in a great number of applications. There
is, therefore, a permanent interest in fast, eccurate, and fairly

general computational schemes for this problem.

Our method comblnes two fast algor1thms (l) an iterative Block
Lanczos method to compute e1genvalues and elgenvectors of a glven
operator, and (2) a capac1tance matrix method to compute selected
eigenvalues and elgenvectors of the Laplace operator on an arbltrary
plane bounded region. These two algorithms reflect recent development
in their respective f1elds The Block Lanczos is due to Underwood [34].
It allows for the 51multaneous computatlon of several elgenvalues and
the correspondlng eigenvectors at an 1mproved rate of convergence
compared to a s1mple Lanczos method The ch01ce of a block method
also greatly 51mp11f1es the treatment of multiple e1gneva1ues; Our
capacitance matrix program is a revision of the one which appeared
in Proskurowski and Widlund [25]. Our current version of this program .
allows for a selectlve ch01ce of a group of consecutive elgenvalues
with the help of a shlft. The capacitance matrix is generated and

decomposed into triangular factors only once for a given problem and
choice of the shift. In each iteration of the Block Lanczos method,
the discrete Helmholtz eqﬁatioﬁ is solved at a costvof the order of
nzlogzn_operatione. The cost of this step is only about twice that of

the fast solver on the rectangle in which the region is imbedded.
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In Sections 2 and 3 we briefly present the continuous problem and
some finite difference schemee. In Sections 4, 5, and 6 we discuss
alternative computational techniques and describe the block Lanczos
and capacitance matrix methods. In Section 7 results of numerical
experiments are given. A listing of the program used in our experiments

is given in the original report [24].

Extensive experiments show that our method is suitable for the fast
and fairly accurate computation of several eigenvalues and eigenvectors
of the Laplace operator on arbitrary bounded plane regions and that it
cdmpares favorably with the method recently developed by Kuttler f14]

for the same problem, see further discussion in Section 4.

2. STATEMENT OF THE CONTINUOUS PROBLEM

Vibrations of a thin membrane pinned along the edge 3Q of a

'~ plane region § are governed by the wave equation

in @

u
=3

AU t
(2.1)

U=0 on af.

Here A is the Laplace operator, Utt = BZU/B't2 and U = U(xl’XZ’t)

represent the deflection of the membrane at the time t. Periodic



motions of the membrane are found by making the Ansatz

(2.2) ' U(xy,%;,t) = 'u(Xi,xZ)-elkt%

where k is a real parameter related to the frequency of the vibration.

A substitution of (2.2) into (2.1) shows that u must satisfy the -

equation
AU+ Au=0 inQ
(2.3)
u=0 on o,
/
. a2
where A = k°.

Equation (2.3), the reduced wave equation, arises in a variety

of applications.
It is known that there is an infinite sequence of eigenvalues M

for which Eq. (2.3) has nontrivial solutions u(k). These solutions,

the eigenfunctions u(k), can be chosen to be orthonormal and they form

a complete set.
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The nodal lines of an eigenfunction are the curves along which the
membrane remains at rest during the eigenvibration. If several branches
of the nodal lines intersect in the interior of a plane region, then
they form an eﬁuiangular system of rays (see Courant and Hilbert [5]).
For further detailed discussion of the eigenvalue problem see Courant

and Hilbert [5] and Garabedian [9].

The solution of the eigenvalue problem (2.3) is known explicitly
only for certain simple regions for which separation of variables is -
possible. Briefly, we will present the results for two suchvregions,

‘a rectangle and a circle.

For a rectangular membrane with sides a and b the eigenvalues are

2 2
(2.4.1) | A m,n) _ WZ(I;_Z. 4 :_2) i

and the corresponding normalized eigenfunctions are

(2.4.2) - glmn) (x,x5) = 2

. sin(nﬂxlla) . sin(mﬂxz/b),
v/ab _

where m,n = 1,2,... .
These eigenfunctions have nodal lines which are parallel to the

coordinate axes. However, in the case of multiple eigenvalues, i.e.

when the ratio a/b is rational, many other nodal lines can occur.



For a circular membrane of radius 1 the eigenvalues A = kz'of

Eq. (2.3) are the squares of the zeros of the Bessel functions

J, (kr), n=0,1,... (a contribution of n? is to be added from the
trigonometric factors). Each function Jn has infinitely many zeros,
which we denote by kn,m (m=1,2,...). The eigenfunctions of Eq. (2.3)

cah’be written in the form

Jn(kn,mr)(a cos.n¢ + b sin n¢).

A1l eigenvalues are multiple, with the exception of those corresponding

ton = 0. The nodal curves for the eigenfunctions are circles p = const.

. and radial lines ¢ = const.

3. THE FINITE DIFFERENCE EIGENVALUE PROBLEM

In this section we describe the discrete eigenvalue problem of
our choiée and give a brief review of the literature oﬁ the discrefiza-
tion error. The original problem (2;3) is discretized by a finite
difference method. Theiregion Q is first imbedded in a larger region,
a rectangle or an infinite parallel strip, which will play a special
‘role in the capacitance matrix method, and a uniform mesh is introduced
with the same mesh size h in the two coordinate directions. The set of
mesh points is decomposed into three disjoint sets: R 9, and (CQ)y .
The set & is the set of interior mesh points,.i.e., each of its members

has all its next neighbors in the open set Q. The remaining mesh points
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in Q@ constitute anh, the set of irregular mesh points, while the set
(CR),, contains all the remaining, the exterior, mesh points. In
addition, we denote by 1 the set of points where a mesh line crosses

the boundary of the region Q.

The discrete Laplacian is represented by the five-point difference

operator,

Ahu(xl,xz) = i—%—,}l(xl + h, xz) + u(xl‘ - h, xz) .+

(3.1)
+ u(xl,x2 + h) + u(xl,xz - h) - 4u(xl,x2)} ,

for all points in Qh The related truncation error is Ahu(x) . Mx) = O(hz)
for x € Qh For the irregular points we must introduce a formula which

also takes the boundary conditions into account. We therefore combine

the discrete Laplacian with an interpolation formula. Suppose that the
‘point X € BQh has its eastern and southern neighbors in (Cﬂ)h. Then,

by applying linear interpolation, we obtain

Ah,lu(xl,xz) = h_%_ [u(x1 - 'h,xz) + u()cl,x2 + h) +
(3.2) - "

1 1 1 1
TRty W“("l”‘z)] ’

where u, = u(x1 + Glh,xz) and ug = (xl;x2 - _62h) are the Dirichlet

data on T Similarly, by applying quadratic interpolation the

hl



Shortley-Weller approximation, Ah,2’ is obtained, see Forsythe and
Wasow [7]. We use the approximation (3.2) throughout, because it gives
rise to a symmetric discrete operator. We note that most of the error

estimates for the operator Ah,2 also hold for Ah,l'

The problem analogous to (2.3) is to find the eigenvalues xﬁk) and

-corresponding mesh eigenvectors uh(k) which satisfy

NRRCING

k
h,1% v %

u 0 in QhUSQh

(3.3)

u&#? =0 on Fh.

- Kuttler [15] has given a very elegant and general result which,
when applied to the operators Ah 1 and Ah 2 shows that if u(k) € C4(Q)
’ > ’
then there are positive constants Cx and hk such that

2

| ‘x}(lk? W) < on?

and
(3.4) -
max|uﬁk) - u(k)| < ckh2 for h < h, .
Uk,

Bramble and Hubbard [2] obtained similar résults for thé symmetric
opgrator Ah,l' They also considered plane regions'whose boundaries
are composed of analytic arcs with no reentrant cusps. 1f n/o, 0>1/2,
is the largest interior angle, then for every € > 0 there exists K(e)

such that



A W) < k@) @m? + 1% an
(3.5) _
max|ul®) - w1 < kEe)@m? + 1% |
i U0,
For certain polygonal regions with reentrant corners and

o= 4/5,2/3,4/7, or 1/2, Moler [17] found that there exist constants

C1sCy > 0 such that
12 & _ & . .20
(3.6) | ¢;h f_xh A j_CZh K

Moler also showed that the eigenvalues of Ah,l’ for generéi
regions, fail to have an asymptotic expansion which precludes the use
of Richardson extrapolation to improve the accuracy. For a more
detailed discussion, see in particular Moler [17], Kuttler [15] and
Bramble and Hubbard {2}, and the references given therein. We note
that the higher eigenvalues are progressively more difficult to

compute since their eigenfunctions become increasingly oscillatory.

It would be of interest to develop a higher order symmetric finite
difference scheme for increased efficiency. For asymmetric highly
accurate methods for Poisson's equation, see Pereyra, Proskurowski,

and Widlund [22].



4. SOME ALTERNATIVE COMPUTATIONAL TECHNIQUES

In this section we will discuss briefly some alternative

techniques for the eigenvalue problem (2.3).

A collocation technique was developed by Fox, Henrici, and
Moler [8] and has proved successful in particular for certain regions
with reentrant corners; see also Ryder and Sanderson {30]. To achieve
an accurate approximation it uses Bessel functions and t?igonometfic
polynomials which represent the solution very well close to the corners.

This method also produces remarkably tight bounds for eigenvalues.

Another special teChnidue is due to Golub, Jenning;-and Yang [11].
An eigenvalue problem for a métrix which is é lﬁw—rank modification
of a problem.which.is easily solvable for any giﬁen right-hand side,
cah be converted into a much smaller dense nonlinear eigenvalue problem.
We originally intended to base our capacitance matrix technique for the
eiéenvalue problem on a‘similar idea. This approach'waé suggésted'to
us by Professors Golub and Widlund when they visited Stockholm in the

~-spring of 1973. 'We will now briefly describe this idea.

Consider fhe eigehvalue problem for the Laplace equation (2.3) as
a homogenous‘Helmholtz equation, Au + Au = 0. The Neumann and Dirichlet
problems can be reduced to Fredholm integral equations of the second

kind. The pbtential theory for thé Laplacé equation, described in
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Section 2 of Proskurowski- and Widlund [26] generalizes, in a straight
forward way, to Helmholtz's equation with a constant coefficient zero-
order term. The resulting integral equation. is approximated by a

capacitance matrix equation -
(4.1) CAp =0

when a corresponding theory for the discrete problem is developed.

- The problem (4;1) is a nonlinear eigenvalue problem. The large eigen-
value problem (3.3) is thus reduced to solving the much smaller problem
(4.1), i.e., to finding those A for which det(C(X)) 0. For this
purpose we can use an eff1c1ent algorithm for f1nd1ng a zero of a
function of one varlable, for example, the one due to Bus and Dekker [3]
The determlnant of C(}) is fbund by Gaussian e11m1nat10n The eigen-
vector of (4.1) correspondlng to an eigenvalue \*, already computed, can
‘easily be ohtained by the in&erse iteration method by usihg the triangular
factors of the eapacitance matrix C(A*) found»ﬁhile compuxing its |
determinant. The eigenvector for the original prebiem (3.3) is then

found by using the fast solver..

After a series(ef.numerical experimenfs, withtboth,the;Neumanh~and‘
Dirichlet problems, fhis'method was abandoned. Our reasons were that
the computational effort is proportional to the producp‘of n3-and the
mumber of iterations, and that even for small values of n this effort

is greater than what is needed for our present method.. .Initial bounds
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6n the discrete eigenvalues, i.e. for a specific mesh, are also required,
and the’efficiency depends heavily on the accuracy of this infbrmation.b.
CPU-time of one iteration on IBM 360/75 was rougﬁly 2 sec for the step
size h=1/12. One might expect to need at least 10 iterations even if"

a fairly géod initial ‘guess ig-used. This compéres unfavorably with

the resulté in Tables 3 to 6. We also found this method unreliable, as
‘there is a possibility of computing eigenvalues of the complementary
'prdblem in (CQ)h inétead. (See also Kﬁttler.[14]). In conclusion,

this method is generally more coétly, and a user without a good

preliminary knowledge of the desired eigenvalues might find it confusing.

We later.found that the same method  had been developed
independently by Kuttler [14], who obtained results similar to ours.
Nevertheless, our conclusions on the usefulness of the method differ

sUbstantiélly.
The matrix eigenvalue problem
(4.2) | Ax = xx

corresponding to Eq. (3.3) has a matrix A which ié large, sparse, and
symmetric. We will now discuss the use of certain standard techniques.
The wéll-known transformation methods, such as those of Givens or

- Householder, destroy the sparseness and are therefore inefficient. We
also note that:we are interested primarily in the first few eigenvalues

and corresponding eigenvectors of the problem (4.2).
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The inverse iteration method, see Wilkinson [36 38], is w1de1y
used for the calculation of elgenvectors from computed elgenvalues,
but also for the calculation of the eigenvalues themselves. We note
‘that this method requires the solution of a 1arge sparse éystem of

equations.

An éfficient variant of the power method is the simultaneous
(block) iteration method developed by Rutishauser t29,37]. Here s
eigenvalues are computed simultaneously by carrying § approximate
eigenvectors in‘the iterations. Convergencé to the i-th 1argé§t

e'igenvalues’ui occurs at the improved rate u;/u Variants of this

s+1°
method for unsymmetric matrices have been developed by Clint and

Jemnings [5] and Stewart [33].

‘Other iterative'algorithms, such as the conjugate gradient methods

and SOR, héve been considered by Ruhe:[27,28].

Another technique has been devéloped by Peters and Wilkinson [23].
It exploits Sylvester's inertia theorém' the nﬁmber of‘eigeﬂvalues of
(A - kI) less than k equals the number of negatlve pivots in Gaussian
elimination. Accurate determlnatlon of any elgenvalue of A can be
obtained by using a bisection method. This method has a very.good
reputation as one of the most competitivevif the bandwidth is not
very large; see Strang and Fix [32]. A récent variant of this method

is given by Anderson [1]. He shows that the pure secant method
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Convérges monotonically to the extremal eigenvalues. He also gives a
workable deflation strategy. Again, the limiting factor is the band-
width. |

For a discussion of Lanczos methods see the next section.
Of the methods discussed here we feel that the one due to

Rutishauser would have been the most viable alternative to the method

of our choice.

5. THE ITERATIVE BLOCK LANCZOS METHOD

In 1950 Lanczos [16] published a method for the reduction of a
generai square matrix to tridiagoﬁal form. His method has been
modified into a practical numerical procedure for symmetric problems
only in recent years and has found many applications. For a detailed
theory of this mefhod see Golub [10], Golub, Underwood, and Wilkinson
[12], Paige [18,19,20] and Underwood [34]. |

Let A be an nxn symmetric matrix. For a given initial n-vector
vl, v'{v1 =1 and a given m<n the Lanczos algorithm finds a sequence

of scalars ai,Bi and orthonormal vectors Vis i=1,2,...,mas follows:’

1. 1=1, Vi given.
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2. Compute y, = Av; and o, = v}‘yi.
|

3. If i =m stop.
4. Compute

Vi T %Y 1=1

i+l ©

yl = uvivi = Bivi_l ifi>1
' T
5. Compute Bi+1 = Z:41%441

6. If Bi+1 = 0 stop.
7. Compute Vi .4 = Z5,1/85,7 -
8. i = i+l, go to 2.

In m steps this algorithm produces an orthonormal nxm matrix

vV = (vl,vz, ven ,vm) and an mxm tridiagonal matrix T such that

(5.1) AV = VT + (0,...,0,2 1) -
Here
a By 0
T - By o By
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Our discussion can easily be modified to account for the

possibility that the algorithm might stop early.

Denote by A the restriction of A to the subspace spanned by the

first m elements of the Krylov sequence {vl, Avy, szl‘, ..

property of the Lanczos method is that even if m is much less than n

.}. A basic

a few of the extreme eigenvalues of A will give a good approximatidn

to the extreme eigenvalues of A; seé Kaniel [13] and Paige [18]. The
aigorithm is-closely related to the conjugate gradient method; see, for
exa.mple, Paige and Saunders [21]. The matrix A is only required in terms
" of a matrix-vector miltiplication in each step. The matrix A is thus
not transformed which makes the method véry. suitable for largé' sparse

probléms .

Undexrwood [34] ai;d Cullum and Donath [6] have extended the Lanézos
algorithm to work with blocks of vectors V(p) , of order nxp, p>1, instead
of a single vector v. This often results in less work overall and allows
us to compute mulfciple eigenvalues and eigenvectors- at the .same time.

The main idea behind the block Lanczos method is thus similar to the
modification of the power method due to Rutishauser [29,37] which led

to the similtaneous iteration method.

In our experiments we have used the block Lanczos routine developed
- by Underwood ,[34] . Our éhoice was motivated by example 7 in [34], which

indicated that his program should be preferred to that of Rutishauser
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for an elliptic difference scheme similar to ours.

We will now discuss some of the details of Underwood's program,
It is'wéll known thét Lanczos methods can suffer from numerical
_instability_as a result of a loss of orthogonality of the Lanczos
vectors. Underwood has therefore chosen to reorthogonalize the
vectors with respect to those of the previous blocks. This adds to the
expense of the algorithm, but this expense is controlled since the
method is periodically restarted using the beést available approximate
eigenVeétofs as the new initial approximation. ‘All the_vectors
generated since the previous restart are retained in fast storage.
The‘conVergence of theveigenvectors is tested, and 6nce an eigenveétor
is accepted, we work with the opergtor restricted.to the subspace

orthogonal to this vector.

An array of order nxq is used for the storage of the Lanczos
vectors. The algorithm'can produce up to q-1 eigenvectors and eigen-
values, where q is a value specifiéd by the user. The block size, p,
initially also set by the user, is automatically changed by the program
to attain an optimal effect. Most often p is smaller -than the desired
number of éigenvalues. The nxq array will at any time contain m vectors
already accepted as sufficiently accurate. The remaining q-m columms
are used for the iteration to find the rest of the required eigenvectors.
We can thus take the integer part of (q-m)/p iteration steps before

restarting.
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The block Lanczos method provides estimates of the residuals
Py = Avi - Avi while computing the eigenvalues and eigenvectors. An
eigenvector is accepted if the norm of the residual is less than a

prescribed absolute tolerance.

Underwood's program was primarily designed to be used for the
computation of a part of the eigensystem of a sparse matrix A without
the benefit of the acceleration obtained by working with (A - kI)7L,
where k is a shift parameter. He was primarily interested in the
eigenvalﬁes at one extreme end of the spectrum, since in most applica-
tions the eigenvalues-at'the other end are of no interest. His program
therefore suppresses the information on the eigenvectors at the other
end of the spectrum, which is contained in the space spanned by the
Lanczos vectors. Since we work with the inverse of discreté Helmholtz
operators which can have eigenvalues of both signs, we are often interested
in the eigenvalues at both extreme ends of the spectrum. Therefore, in
our application this feature of Underwood's.program leads to a certain

amount of waste; see also Sections 6 and 7.

6. THE CAPACITANCE MATRIX METHOD FOR HELMHOLTZ'S EQUATION

Our method of solving Helmholtz's equation on a bounded plane
region is developed in Proskurowski and Widlund [26] and also analyzed
in Shieh [31]. For a thorough discussion of capacitance matrix methods

‘we refer to these papers. In this section we will only discuss our
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method very briefly, concentrating on the modifications required by the

current context.

The fast Helmholtz solver subroutine of our capacitance matrix
prbgram gives the solution of Helmholtz's equation on part of an
infinite strip. One call Qf this subroutine requires the order of
mlog,n operations, where'm‘and n are the number of mesh points along

and across the strip, respectively.

The capacitance matrix solver consists of two main parts. Only
the second of these has to be répeated.when the data of the problem

~is changed.

In the first part the capacitance matrix C is generated at an

expense of the order of p2

operations and one call of the fast solver
on the strip. Here p denotes the nﬁmber of irregular mesh points

. and is thus of the order n. The original program, [26], has two
options. We can either solve the capacitance matrix equation by a
conjugate gradient method or use Gaussian elimination. Since the
same problem will be solved repeatedly we have chosen the Gaussian
elimination option. We thus once incur an expense of the order of p3

operations when factoring the matrix C.

In the second main part of the program, we use the fast solver

twice and solve the capacitance matrix equation by using the triangular
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factors previously computed.- This expense is proportional to mnlogzn
and to p2 and constitutes the dominating term in the cost of one -

iteration of the block Lanczos method.

The block Lanczos algorithm uses the capacitance matrix solver
as a subroutine which computes a matrix vector product y = Hx for a
given vector x. This solver returns the solution y of a linear system

Ay = x, i.e., y=Hx, H= A'l, for a given x.

The block Lanczos algorithm as implemented by Underwood [34] computes
only the smallest eigenvalues of H and not those of maximum modulus.
Therefore, in order to compute the least eigenvalues of A we must reverse

the sign and make
(6.1) y = -A “Xx.

If it is desirable to obtain a group of eigénvalués‘all larger than

a given value A, we use a shift in this algorithm. This means that

o’
we are computing approximations to the eigenvalues of Helmholtz's

equation (A + AJu + Au = 0. Thus

6.2) Ly =-@a+ D
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Similarly, if a group of eigenvalues all less than some xo is

required, we use
(6.3) - y=@+xD .

The capacitance matrix program produces solutions on an extended
rectangular region, while the vectors x and y of (6.1) - (6.3) are
defined only on the set of mesh points inside the givén region Q.
Therefore, at each block Lanczos iteration the use}e$s va1ués at fhe
exterior mesh points are suppressed. Information about.the‘boundary
of the region @ is read in through a user—supplied subroutine.

Compact data is then produced which allows for the idenfification of the

mesh points inside the region Q.
Underwood's block Lanczos program [34] has been used without changes.

7. NUMERICAL EXPERIMENTS

In this section we will report on results from a series of
numerical experiments which were carried out on the IBM 360/75
- computer at the Royal Institute of Technology in Stockholm. In our

experiments we have used the program listed in the original report [24].

In an initial test of the performance of the capacitance matrix

' program and the block Lanczos routine, we used the latter together with
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a Gaussian elimination routine on a problém with a known spectrum.
We chose the discrete Laplacian on a’square and a coarse mesh size,
h = 1/3. The results in Table 1, obtained with the capacitance
matrixvsolver and with the Gaussian éliminatioh routine, agreed to

14 decimals.

In Table 2 we have collected results of the simultaneous computa-
tion of the éigenvalues for circular regions with different mesh sizes.
These'results'demonstrate that Richardson extrapolation works for this
region. The extrapolated values are éompared'with the exact eigen-
values; see Watson [35]. By Richardson extrapolation we gain almost
two decimals in accuracy. The relative discretization error after the

5 4 and gfows slowly with the index

.eXfrapolation is of order 10 to 10~
of the eigenvalues. Withiﬁ this fange of mesh sizes, h > i/lZ,‘the
discretization error is larger than the error from the block Lanczos
program if the tolerance is € = 10-3. This indicates that this choice

of € is reasonable. We have therefore used this value routinely.

In Tables 3 andl4 we report on the CPU-time for our‘prbgram when
run on an IBM 360/75 computer ﬁSing a FORTRAN H 1eve1:2.17¢ptimizing
compiler. The’results'in Table 3 refer to the smallest eigenvalue
of Helmholtz's equation computed individually, and Table 4 to a group
of 15 eigenvaiues computed simultaneously. We ndte‘that the rectangle
in which>the region is imbedded is umneceésarily large, 73.5% of the

mesh points are exterior and a different choice of step size would
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,haVe been more economical. The largest eigenvalues of the iﬁverse of
the'Laplace operator are better separated than the smaller. Therefore,
wheniwe use a shift Ao, the convergence is slower, in accordance with
the theoretical estimate; see Underwood [34]. It is therefore difficult
to give a very precise comparison between the efficiency of the block
Lanc;os and simple Lanczos methods. Nevertheless, the gain is substantial,

and we strongly recommend the use of the block Lanczos method.

The share of the time used to solve Helmholtz's equation with the
capacitance matrix solver dominates these computations. In the
experiments where 15 eigenvalues were computed simultaneously it
constitutes over 2/3 of the total computing time, while the time for
the generation and factorization of the capacitance matrix is about
2.0 to 2.5% of the total for this choice of mesh. We can therefore
igndre ﬁhis contribution in an estimate of the execution time. We
conjectﬁre that the time grows as coﬁst-nzlogzn. Here n is the number
of mesh points across the rectangle in which the region is imbedded.
When we test this conjecture by using the values from Table 4 we find
that the total execution time grows by a facfor,3.65 when n is doubled.
This shows that we could do problems with finer mesh sizes at a reason-
able cost. In Table 5 we present results of experimeﬁts for an un-
-symmetric, nonconvex, palette-like region with three mesh sizeé h = 1/6,
1/12, and 1/24; For this problem second order aécuracy is apparent only

for the first eigenvalue.
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In Table 6 we report on results obtained on circular regions with
a slit. We can solve Such problems with our method without any special
treatment, and with a computational effort which is close to that for
the other regions; see Tables 4 and 5. It is interesting to note that
the eigenvalues corresponding to the eigenfunctions which have a zero
value alohg the slit agree very closely with certain eigenvalues for the
circular region without a SIit; see Table 4. In general, we must
expect a slow convergence of the discrete eigensystem for a problem of

" this nature.

In certain applications we might be interested in a higher accuracy
of the eigenvalues and eigenvectors than what we obtained in our
experiments, or in decreasing the cost. We have already noted, in Section
4, that it would be interesting to develop finite difference schemes
which are more accurate and which still give rise to symmetric matrices.
Some speed could be gained by modifying our current fast Poisson solver
“on the strip;'see Table 7 in Proskurowski and Widlund [26]. A.block
_Lanczos'method without reorthogonalization might be preferable, since
operations are saved and}preVious blocks can be stored on secondary
storage devices. Thé previbus blocks are then accessed only when the
eigenvalues have converged. Alternatively, the same information could
be recomputed from the same initial block in order to obtain the eigen-
vectors. Rutishauser's method might also prove a better choice than
our Lanczos method. The reliability and rates of convergence of these
methods will'of'coursc‘diffef, and only extensive numerical experiments

could settle these questions.



-24-

ACKNOWLEDGMENTS

I would like to thank: Professor Olof Widlund for his consistent
supportvand contribution throughout my work, Professor Gene Golub for
his share in initiating this project, and Professor Germumd Dahlquist
for several valuable suggestions. I would also like fo thank Dr. Richard
Underwood,lformely of the computer science department at Stanford

University, for his excellent block Lanczos program.
REFERENCES |

[11 N. Anderson, On computing eigenvalues of matrices with real éigen-
values by the secant method, TRITA-NA-7513 Report, 1975, RIT Stock- .
holm.

{21 J.H. Bramble and B.E. Hubbard, Effects of boundary regularity on
the discretization error in the fixed membrane eigenvalue problem,

SIAM J. Numer. Anal., 5(1968), pp. 835-863.

[3] J.C.P. Bus and T.J. Dekker, Two efficient algorithms with guaranteed
convergence for finding a zero of a function, Report NW 13/74,
Mathematisch Centrum, Amsterdam, 1974.

- [4] M. Clint and A. Jennings, A simultaneous iteration method for the
unsymmetric eigemvalue problem, J. Inst. Math. Applics., 8 (1971),
pp. 111-121.



- [5]

(6]

(7]

(81

[9]

[10]

(11]

1z}

Q0 040602407

-25-

R. Courant and D. Hilbert, Methods of Mathematical Physiecs, Vol. 1,

'Interscience, 1953.

J. Cullum and W.E. Donath, 4 bZock_generaZizdtion of the symmetric
S-step Lanczos algorithm, Report #RC 4845 (#21570), IBM Thomas J.

Watson Research Center, Yorktown Heights, New York, May 1974.

G.E. Forsythe and W.R. Wasow, Finite-Difference Methods for

Partial Differential Equations, Wiley, New York, 1960.
L. Fox, P. Henrici, and C. Moler, Approximations and bounds for
eigenvalues of elliptic operations, SIAM J. Numer. Anal., 4 (1967),

pp. 89-102.

P.R. Garabedian, Partial Differential Equations, Wiley, New York,

1964.

G.H. Golub, Some uses of the Lanczos algorithm in numerical linear

algebra, Stanford Report CS-72-302, Aug. 1972.

G.H. Golub, L. Jenning, and W.H. Yang, Waves in periodically
structured media, J. Comp. Phys., 17 (1975), pp. 1-9.

G.H. Golub, R. Underwood, and J.H. Wilkinson, The Lanczos algorithm

. for the symmetric Ax = ABx probZem,'Stanfbrd'Report Cs-72-270,

March 1972.



-26-

[13] S. Kaniel, Estimates for some computational techniques'in linear

algebra, Math. Comp., 20 (1966), pp. 369-378.

[14] J.R. Kuttler, Direct methods for computing eigenvalues of the finite-

difference Laplacian, SIAM J. Numer. Anal., 11 (1974), pp. 732-740.

[15] J.R. Kuttler, Finite-difference approximations for eigenvalues of
uniformly elliptic operators, SIAM J. Numer. Anal., 7 (1970), pp.
206-232.

[16] C. Lanczos, An iteration method for the solution of fhe eigenvalue
problem. of linear differential and integral operators, J. Res. Nat.
Bur. Standards, 45 (1950), pp. 255-283.

.[17] C.B. Moler, Finite difference methods for the eigenvalues of

Laplace's operator, Stanford Report CS-22, 1965.

[18] C.C. Paige, The computation of eigerwalues and eigenvectors of very
large sparse matrices, Ph.D. dissertation, The University of London,

1971.

[19] C.C. Paige, Computational variants of the Lanczos method for the

eigenproblem, J. Inst. Maths. Applics., 10 (1972), pp. 373-381.

[20] C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonal-

ization of a symmetric matriz, J. Inst. Math. Appl., 1976, to appear.



[21]

[22]

23]

[24]

[25]

[26]

[27]

C U v dsd6 U 240908

-27-

C.C. Paige and M.A. Saunders, Solutions of sparse indefinite systems

of equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629.

V. Pereyra, W. Proskurowski, and 0. Widlund, High order fast Laplace
solver for the Dirichlet>problem on general regions, Math. Comp.,

Jan. 1977, to appear.

G. Peters and J.H. Wilkinson, Eigenvalues of Ax = X Bx with band

symmetric A and B, Computer J., 12 (1969), pp. 398-404.

W. Proskurowski, On the numerical solution of the eigenvalue problem
of the Laplace operator by the capacitance matrix method, TRITA-NA-
7609 Report, RIT Stockholm.

W. Proskurowski and 0. Widlund, On the numerical solution of
Helmholtz's equation by the capacitance matrix method, ERDA Report

C00-3077-99, New York University, Nov. 1975.

W. Proskurowski and O. Widlund, On the numerical soZution_Of'
Helmholtz's equation by the capacitance matrix method, Math.

Comp. 30 (1976), pp. 433-468.

A. Ruhe, Iterative eigenvalue algorithms for large symmetric
matrices, in L. Collatz (ed.) Numerische Behandlung Eigen-

wertaufgaben, Birkhdauser, 1974.



[28]

[29]

[30]

[31]

[32]

[33]

[34]

-28-

A. Ruhe, Iterative eigenvalue algorithms based on convergeﬁt split-

tings, J. Comp. Phys., 19 (1975), pp. 110-120.

H.. Rutishauser, Simultaneous iteration method for symmetric matrices,

Numer. Math., 16 (1970), pp. 205-223.

B.G. Ryder and J.G. Sanderson, A program fbf computing the eigen-
values of Laplace's equation, CST Report No. 20, Bell Laboratories,

July 1974.

A. Shieh, Fast Poisson solver on nonrectangular domains, Ph.D. thesis,

New York University, June 1976.

G. Strang and G.J. Fix, An Analysis of the Finite Element Method,

Prentice Hall, 1973.

G.W. Stewart, Simultaneous iteration for computing invariant sub-
spaces of non-Hermitian matrices, Numer. Math., 25 (1976), pp.

123-136.

R. Underwood, An iterative block Lanczos method for the solution of

large sparse symmetric eigenproblems, Stanford Report CSf496,

May 1975.



&
L
£
&
Py
L
g
£
[
3

-29-

[35] G.N. Watson, 4 treatise on the theory.of Bessel functions, Cambridge

Univ. Press, 1952.

{36[ J.H. Wilkinson, The'Adebraic Eigenvalue Problem, Clarendon Press,

Oxford, 1965.

[37] J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation,
Vol. II, Linear Algebra, Part 2, Springer-Verlag, New York, and

Heidelberg, Berlin, 1971.

[38] J.H. Wilkinson, Inverse iteration in theory and in practice, Inst.

Naz. di Alta Mathem. Symposia Mathematica, 10 (1972), pp. 361-379.



. =30~

‘Table 1. The accuracy of six eigenvalues of the discrete Laplacian -
| on a square region with a side 2 and the step size h=1/3

obtained by the block Lanczos method.

Discrete eigenvélues My Norms of.

No. _residuéls
- computed - exact

1 4.8230854638|  4.8230854638 | 2.49+10°
2 11.4115427322 | 2.75.10"%
i S V1104115827310 e
3 | 11.4115427319 2.07:10°°
4 18.0000041635|  18.0000000000 | 3.98-10"
5 | 20.4116831420 1.24.10°3
| = 204115427319 e
6 20.4115387031 1.38+10
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Table 2. Eigenvalues of the discrete Laplacian on the unit circle with
the step size h equal to 1/3, 1/6, and 1/12. Extrapolated
values are compared with the exact eigenvalues.

Eigen- Extra- '
No. - values| polated Exact - Absolute Relative
Mode A eigenv. kﬁl) eigenv. A | error - | error
1 5.5845
‘ 5.7351 5.7853 -4 -5
(0,1) 5.7713 5.7834 5.7832 © 210 3.46+10
2,3 13.004
14.336 14.779 _3 5
1,n 14.596 14.681 14.682 - 1-10 6.81-10
4,5 20.997
24.980 26.308 .3 -4
(2,1) 26.024 26.372 26,375 | 310 1.14-10
6 24.531 _ ‘
28.928 30.394 3 -4
(0,2) 30.081 30.465 30.471 | 6-10: 1.97-10
7,8 -
37.959 5 | 4
(3,1 40.009 40.698 40.706 8-10 0 1.97-10
9,10 -
45.274 o _ g ”
1,2) 48.195 49.169 49,218 4910 9.96-10
11,12 -
 52.283 -3 -4
4,1y 56.230 57.546 57.583 :37-10 6.43-10°
13,14 -
62.294 .3 _3
(2,2) 68.644 70.761 70.850 8910 1.26+10
15 -
63.628 ‘ _3
0,3 75.512 75.473 74.887 .586 7.83+10
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Table 3. CPU-time in seconds for a problem on a circular domain on an

IBM 360/75.

Only one eigenvalue was computed at a time.

The

shifts were chosen in order to find xél) and Aﬁ6) respectively.-

Step size h

Number of mesh points in the
rectangle imbedding the
region, nxm :

Number of irregular mesh points p
Number of interior mesh points N.

|The shift CON

Number of calls of the capacitance
matrix solver

Preprocessing time tp

Time of the block Lanczos
iterations tL

Time for the capacitance matrix
solver t.

Total execution time t
tc/t

t /t
%

Number of block Lanczos iterations

10

1 0.38

0.25

1.21

1.84
0.658
0.207

1/6
16x16

32

‘28«.

13
0.38

0.26

1.90

2.54
0.748
0.150

.15

1.84

£ 0.68

6.28
8.80
0.71
0.20

1/12
32%x32

64
437
-28

13

19

1.84

1;00
10.72

12.56
41 0.791
9t 0.137
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Table 4. CPU-time in seconds for a problem on a circular domain on an
IBM 360/75. 15 eigenvalues were simultaneously computed

(q=20, p=5).

Step size h | 1/6 1/12

Number of mesh points in the
rectangle imbedding the 16x16 32x32 .
Tregion, nxm ' R _

Number of irregular mesh points p 32 _ 64

| Number of interior mesh points N 109 437

Number of block Lanczos itera- 76 84
tions

Number of calls of the capacit-

. ance matrix solver - N, 101 109
Preprocessing time tp 0.42 1.84
Time of the block Lanczos

iterations t, 6.40 20.74
Time for the capacitance 13.43 51.30
matrix silver t. :
Total execution time t 20.25 : 73.88
t/t . , | 0.663 ~0.694
tp/t v 0.0207 0.0249

‘tC/No : 0.133 . 0.471
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Table 5. Eigenvalues and CPU-time in seconds for an unsymmetric non-
| conVex, palette-like region on an IBM 360/75. Six eigenvalues

were simultaneously computed (q=9, p=3).

Step size h 1/6 1/12 1/24
Number of mesh points in the |

rectangle imbedding the 16x16 32x32 - 64%64

region, nxm
Nunber of irregular mesh points p| 27 56 117
Number of interior mesh points N 68 272 - 1107
Density of imbedding N/nxm 0.265 0.266 0.270
A - 10.7068 |  10.8681 |  10.9138
A 22,602 22.878 23.497

o 27.59 28.08 28.91

n 36.53 37.88 38.62
A 47.30 50.12 51.16
s 49.52 53.99 55.11
Number of calls of the capacit-

ance matrix solver No 48 52. 54
Time for the capacitance matrix |

solver t. 0.41 25.77 104.58
Total execution time t 7.61 30.87 126.86
t/t 0.84 0.83 0.82
tC/No 0.134 0.496 1.94




- -35-

~ Table 6. Eigenvalues and CPU-time in seconds for a circular region with

a slit on an IBM 360/75. Six eigenvalues were simultaneously

computed (q = 9, p = 3).

Step size | 1/6 1/12
Number of mesh points in the '
rectangle imbedding the region, 16x16 32x32
nm | _
Number of irregular mesh points p 42 86
Number of interior mesh points N 103 - 425
A - . | 10. 310 10.127
x ’ o ©14.336 14.595
x 19.505 20.020
A . . 25,514 26.176
X o 31.44 32.84
Ry 37.96 40.01
Number of calls on the capacitance 54 58
matrix solver No '
- Time for the capacitance matrix 7.18 32.28
_solver t. ‘ :
bTotal execution time t 10.22 42.99

tc/t ' 0.70 0.75
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