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Abstract

For the scattering problems of acoustic wave for an open arc in two dimensions, we

give a uniqueness and existence analysis via the single layer potential approach

leading to a system of integral equations that contains a weakly singular operator. For

its numerical solutions, we describe an O(h3) order quadrature method based on the

specific integral formula including convergence and stability analysis. Moreover, the

asymptotic expansion of errors with odd power O(h3) is got and the Richardson

extrapolation algorithm (EA) is used to improve the accuracy of numerical solutions.

The efficiency of the method is illustrated by a numerical example.

Keywords: Quadrature method; Extrapolation algorithm; Scattering problems;

Smooth open arc

1 Introduction

The scattering problems of electromagnetic waves or time-harmonic acoustic waves by an

infinitely long semi-cylindrical obstacle with a smooth open contour cross-section Γ ⊂ R2

are reduced to the Helmholtz equation with unbounded boundary value problems

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�u(x) + k2u(x) = 0, x ∈ R2\Γ ,

u(x) = g(x), x ∈ Γ ,
∂u(x)
∂r

– iku(x) = o( 1√
r
), r = |x| −→ ∞,

(1)

where Γ is a smooth open arc, k > 0 is the wave number, and |x| is the Euclidean distance.

The solution of (1) is got by the single layer potential theory in the following form [1]:

u(y) =

∫

Γ

K0

(

|x – y|
)

v(x)dsx, y ∈ R2\Γ , (2)

where K0|x – y| is the fundamental solution of (1), which is described as

K0

(

|x – y|
)

=
i

4
H

(1)
0

(

k|x – y|
)

, x �= y, (3)

and H
(1)
0 = iN0 + J0 is the Hankel function of order zero and of the first kind.
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N0 is the Neumann function of order zero, which is given by

N0(z) =
2

π

(

ln
z

2
+ γ

)

J0(z) +
2

π

∞
∑

n=1

(

n
∑

m=1

1

m

)

(–1)(n+1)

(n!)2

(

z

2

)2n

(4)

with γ = 0.57721 . . . denoting the Euler constant, and J0 is the Bessel function of order

zero, which is given by

J0(z) =

∞
∑

n=0

(–1)n

(n!)2

(

z

2

)2n

. (5)

Equations (4) and (5) are valid for small |z|. For large |z|, they are inaccurate, and other

series expressions are given in [2].

We decompose the integral kernel to analyze its properties as follows:

K0

(

|x – y|
)

= k1(x, y) + k2(x, y), (6)

where k1(x, y) = –1/2π ln |x – y| is a logarithmic singular function and k2(x, y) = i/4 –

1/2π (ln(k/2) + γ ) +O(|x – y| ln |x – y|) is a smooth function.

The singe layer potential (2) solves the unbounded Dirichlet problem provided the den-

sity v is the solution of the boundary integral equation

g(y) =

∫

Γ

K0

(

|x – y|
)

v(x)dsy, y ∈ Γ , (7)

which is the first kind boundary integral equation with weakly singular kernel. Assume

that CΓ denotes the logarithmic capacity of Γ , when CΓ �= 1, the solution of (7) exists and

is unique. Once the solution v(x) is solved by (7), the value u(x) (x ∈ R2\Γ ) can be got by

(2).

Boundary element method (BEM) [1, 3], finite element method (FEM) [4], and some

meshless methods [5, 6] have been developed for numerical solutions of the Helmholtz

equation. Huang and Wang [7] considered numerical solutions of the boundary integral

equation of the Helmholtz equation with mixed boundary value problem on a smooth

closed curve by themechanical quadraturemethod [8] and extrapolation algorithm. In this

case, the solution of the equation is smooth. The boundary element-free method was pro-

posed byChen, Liu, and Li [2] for solving two-dimensional exterior and interiorHelmholtz

equations withmixed boundary value problem. The large wave numbers Helmholtz equa-

tion was solved by Wang, Zhai, and Zhang [9] using a new weak Galerkin mixed finite

element method. Dastour and Liao [10] presented the finite difference method for solving

the two-dimensional Helmholtz problems. A radial basis function-generated finite differ-

ence scheme was introduced by London̄o and Montegranario [11] to get the numerical

solutions of the two-dimensional Helmholtz equation. Celiker and Lin [12] solved the

Helmholtz equation with the Dirichlet boundary value problem by using a conforming

finite element method and obtained the high precision numerical solutions, etc. In the

above numerical methods, the boundary element method is a good choice due to the re-

duction of the dimension of boundary value problems. Boundary element method can be
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used to transform boundary value problems into boundary integral equations which in-

clude singular integral [1]. There are numerical methods to solve the boundary integral

equations (7), such as Galerkinmethod [13], collocationmethod [14], andmeshless meth-

ods [15]. However, these methods are either of low accuracy or complicated or unstable.

The focus of the paper is to investigate the numerical solutions of the Helmholtz equa-

tion with Dirichlet problems for the smooth open arc by using a high-accuracy quadrature

method which has the characteristics of high-accuracy, low computational complexity,

and good stability. We firstly convert the problem into a weakly singular boundary in-

tegral equation by using the potential theory. Because the boundary integral equation is

defined on the smooth open arc, its solution is singular at the end of the open arc, which

seriously affects the accuracy of the numerical solutions. In order to obtain high accuracy

numerical solutions, we use Sidi transform to eliminate the singularity of solution at the

end of open arc. Further, we construct a high-accuracy quadrature method according to

the specific quadrature formula and discrete the equation to get a system of linear equa-

tions. Then, we prove the convergence of the numerical solutions and the stability of the

method, and prove that the error has a single parameter asymptotic expansion with odd

power O(h3), and the discrete matrix has a good condition number. The higher accuracy

can be obtained by the EA. In the end, numerical results support our theoretical analysis.

The remainder of the paper is organized as follows. We analyze the singularities of the

solutions and integral kernels in Sect. 2. A quadrature method with high-accuracy is con-

structed to discrete the integral equation by using singular integral formula in Sect. 3.

Furthermore, we prove the convergence and stability of the method. In Sect. 4, we get the

single parameter asymptotic expansion of the error and construct the EA based on the

expansion to improve the accuracy of the numerical solutions. A numerical example is

given in Sect. 5 to verify our theoretical analysis.

2 Singularity analysis of integral kernels and solutions

For the convenience of discussion, we assume that the boundary Γ is described by the

parameter mapping: x = x(t) = (x1(t),x2(t)), t ∈ [0, 1] with x(t) ∈ Cm[0, 1], m ∈ N and also

assume y = x(s) = (x1(s),x2(s)), s ∈ [0, 1]. Under the parameter mapping, (7) can be con-

verted into the following integral equation:

g(s) =

∫ 1

0

K0

(
∣

∣x(t) – x(s)
∣

∣

)

v
(

x(t)
)
∣

∣x′(t)
∣

∣dt, s ∈ [0, 1], (8)

with g(s) = g(x(s)). Since the function v is singular at t = 0 and t = 1, we use Sidi transfor-

mation [16] to eliminate singularity, which is defined as follows:

t = ψp(τ ) : [0, 1] → [0, 1], p ∈N , (9)

where ψp(τ ) = ϑp(τ )/ϑp(1), ϑp(τ ) =
∫ τ

0
(sin(πρ))p dρ . Hence (8) is equivalent to

g(s) =

∫ 1

0

K0

(
∣

∣x(τ ) – x(s)
∣

∣

)

v(τ )
∣

∣x′(ψp(τ )
)
∣

∣ψ ′
p(τ )dτ , s ∈ [0, 1], (10)

where x(τ ) = x(ψp(τ )), v(τ ) = v(x(ψp(τ ))), and ψ ′
p(τ ) has zero points with degree p at τ = 0

and τ = 1.



Li et al. Boundary Value Problems        ( 2020)  2020:136 Page 4 of 15

Some integral operators on [0, 1] are defined as follows:

(Tw)(s) =

∫ 1

0

t(s, τ )w(τ )dτ (11)

with t(s, τ ) = – 1
2π

ln |2e–1/2 sin(π (s – τ ))|, w(τ ) = v(τ )|x′(ψp(τ ))|ψ ′
p(τ ),

(K1w)(s) =

∫ 1

0

k1(s, τ )w(τ )dτ (12)

with k1(s, τ ) = – 1
2π
[ln |x(s) – x(τ )| – ln |2e–1/2 sin(π (s – τ ))|], and

(K2w)(s) =

∫ 1

0

k2(s, τ )w(τ )dτ (13)

with k2(s, τ ) = k2(x(s),x(τ )). From (11), (12), and (13), we transform (10) into the following

matrix operator equation:

(T +K1 +K2)w = G̃, (14)

where G̃ = g(s) and w = w(τ ) with w(0) = w(1) = 0 if p is sufficiently large. The Symm op-

erator T is an isomorphism between H l[0, 1] andH l+1[0, 1] for any real l, whereH l[0, 1] is

the periodic Sobolev space with period 1, so (14) is equivalent to

(

E + T–1(K1 +K2)
)

w =G, (15)

where E is the identity operator and G = T–1G̃.

Next, we analyze the singularity of the solution v of (7), Let Q1 and Q2 be the end of

Γ , and assume the endpoints correspond to the parameter values tm (m = 1, 2). It is well

known that the solution v has singularity at points tm (m = 1, 2) [17, 18]. The solution v

can be described as the following form:

v
(

x(t)
)

= tβm–1 (1 – t)βmg(t), (16)

where g(0) �= 0, g(1) �= 0, and βm ≥ – 1
2
. Further, we get

w(τ ) = d1g(0)τ
(p+1)βm–1+p

(

1 +O
(

τ 2
))

, τ → 0+ (17)

and

w(τ ) = d2g(1)(1 – τ )(p+1)βm+p
(

1 +O
(

(1 – τ )2
))

, τ → 1–, (18)

where d1 and d2 are constants. From (17) and (18), it is easy to know that w(τ ) is bounded

in [0, 1] and has zeros at τ = 0 and τ = 1.

Then we get the following results hold:

(1) t(s, τ ) is a logarithmic singular function on s ∈ [0, 1] and τ ∈ [0, 1];

(2) k1(s, τ ) is a continuous function on s ∈ [0, 1] and τ ∈ [0, 1];

(3) k2(s, τ ) is a continuous function on s ∈ [0, 1] and τ ∈ [0, 1];

(4) The solution w(τ ) is a smooth function.
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3 High-accuracy quadraturemethod

Lemma 1 ([16]) Assume g(x) and h(x) ∈ C2m[a,b]. G(x) = ln |x – t|g(x) + h(x) is a peri-

odic function with a period of b – a and at least 2m differentiable in Ł = {–∞, +∞} \ {t +
kT}{+∞}

{k=–∞}. There exists a quadrature formula as follows:

Qn(G) = h
∑

j=1,xj �=t
G(xj) + h(t)h + ln

(

h

2π

)

g(t)h, (19)

and the error is given by

En(G) =

∫ b

a

G(x)dx –Qn(G) = 2

m–1
∑

j=1

ζ ′(–2j)

(2j)!
g(2j)(t)h2j+1 +O

(

h2m
)

, (20)

where ζ ′(t) is the derivative of the Riemann zeta function and h is the mesh widths.

Let us assume that h = 1/n (n ∈ N ) denotes mesh widths, and sj = τj = (j – 1/2)h, j =

1, . . . ,n, are middle nodes. For an integral operator M with continuous kernel m(s, τ ) as

K1 and K2, by the midpoint or the trapezoidal rule [19], the Nyström approximation Mh

is defined

(

Mhw
)

(s) = h

n
∑

j=1

m(s, τj)w(τj), s ∈ [0, 1], (21)

with the error bounds

(Mw)(s) –
(

Mhw
)

(s) =O
(

h2lm
)

. (22)

For the logarithmic singular operator T , by the quadrature formula (19), the Fredholm

approximation Th is defined

(

Thw
)

(si) =
h

2π

n
∑

j=1,si �=τj

ln
∣

∣2e–1/2 sinπ (s – τj)
∣

∣w(τj) +
h

2π
ln

∣

∣

∣

∣

2πe–1/2h

2π

∣

∣

∣

∣

w(si) (23)

with the error bounds

(Tw)(si) –
(

Thw
)

(si) = –
2

π

2l–1
∑

μ=1

ζ ′(–2μ)

(2μ)!

[

w(si)
]2μ

h2μ+1m +O
(

h2lm
)

, i = 1, . . . ,n. (24)

From (21) and (23), we can get the approximate equation of (14) as follows:

(

Th +Kh
1 +Kh

2

)

wh = G̃h, (25)

where wh = (w(τ1), . . . ,w(τn)) and G̃h = (G̃(τ1), . . . , G̃(τn)). It is obvious that (25) is a linear

equation with n unknowns. The solution wh is solved by (25), then the value u(y) (y ∈
R2\Γ ) can be got by the following form:

uh(y) = h

n
∑

j=1

K0

(
∣

∣y – x(τj)
∣

∣

)

w(τj). (26)
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To discuss a unique solution existing for (25), we firstly obtain that the operator Th is

invertible. From (23) we know that Th is the circular matrix, which is expressed by

Th = circulate

(

–
h

2π
ln

∣

∣e–1/2h
∣

∣, . . . , –
h

2π
ln

∣

∣2e–1/2 sin
(

π (n – 1)h
)
∣

∣

)

. (27)

Lemma 2 There are two constants c1 > 0 and c2 > 0 independent of h, which make the

eigenvalues λα (α = 1, . . . ,n) of matrix Th satisfy c1 ≥ λα ≥ c2h.

Proof Since sin(π – x) = sin(x), it is easy to see that Th is a symmetric circular matrix.

Further, we get λ(α) = F(ǫα)/2π with ǫ = e2π
√
–1/n and

F(z) = –h

{

ln
∣

∣he–1/2
∣

∣ +

n–1
∑

j=1

zj ln
∣

∣2e–1/2 sin(jπ/n)
∣

∣

}

.

To estimate the upper bound, we first prove the following identity:

n–1
∏

j=1

sin

(

jπ

n

)

=
n

2n–1
. (28)

Because the polynomial xn – 1 can be factorized by its complex roots, we obtain

xn – 1 = (x – 1)

n–1
∏

j=1

(

x – e2π ij/n
)

and

1 + x + x2 + · · · + xn–1
n–1
∏

j=1

(

x – e2π ij/n
)

.

Let x = 1, we have

n =

n–1
∏

j=1

(

1 – e2π ij/n
)

=

n–1
∏

j=1

∣

∣eπ ijn
∣

∣

∣

∣e–π ij/n – eπ ij/n
∣

∣ = 2n–1
n–1
∏

j=1

sin(π j/n).

Based on the above equation, identity (28) can be got. From (28) we have

F(1) = –h

{

ln
∣

∣he–1/2
∣

∣ +

n–1
∑

j=1

ln
∣

∣2e–1/2 sin(jπ/n)
∣

∣

}

=
1

2
,

and obtain λ0 = 1/4π .

For α = 1, . . . ,n – 1, we have

λα = –
h

2π

{

ln
∣

∣he–1/2
∣

∣ +Ψ
(

ǫα
)}

=
(

ln(2n) + (1/2 – ln2)Φ
(

ǫα
)

–Ψ
(

ǫα
))

/2πn

with Ψ (z) =
∑n–1

j=1 zj ln | sin(jπ/n)| and Φ(ǫα) = 1 + z + · · · + zn–1.
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Since Ψ (ǫα) = nδα,0 and (1/2 – ln2) < 0, by (28), we get

∣

∣Ψ (z)
∣

∣ ≤
n–1
∑

j=1

– ln
∣

∣sin(jπ/n)
∣

∣ = – ln

(

n–1
∏

j=1

sin(jπ/n)

)

= – lnn + (n – 1) ln2,

and obtain the upper bound of λα

λα ≤ 1

2πn

(

ln(2n) – lnn + (n – 1) ln2
)

=
ln2

2π
. (29)

For the lower bound estimate, we first have

λ′
α = ln

∣

∣e–1/2/n
∣

∣ +

n–1
∑

j=1

cos(2αjπ/n) ln
∣

∣2e–1/2 sin(jπ/n)
∣

∣

= – lnn +

n–1
∑

j=1

cos(2απ/n) ln
∣

∣2 sin(jπ/n)
∣

∣,

where λ′
α = –2πnλα .

From the expansion of the function [20] ψ(z) = –γ – 1/z + z
∑∞

j=1 1/[j(j + z)], we have

ψ(α/n) = ln2 – γ – lnn – (π/2) cot(απ/n) +

n–1
∑

j=1

cos(2απ/n) ln
∣

∣2 sin(jπ/n)
∣

∣,

and get

n–1
∑

j=1

cos(2απ/n) ln
∣

∣2 sin(jπ/n)
∣

∣ = – ln2 + lnn + (π/2) cot(απ/n)

– n/α + α/n

∞
∑

j=1

1

j(j + α/n)
.

Further, we obtain

λ′
α = – ln2 + (π/2) cot(απ/n) – n/α + α/n

∞
∑

j=1

1

j(j + α/n)
. (30)

Substituting

cot(απ/n) = n/απ – απ/(3n) – · · · – 22j|B2j|/(2j)!(απ/n)2j–1 – · · ·

into (30) yields

λ′
α = – ln2 +

(

n/(2α) – απ2/(6n) – · · · – 22j|B2j|/(2j)!(απ/n)2j–1π – · · ·
)

– n/α + α/n

∞
∑

j=1

1

j(j + α/n)
,
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and

λα = ln2/(2πn) +

{

(

1/(2α) + απ2/
(

6n2
)

+ · · · – 22j|B2j|/(2j)!(απ/n)2j–1π/n + · · ·
)

– α/n2
∞

∑

j=1

1

j(j + α/n)

}

/(2π ),

where Bj is the Bernoulli number. Further, from

απ2/
(

6n2
)

– α/n2
∞

∑

j=1

1

j(j + α/n)
> α/n2

{ ∞
∑

j=1

[

j–2 –
1

j(j + α/n)

]

}

> 0,

we obtain

λα > 1/(4πα) + (απ )/
(

12n2
)

+ · · · > 1/(4πα) > 1/(4πn). (31)

From (29) and (31), we complete the proof of Lemma 2. �

Corollary 1 (1) The condition number of matrix Th is O(n); (2) the matrix Th is invert-

ible, and its inverse matrix (Th)–1 is uniformly bounded, and the spectral norm satisfies

‖(Th)–1‖ =O(n).

Based on the above corollary, (25) is equivalent to

(

Eh +
(

Th
)–1(

Kh
1 +Kh

2

))

wh =
(

Th
)–1

Gh. (32)

In the following, wewill discuss the convergence of the numerical solutions of (32). First,

some special operators and subspaces are introduced.

A subspace C0[0, 1] ⊂ C[0, 1] is defined as

C0[0, 1] =
{

v(t) ∈ C[0, 1] : v(t)/ sin3(π t) ∈ C[0, 1]
}

with a norm ‖v‖∗ = max0≤t≤1 |v(t)/ sin3(π t)|.
A piecewise linear function subspace is defined as

Sh = span
{

ej(t), j = 1, . . . ,n
}

⊂ C0[0, 1],

where the basis function ej(t) satisfies ej(ti) = δji and {ti}nm–1
i=0 denotes the basis points.

A prolongation operator is defined as Lh : Rn → Sh and it satisfies

Lhv =

n
∑

j=1

vjej(t), ∀v = (v1, . . . , vn) ∈ Rn. (33)

A restricted operator is defined as Fh : C0[0, 1] → Rn and it satisfies

Fhv =
(

v(t1), . . . , v(tn)
)

∈ Rn, ∀v ∈ C0[0, 1]. (34)

Next, we provide some lemmas to prove the convergence.
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Lemma 3 {Lh(Th)–1FhT : C3[0, 1] → C[0, 1]} is convergent to E.

Proof From (23), assume that ∀ψ ∈ C3[0, 1] andψh are the solutions of auxiliary equations

Tψ = ρ and Thψh = Fhρ , respectively. We get

Tψ(si) = Thψ(si) + ηi,

in which ηi =O(h3) (i = 1, . . . ,n). Denoting e(si) = ψh(si) –ψ(si), we get

The(si) = Th
(

ψh –ψ
)
∣

∣

s=si
= Fhρ

∣

∣

s=si
–

(

Tψ(si) – ηi
)

= ηi =O
(

h3
)

and

The = η, e′ =
(

e(s1), . . . , e(sn)
)

, η′ = (η1, . . . ,ηn).

We get e = (Th)–1η with ‖e‖ =O(h2) by Corollary 1, and

‖e‖ =
∥

∥

(

Th
)–1

ε
∥

∥ =
∥

∥FhT–1ρ –
(

Th
)–1

Fhρ
∥

∥

=
∥

∥Fhφ –
(

Th
)–1

FhTφ
∥

∥.

By LhFh → E as h → 0 in £(C3[0, 1] → C[0, 1]), the proof of Lemma 3 is completed. �

Lemma 4 Assume that T ∈ £(C[0, 1],Ck[0, 1]), T–1 exist, M ∈ £(C[0, 1],Ck+1[0, 1]), and

the kernel m(s, τ ) of M satisfies T–1m(s, τ ) = m̃(s, τ ), in which m̃(s, τ ) is the kernel of M̃. Let

m̃(s, τ ) and d
ds
m̃(s, τ ) be continuous on [0, 1]2.We have

(

M̃hw
)

(s) = h

n
∑

j=1

m̃(s, τj)w(τj), w ∈ [0, 1], (35)

is the collectively compact convergent to M̃:

T–1Mh c.c→ T–1M ∈ £
(

C0[0, 1],C1[0, 1]
)

. (36)

Proof According to (35), we get

T–1Mhw = h

n
∑

j=1

m̃(s, τj)w(τj) →
∫ 1

0

m̃(s, τ )w(τ )dτ = T–1Mu.

d(s, τ ) is a continuous function on [0, 1]2, hence we get [21]

T–1Mh c.c→ T–1M ∈ £
(

C0[0, 1],C∞[0, 1]
)

and

d

ds
T–1Mhw =

d

ds

[

h

n
∑

j=1

m̃(s, τj)w(τj)

]

.

Since d
ds
d̃(s, τ ) is a continuous function on [0, 1]2, (36) can be obtained. �
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Further the following corollary can be got.

Corollary 2 Let the Nyström approximation Mh of M be defined by (21), we have

Lh
(

Th
)–1

FhMh c.c→ T–1M ∈ C[0, 1] → C[0, 1].

Proof Under the parameter transformations (9), the kernelm(s, τ ) ofM is continuous, and

its high order derivatives are also continuous. From

Lh
(

Th
)–1

FhMh =
(

Lh
(

Th
)–1

FhT
)(

T–1Mh
)

,

we get

∥

∥Lh
(

Th
)–1

FhMh
∥

∥

0,0
≤

∥

∥

(

Lh
(

Th
)–1

FhT
)
∥

∥

0,3

∥

∥T–1Mh
∥

∥

3,0
,

in which ‖ · ‖m2 ,m1 is the norm of £(Cm1 [0, 1],Cm2 [0, 1]). By Lemma 4 and T–1Mh ∈
C[0, 1] → C3[0, 1], there exists a constant c independent of h so that

∥

∥Lh
(

Th
)–1

FhT
∥

∥

0,3
≤ c and

∥

∥T–1Mh
∥

∥

3,0
≤ c. (37)

Also using the results of [21] and Lemma 3, we conclude that {T–1Mh : C[0, 1] → C3[0, 1]}
must be collectively compact convergent to T–1M. Hence, the proof is completed. �

Let (T̂h)–1(K̂h
1 + K̂h

2 ) = Lh(Th)–1Fh(Kh
1 +Kh

2 ), ŵ
h = Lhwh, and Ĝ = LhGh. We construct an

operator equation

(

Eh +
(

T̂h
)–1(

K̂h
1 + K̂h

2

))

ŵh =
(

T̂h
)–1

Ĝh. (38)

Obviously, if ŵh is the solution of (38), then Fhŵh must be the solution of (32); conversely,

if wh is the solution of (32), then Lhwh must be the solution of (38). Below we prove that

there exists a unique solution ŵh in (38) such that ŵh converges to w.

Finally, the main theorem is proved to complete the proof of convergence.

Theorem 1 {Lh(Th)–1Fh(Kh
1 +Kh

2 )} is collectively convergent to T–1(K1 +K2) ∈ C0[0, 1]:

Lh
(

Th
)–1

Fh
(

Kh
1 +Kh

2

) c.c→ T–1(K1 +K2). (39)

Proof Let Θ = {υ : ‖υ‖ ≤ 1,υ ∈ V } be a unit ball. H = {h1,h2, . . .} is the grid step sequence

and hl → 0 as l → ∞. We arbitrarily take a sequence {Zh}h∈H in space Θ and verify that

there exists a convergent subsequence in {Lh(Th)–1Fh(Kh
1 + Kh

2 )Zh}. Using the results of

Lemma 4 and Corollary 2, and by

Lh
(

Th
)–1

FhKh
1Zh = Lh

(

Th
)–1

FhTh
[(

Th
)–1

FhKh
1

]

Zh,
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we get

∥

∥Lh
(

Th
)–1

FhMh
∥

∥

0,0

≤
∥

∥Lh
(

Th
)–1

FhTh
∥

∥

0,1

∥

∥

(

Th
)–1

FhDh]
∥

∥

1,0

≤ c
∥

∥

(

Th
)–1

FhMh]
∥

∥

1,0
,

whereMh stands for Kh
1 and Kh

2 . Thus we get

Lh
(

Th
)–1

FhMh c.c→ T–1M.

An infinite subsequence is found in {Lh(Th)–1FhKh
1Zh} by collectively compact theory [21],

which converges as h → 0. Similarly, {Lh(Th)–1FhKh
2Zh} has the same result. Hence, it is

proved that there exists an infinite subsequence H (1) ⊂ H such that {Lh(Th)–1Fh(Kh
1 +

Kh
2 )Zh} converges. Similarly, it can be concluded that there exists an infinite subse-

quence H (d) ⊂ H (d–1) ⊂ · · · ⊂ H (1) ⊂ H such that {Lh(Th)–1Fh(Kh
1 + Kh

2 )Zh} converges.

Therefore, {Lh(Th)–1Fh(Kh
1 + Kh

2 )} is a collectively compact convergent sequence, and

Lh(Th)–1Fh(Kh
1 +K

h
2 )

P→ T–1(K1+K2), where
P→ shows the point of convergence. The proof

is completed. �

Meanwhile, the following corollary is presented to obtain the stability of the method.

Corollary 3 Assume that Kh
1 , K

h
2 , and Th are defined by (21) and (23), respectively. The

eigenvalues ofΥ h = Th+Kh
1 +K

h
2 are λi (i = 1, . . . ,n).There is the bound of condition number

Cond
(

Υ h
)

=
max1≤i≤n |λi(Υ

h)|
min1≤i≤n |λi(Υ h)| =O

(

h–1
)

. (40)

4 Asymptotic expansion of error and EA

In what follows, the single parameter asymptotic expansion of error is got to describe the

EA.

Theorem 2 There exists a function Φ independent of h such that the following asymptotic

expansion with a single parameter holds at nodes:

wh –w = h3Φ + o
(

h3
)

, (41)

where wh ∈ S, w ∈ C3[0, 1].

Proof By (22) and (24), there exists the single parameter asymptotic expansion

(

G̃h – G̃
)

= h3LhFhω + o
(

h3
)

, (42)

in which ω = –ζ ′(–2)g ′′(s)/π .

Using (14), (22), and (24), we obtain

(

Th +Kh
1 +Kh

2

)

Fh
(

wh –w
)

= G̃h – Lh
(

Th +Kh
1 +Kh

2

)

Fhw
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= G̃h –
[

(T +K1 +K2)w – h3LhFhγ
]

+ o
(

h3
)

=
(

G̃h – G̃
)

+ h3LhFhγ + o
(

h3
)

= h3LhFhη + o
(

h3
)

, (43)

where γ = –ζ ′(–2)v′′(t)/π , and η = ω + γ . From Theorem 1, we get

(

E + Lh
(

Th
)–1

Fh
(

Kh
1 +Kh

2

))(

wh –w
)

= h3
(

Th
)–1

LhFhη + o
(

h3
)

. (44)

We construct the following auxiliary equation:

(

E + T–1(K1 +K2)
)

Φ = T–1η (45)

and its approximate equation

(

E + Lh
(

Th
)–1

Fh
(

Kh
1 +Kh

2

))

Φh =
(

Th
)–1

LhFhη. (46)

By substituting (46) into (44), we get

(

E + Lh
(

Th
)–1

Fh
(

Kh
1 +Kh

2

))(

wh –w – h3Φh
)

= o
(

h3
)

. (47)

Since (E + Lh(Th)–1Fh(Kh
1 +Kh

2 )) is uniformly bounded, from Theorem 1 we get

wh –w – h3Φh = o
(

h3
)

. (48)

Replacing Φh with Φ , we can complete the proof. �

Based on the single parameter asymptotic expansion (41), the EA can be constructed as

follows [22]:

ûh(sj) =
1

7

(

8uh/2(sj) – uh(sj)
)

,

with the error estimate ‖ûh(sj) – u(sj)‖ = o(h3).

By the extrapolation results, the following a posteriori estimate can be obtained:

∥

∥uh/2(sj) – u(sj)
∥

∥ ≤
∥

∥

∥

∥

8

7
uh/2(sj) –

1

7
uh(sj) – u(sj)

∥

∥

∥

∥

+
1

7

∥

∥uh/2(sj) – uh(sj)
∥

∥ ≤ 1

7

∥

∥uh/2(sj) – uh(sj)
∥

∥ + o
(

h3
)

.

The self-adaptive algorithm can be got by using the above inequality. Obviously, the EA is

not complicated, but the accuracy of the numerical solution is improved.

5 Numerical example

In what follows, we provide a numerical example to verify the proposed method.
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Example We consider the scattering of a plane wave ui by a sound-soft cylinder with the

smooth open contour cross sectionwith the boundaryΓ , which is described by the param-

eter mapping x(t) = (2 sin t
2
, sin t), π

4
≤ t ≤ 7π

4
. The incident wave is given by ui(x) = eikd·x

with d denoting the unit vector of propagation direction, and the boundary values g = –ui

on Γ are considered. The far-field pattern u∞ is defined by the asymptotic behavior of the

scattered wave

u(y) =
eik|y|
√

|y|
{

u∞ +O
(

1/|y|
)}

, |y| → ∞,

uniformly in all directions ŷ = y/|y|. Based on the following asymptotic formula of the

Hankel function

H
(1)
0 (y) =

√

2

πy
ei(y–π/4)

{

1 +O(1/y)
}

, |y| → ∞,

the far-field pattern of the single-layer potential (2) is obtained by the form

u∞(ŷ) = c

∫

Γ

e–ikx·yv(x)dsy

with c = – eiπ/4√
2πk

.

In Tables 1 and 2, we show some approximate values for the far-field patterns u∞(d) in

the forward direction d = (1, 0) with k = 1 and k = 5, respectively. Let Re(e∞(d)) denote the

real part of errors and Im(e∞(d)) denote the imaginary part of errors. Also let Re(eE∞(d))

and Im(eE∞(d)) denote the errors by the EA once. Let ratio = e|n
e|2n with e|n denote the errors

under the mesh widths h = 1/n. From Tables 1 and 2, we can see log2 ratio ≈ 3, which

agrees with Theorem 2 very well, and the EA greatly improves the accuracy of numerical

solutions.

In Tables 3 and 4, we show the condition numbers of the discrete matrices with k = 1

and k = 5, respectively. Let |λmax| and |λmin| denote the absolute values of the maximum

eigenvalue and the minimum eigenvalue, respectively. From Tables 3 and 4, we can see
Cond|2n
Cond|n ≈ 2, which agrees with Corollary 3 very well, where Cond is the condition number.

Table 1 Numerical results for the far-field pattern u∞(d) with k = 1

n Re(e∞(d)) ratio Re(eE∞(d)) Im(e∞(d)) ratio Im(eE∞(d))

32 1.1017E–4 – – 7.3137E–5 – –

64 1.3733E–5 8.0220 4.3141E–8 9.0241E–6 8.1046 1.3488E–7

128 1.7245E–6 7.9642 8.8248E–9 1.1064E–6 8.1560 2.4662E–8

256 2.1803E–7 7.9094 2.8222E–9 1.2934E–7 8.5542 1.0240E–8

Table 2 Numerical results for the far-field pattern u∞(d) with k = 5

n Re(e∞(d)) ratio Re(eE∞(d)) Im(e∞(d)) ratio Im(eE∞(d))

32 2.3166E–2 – – 1.0459E–2 – –

64 2.7547E–3 8.4096 1.6118E–4 1.2172E–3 8.5930 1.0312E–4

128 3.4001E–4 8.1017 4.9395E–6 1.5062E–4 8.0808 1.7397E–6

256 4.1964E–5 8.1024 6.1389E–7 1.8663E–5 8.0707 1.8853E–7
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Table 3 The condition number with k = 1

n

32 64 128 256

|λmin| 6.9278E–3 3.4514E–3 1.7242E–3 8.6192E–4

|λmax| 0.1902 0.1903 0.1903 0.1903

Cond 27.4476 55.1251 1.1036E+002 2.2078E+002

Table 4 The condition number with k = 5

n

32 64 128 256

|λmin| 7.0456E–3 3.4653E–3 1.7259E–3 8.6213E–4

|λmax| 0.1067 0.1069 0.1069 0.1070

Cond 15.1410 30.8440 61.9599 1.2405E+002

6 Conclusions

In this paper, we discuss the high-accuracy quadrature method and the EA for scatter-

ing problems for a smooth open arc, there exist the following advantages: (a) Computing

an entry of the discrete matrices is straightforward and simple, without any singular in-

tegrals, hence the method is appropriate to solve weakly singularity problems; (b) The

method possesses the feature of high accuracy. The O(h3) order accuracy of the error is

proved, and the numerical results verify our theoretical analysis. The EA can be used to

raise the accuracy of the solutions, see Tables 1 and 2; (c) The condition number of the

discrete matrix increases linearly, which shows that the method is stable. Although the

method has the characteristics of high accuracy, low computational complexity, and good

stability, it also has a limitation, that is, the method is effective for solving weakly singular

boundary integral equations, but not for strongly singular and hypersingular boundary in-

tegral equations. Based on the research results in [23, 24], we intend to apply the method

to the Neumann problems for the Helmholtz equation and the exterior acoustic problems

with arbitrary and high wave numbers in the future.
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