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Abstract: In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical

solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including

numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical

solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal

norm and L1 maximum nodal norm to evaluate the accuracy of method used in this paper.
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1 Introduction

Globally, a physical phenomenon can be expressed by the help of theory of derivatives and integrals with fractional

order. Therefore, fractional concepts have been seen as a tool in the fields such as physics, chemistry and engineering

in terms of representing physical phenomena. Thus, a lot of powerful methods, such as fractional linear multistep

methods, variational iteration, galerkin finite element, Sumudu transform, trial equation, Adomian’s decomposition,

extended trial equation, homotopy analysis, iteration, homotopy perturbation, modified homotopy perturbation,

generalized trigonometry functions, homotopy perturbation, Sumudu transform or modified trial equation method,

have been presented in literature [2–17, 26–28, 30]. Besides these methods some authors have investigated various

properties of fractional concepts [18, 19, 29, 32–34].

The organization of this paper is as follows: we give some definitions and properties of the fractional calculus

in Section 2. In Section 3, we introduce the general construction of Fractional Adams-Bashforth-Moulton Method

(FABMM) for time-fractional linear and nonlinear ordinary differential equations. In Section 4, we apply FABMM

to the linear time fractional ordinary differential equation (FODE) defined by [1],

D˛
t u.t/ C u.t/ D t3C˛ C

�Œ4 C ˛�

6
t3; 0 < ˛ � 1; (1)

where ˛ is an arbitrary constant and a parameter describing the order of the fractional time-derivative. (1) have the

following exact solution in the closed manner [1];

u.t/ D t3C˛: (2)
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Then, we consider the nonlinear time fractional ordinary differential equation described as following;

D˛
t u.t/ C �u2.t/ D

1

24T 4C˛
�Œ5 C ˛�t4 C �.

t

T
/8C2˛; 1 < ˛ � 2; (3)

having the exact solution as:

u.t/ D .
t

T
/4C˛; (4)

where � and T are arbitrary constants and not zero [1].

2 Preliminaries

In this part of the paper it would be useful to introduce some definitions and properties of the fractional calculus

theory. The Caputo fractional derivative of f .t/ function is defined by [24, 25]:

C
a D˛

t Œf .t/� D
1

�.˛ � n/

t
Z

a

Œ.t � �/n�1�˛f .n/.�/�d�; n � 1 < ˛ � n; n 2 Z; ˛ 2 RC: (5)

In addition to this expression, some of the useful formulas such as f .x/ D .x � a/ˇ and g.x/ D .b � x/ˇ are given

by [1]

C
a D˛

x Œf .x/� D
�.ˇ C 1/

�.˛ C ˇ C 1/
.x � a/ˇ�˛;

C
x D˛

b Œg.x/� D
�.ˇ C 1/

�.˛ C ˇ C 1/
.b � x/ˇ�˛; (6)

in which n � 1 < ˛ � n; n 2 Z; ˛ 2 RC.

3 Construction of FABMM

In this section of our study, an approach to the FODE will be given. The general form of FABMM used to obtain

numerical solutions of fractional differential equations (FODEs) given along with initial conditions can be considered

as the following form [20–24];

D˛
� Œy.t/� D f .t; y.t//; ˛ > 0; (7)

with initial conditions:

y.k/.0/ D y
.k/

0
; (8)

where k D 0; 1; 2; 3; � � � ; d˛e � 1; and D˛
� Œ:� an operator in the sense of Caputo defined by:

D˛
� Œz.t/� D J n�˛ŒDnŒz.t/��; (9)

where n is bigger than ˛ and smallest integer number, D is integer order derivative operator and J is an integral

operator defined in the following way in the sense of Riemann-Liouville integral operator:

J �Œz.t/� D
1

�.�/

t
Z

0

Œ.t � u/��1z.u/�du; � > 0: (10)

If we take the integral of (7) according to (10), it gives us a second order Volterra integral equation well known

[6, 22, 23, 31]:

y.t/ D †n�1
vD0y.v/.0/

tv

vŠ
C

1

�Œ˛�

t
Z

0

Œ.t � u/˛�1f .u; y.u//�du: (11)
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Before submitting the general structure of FABMM, we can set off by remembering the general form of Adams-

Bashforth-Moulton method for the integer order differential equations. Here, the general form of the integer order

differential equations is defined by:

DŒy.t/� D f .t; y.t//; (12)

and initial condition is

y.0/ D y0: (13)

The grid points of (12) for every single point by dividing N steps to the interval of Œ0; T � can be written in the

following way [23, 24]:

h D
T

N
; tj D jh; j D 0; 1; 2; 3; � � � ; N; (14)

and

yj D y.tj /; j D 0; 1; 2; 3; � � � ; k; (15)

where y.tkC1/ approaches are defined as [22, 23]:

y.tkC1/ D y.tk/ C

tkC1
Z

tk

Œf .z; y.z//�dz: (16)

The integral of (16) can be rearranged as:

b
Z

a

Œg.z/�dz �
b � a

2
Œg.a/ C g.b/�: (17)

By applying trapezoidal rule, we get (18) for (16) as follows:

y.tkC1/ D y.tk/ C
h

2
Œf .tk ; y.tk/ C f .tkC1; y.tkC1/�: (18)

If in (18) we represent equations of (15) as y.tk/ D yk and y.tkC1/ D ykC1, we receive:

ykC1 D yk C
h

2
Œf .tk ; yk C f .tkC1; ykC1/�: (19)

As (19) has ykC1 on both sides, it may be very hard to directly obtain solution of this equation. Therefore, we have

to take predictor y
p

kC1
for the first approach of ykC1 in the following way [22, 23]:

b
Z

a

Œg.z/�dz � .b � a/g.a/: (20)

Then, by means of applying trapezoidal rule, we can obtain the construction known as Euler formula or one-step

Adams-Bashforth method getting [22, 23]:

y
p

kC1
D yk C hf .tk ; yk/: (21)

When we rewrite (19) under the terms of (21), we can get the following equation:

ykC1 D yk C
h

2
Œf .tk ; yk C f .tkC1; y

p

kC1
/�: (22)

When we take into account both (21) and (22), we obtain the general form of one-step Adams-Bashforth-Moulton

method of finding numerical solution of (12), being the integer order differential equations, for which we will

investigate FABMM for solving FODEs numerically. The fundamental difference between (11) and (16) is the fact

of starting from zero at the lower bound of integral. Therefore, we have to set out by taking tk instead of zero as the
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lower boundary of integral to solve FODEs by using FABMM. When we apply trapezoidal rule according to weight

function .tkC1�/˛�1 for (11), it gives us following equation:

tkC1
Z

0

Œ.tkC1 � z/˛�1g.z/�dz �

tkC1
Z

0

Œ.tkC1 � z/˛�1 QgkC1.z/�dz; (23)

where g.z/ is the piecewise linear interpolant and it has nodes QgkC1; tj D jh. Under the rules of standard quadrature

technique [22, 23], right side integral of (23) can be rewritten in the following way:

tkC1
Z

0

Œ.tkC1 � z/˛�1 QgkC1.z/�dz D

kC1
X

j D0

aj;kC1g.tj /; (24)

where aj;kC1 is defined by:

aj;kC1 D
h˛

˛.˛ C 1/

8

ˆ

<

ˆ

:

k˛C1 � .k � ˛/.k C 1/˛; j D 0;

.k � j C 2/˛C1 C .k � j /˛C1 � 2.k � j C 1/˛C1; 1 � j � k;

1; j D k C 1;

(25)

By substituting (23), (24) and (25) in (11), we form the corrector formula for one-step FABMM as follows [22, 23];

ykC1 D †n�1
j D0y.j /.0/

t
j

kC1

j Š
C

1

�Œ˛�
Œ

k
X

j D0

aj;kC1f .tj ; yj / C akC1;kC1f .tkC1; y
p

kC1
/�: (26)

Then, y
p

kC1
predictor under the constructions of Adams-Moulton method can be rewritten in the following form

[22, 23]:
tkC1
Z

0

Œ.tkC1 � z/˛�1g.z/�dz D

k
X

j D0

bj;kC1g.tj /; (27)

where bj;kC1 is defined by:

bj;kC1 D
h˛

˛
Œ.k C 1 � j /˛ � .k � j /˛�: (28)

Then, the predictor y
p

kC1
is the same as the one defined above for the Adams-Moulton method [22, 23]:

y
p

kC1
D †n�1

j D0y
.j /

0

t
j

kC1

j Š
C

1

�Œ˛�
Œ

k
X

j D0

bj;kC1f .tj ; yj /�: (29)

When we consider both (26) and (29), we obtain the general form of FABMM to solve numerically (7).

4 Applications

In this section, we applied FABMM to the linear and nonlinear time fractional differential equations as follows.

Example 1. Firstly, we consider (1) linear fractional differential equation along with exact solution (2). We can

rearrange (1), in a way similar to (7);

D˛
t u.t/ D f .t; u.t// D �u.t/ C t˛C3 C

�Œ4 C ˛�

6
t3: (30)

If we apply FABMM to (30) by taking 0 < t � 1, step size n D 300 and initial condition u.0/ D 0, we can obtain a

numerical solution for (30) for the first ten term and error accounts. Next, to determine the accuracy of the technique,

we use L2 nodal norm defined by:

L2 D kU Analytical � UM k2 '

v

u

u

th

M
X

j D0

jU
Analytical

j
� .UM /j j2; (31)
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and L1 maximum nodal norm defined by:

L1 D kU Analytical � UM k1 ' maxj jU
Analytical

j
� .UM /j j: (32)

Table 1. The exact solution, numerical solution of (1) and the numerical errors for ˛ D 0:25 obtained by using FABMM

n t_n u_Exact u_Num. u_Exact�u_Num.

1 0.0033333 8.8930153E-09 1.2733339E-08 -3.8340377E-09

2 0.0066667 8.4664901E-08 1.0586060E-07 -2.1195501E-08

3 0.0100000 3.1622776E-07 3.7064679E-07 -5.4419030E-08

4 0.0133333 8.0547292E-07 9.0951855E-07 -1.0404572E-07

5 0.0166667 1.6634449E-06 1.8339278E-06 -1.7048289E-07

6 0.0200000 3.0084824E-06 3.2655390E-06 -2.5407143E-07

7 0.0233333 4.9650605E-06 5.3201650E-06 -3.5510443E-07

8 0.0266667 7.6629921E-06 8.1368311E-06 -4.7383897E-07

9 0.0300000 1.1236836E-05 1.1847341E-05 -6.1050410E-07

10 0.0333333 1.5825444E-05 1.6590751E-05 -7.6530645E-07

Using L2 nodal norm algorithms for measuring the accuracy of the technique used for solving (1) by taking n D 300

and ˛ D 0:25, we obtain the following L2 sum of numerical error:

0.000440091.

Similarly, when we use L1 maximum nodal norm algorithms for measuring the accuracy of the technique used for

solving (1) by taking n D 300 and ˛ D 0:25, we obtain the following L1 maximum numerical errors:

0.000998594.

Fig. 1. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (1) obtained by using FABMM

for 0 � t � 1; ˛ D 0:25
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Table 2. The exact solution, numerical solution of (1) and the numerical errors for ˛ D 0:75 obtained by using FABMM

n t_n u_Exact u_Num. u_Exact�u_Num.

1 0.0033333 5.1380141E-10 8.8752788E-10 -3.7372647E-10

2 0.0066667 6.9128602E-09 8.3108958E-09 -1.3980355E-09

3 0.0100000 3.1622776E-08 3.4595664E-08 -2.9728881E-09

4 0.0133333 9.3007990E-08 9.8076290E-08 -5.0682993E-09

5 0.0166667 2.1474982E-07 2.2242107E-07 -7.6712350E-09

6 0.0200000 4.2546367E-07 4.3624009E-07 -1.0776420E-08

7 0.0233333 7.5842553E-07 7.7280824E-07 -1.4382715E-08

8 0.0266667 1.2513613E-06 1.2698530E-06 -1.8491667E-08

9 0.0300000 1.9462772E-06 1.9693837E-06 -2.3106527E-08

10 0.0333333 2.8893176E-06 2.9175494E-06 -2.8231731E-08

Using L2 nodal norm algorithms for measuring the accuracy of the technique used for solving (1) by taking n D 300

and ˛ D 0:75, we obtain the following L2 sum of numerical errors:

0.0000190654.

Similarly, when we use L1 maximum nodal norm algorithms for measuring the accuracy of the technique used for

solving (1) by taking n D 300 and ˛ D 0:75, we obtain the following L1 maximum numerical error:

0.0000455084.

Fig. 2. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (1) obtained by using FABMM

for 0 � t � 1; ˛ D 0:75

Example 2. Secondly, let’s consider (3) nonlinear fractional ordinary differential equation along with exact solution

of (4). We can rearrange (3);

D˛
t u.t/ D ��u2.t/ C

�Œ5 C ˛�

24T 4C˛
t4 C �.

t

T
/8C2˛; 1 < ˛ � 2; (33)

where ˛; �; T are constants and not zero. When we rewrite (33) by substituting � D T D 1, it gives us the following

differential equation [1]:

D˛
t u.t/ D f .t; u.t// D �u2.t/ C

�Œ5 C ˛�

24
t4 C t8C2˛; (34)
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with the exact solution [1];

u.t/ D t4C˛: (35)

If we apply FABMM to (34) by getting ˛ D 1:25; ˛ D 1:75; 0 < t � 1, step size n D 300 and initial condition

u.0/ D 0, one can obtain a numerical solution for (34) for the first ten terms and error accounts. Next, to measure

to the accuracy of the technique, we will use L2 nodal norm and L1 maximum nodal norm.

Table 3. The exact solution, numerical solution of (34) and the numerical errors for ˛ D 1:25 obtained by using FABMM

n t_n u_Exact u_Num. u_Exact�u_Num.

1 0.0033333 9.8881128E-14 2.9876778E-13 -1.9988665E-13

2 0.0066667 3.7628845E-12 5.6039360E-12 -1.8410515E-12

3 0.0100000 3.1622776E-11 3.8373813E-11 -6.7510365E-12

4 0.0133333 1.4319551E-10 1.6022741E-10 -1.7032249E-11

5 0.0166667 4.6206804E-10 4.9704561E-10 -3.4977573E-11

6 0.0200000 1.2033929E-09 1.2664240E-09 -6.3031050E-11

7 0.0233333 2.7031996E-09 2.8069634E-09 -1.0376375E-10

8 0.0266667 5.4492388E-09 5.6090960E-09 -1.5985717E-10

9 0.0300000 1.0113153E-08 1.0347244E-08 -2.3409097E-10

10 0.0333333 1.7583827E-08 1.7913160E-08 -3.2933348E-10

Using L2 nodal norm algorithms for measuring the accuracy of the technique used for solving (34) by taking n D

300 and ˛ D 1:25, we obtain the following L2 sum of numerical errors:

0.00000000809849.

Similarly, when we use L1 maximum nodal norm algorithms for measuring the accuracy of the technique used for

solving (34) by taking n D 300 and ˛ D 1:25, we obtain the following L1 maximum numerical errors:

0.0000225821.

Fig. 3. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (34) obtained by using

FABMM for 0 � t � 1; ˛ D 1:25
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Table 4. The exact solution, numerical solution of (34) and the numerical errors for ˛ D 1:75 obtained by using FABMM

n t_n u_Exact u_Num. u_Exact�u_Num.

1 0.0033333 5.7089045E-15 2.4363196E-14 -1.8654291E-14

2 0.0066667 3.0723823E-13 5.0498014E-13 -1.9774191E-13

3 0.0100000 3.1622776E-12 4.0125200E-12 -8.5024240E-13

4 0.0133333 1.6534753E-11 1.8974819E-11 -2.4400657E-12

5 0.0166667 5.9652728E-11 6.5218503E-11 -5.5657757E-12

6 0.0200000 1.7018546E-10 1.8113626E-10 -1.0950080E-11

7 0.0233333 4.1292056E-10 4.3235707E-10 -1.9436511E-11

8 0.0266667 8.8985697E-10 9.2183378E-10 -3.1976810E-11

9 0.0300000 1.7516495E-09 1.8012834E-09 -4.9633889E-11

10 0.0333333 3.2103529E-09 3.2839275E-09 -7.3574614E-11

Using L2 nodal norm algorithms for measuring the accuracy of the technique used for solving (34) by taking n D

300 and ˛ D 1:75, we obtain the following L2 sum of numerical errors:

0.00000000863107.

Similarly, when we use L1 maximum nodal norm algorithms for measuring the accuracy of the technique used for

solving (34) by taking n D 300 and ˛ D 1:75, we obtain the following L1 maximum numerical error:

0.0000247177.

Fig. 4. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (34) obtained by using

FABMM for 0 � t � 1; ˛ D 1:75

5 Remark

The numerical results for Example 1 and Example 2 have been obtained by using the programming language

Wolfram Mathematica 9. To the best of our knowledge, these numerical solutions have not been published previously,

and these results are new numerical solutions for (1) and (34).



Fractional ordinary differential Eq. by fractional Adams-Bashforth-Moulton method 555

6 Conclusions

In this paper, we have successfully applied FABMM for obtaining the numerical solutions of some linear and

nonlinear FODEs. We have constructed a table including numerical results for both fractional differential equations.

Next, we have drawn two dimensional surfaces of numerical solutions and analytical solutions by using Wolfram

Mathematica 9. Applying suitable values of parameters before we use L2 nodal norm and L1 maximum nodal

norm to evaluate the validity of the method used in this paper. It can be seen that this method is a powerful tool

for obtaining the numerical solutions of such FODEs, taking into account the numerical errors obtained by using

L2 nodal norm and L1 maximum nodal norm for the numerical errors of (1) and (34). We think that the proposed

method can also be applied to other fractional differential equations.
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