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Abstract

An effective means to approximate an analytic, nonperiodic func-
tion on a bounded interval is by using a Fourier series on a larger
domain. When constructed appropriately, this so-called Fourier ex-
tension is known to converge exponentially fast in the truncation
parameter. However, computing a Fourier extension requires solv-
ing an ill-conditioned linear system. The purpose of this paper is
to show that, despite such ill-conditioning, Fourier extensions are
actually numerically stable when implemented in finite arithmetic.
Moreover, the convergence rate of such numerical extensions is at
least spectral, and sometimes exponential. Thus, for Fourier exten-
sions at least, ill-conditioning of the linear system does not prohibit
a good approximation.

In the second part of this paper we consider the problem of com-
puting Fourier extensions from equispaced data. A result of Platte,
Trefethen & Kuijlaars states that no method for this problem can be
both numerically stable and exponentially convergent. We explain
how Fourier extensions relate to this theoretical barrier, and demon-
strate that they are particularly well suited for this problem: namely,
they obtain high-order (in particular, always spectral) convergence
in a numerically stable manner.
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Abstract

An effective means to approximate an analytic, nonperiodic function on a bounded interval
is by using a Fourier series on a larger domain. When constructed appropriately, this so-called
Fourier extension is known to converge exponentially fast in the truncation parameter. However,
computing a Fourier extension requires solving an ill-conditioned linear system. The purpose of
this paper is to show that, despite such ill-conditioning, Fourier extensions are actually numerically
stable when implemented in finite arithmetic. Moreover, the convergence rate of such numerical
extensions is at least spectral, and sometimes exponential. Thus, for Fourier extensions at least,
ill-conditioning of the linear system does not prohibit a good approximation.

In the second part of this paper we consider the problem of computing Fourier extensions
from equispaced data. A result of Platte, Trefethen & Kuijlaars states that no method for this
problem can be both numerically stable and exponentially convergent. We explain how Fourier
extensions relate to this theoretical barrier, and demonstrate that they are particularly well suited
for this problem: namely, they obtain high-order (in particular, always spectral) convergence in a
numerically stable manner.

1 Introduction

Let f : [−1, 1] → R be an analytic function. When periodic, an extremely effective means to approx-
imate f is via its truncated Fourier series. This approximation not only converges exponentially fast
in the truncation parameter N , it can also be computed efficiently via the Fast Fourier Transform
(FFT). Moreover, Fourier series possess high resolution power. One requires an optimal 2 modes per
wavelength to resolve oscillatory behaviour, making Fourier methods well-suited for (most notably)
PDE problems with oscillatory solutions [17].

For these reasons, Fourier series are extremely widely used in practice. However, the situation
changes completely when f is nonperiodic. In this case, rather than exponential convergence, one
witnesses the familiar Gibbs phenomenon near x = ±1 and only linear pointwise convergence in (−1, 1).

1.1 Fourier extensions

For analytic and nonperiodic functions, one way to retain the good properties of a Fourier series
expansion (i.e. exponential convergence and high resolution power) is to seek to approximate f with a
Fourier series on an extended domain [−T, T ]. Here T > 1 is a user-determined parameter. Thus, we
seek an approximation FN (f) to f from the set

GN := span {φn : |n| ≤ N} , φn(x) :=
1√
2T

ei
nπ
T

x.
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Although there are many potential ways to define FN (f), in [7, 10, 18] it was proposed to compute
FN (f) as the best approximation to f on [−1, 1] in a least squares sense:

FN (f) := argmin
φ∈GN

‖f − φ‖. (1.1)

Here ‖·‖ is the standard norm on L2(−1, 1) – the space of square-integrable functions on [−1, 1].
Henceforth, we shall refer to FN (f) as the continuous Fourier extension (FE) of f .

In [1, 18] it was shown that the continuous FE FN (f) converges exponentially fast in N (see also
Theorem 2.10), and has a resolution constant (number of degrees of freedom per wavelength required
to resolve an oscillatory wave) that ranges between 2 and π depending on the choice of the parameter
T , with T ≈ 1 giving close to the optimal value 2 (see §2.3.1 for a discussion). Thus the continuous FE
successfully retains the key properties of rapid convergence and high resolution power of a standard
Fourier series for the case of a nonperiodic function.

We remark in passing that, in practice, one does not usually compute the continuous FE [1, 18]. A
more convenient approach is to replace (1.1) by the discrete least squares

F̃N (f) := argmin
φ∈GN

∑

|n|≤N

|f(xn)− φ(xn)|2, (1.2)

for nodes {xn}|n|≤N ⊆ [−1, 1]. We refer to F̃N (f) as the discrete Fourier extension of f . When chosen
suitably – in particular, as in (2.10) – such nodes ensure that the difference in approximation properties
between the extensions (1.1) and (1.2) is minimal (for details see §2.2).

1.2 Numerical convergence and stability of Fourier extensions

The approximation properties of the continuous and discrete FE’s have been analysed previously [1, 18].
Therein it was also observed numerically that the condition numbers of the matrices A and Ã associated
to the least squares (1.1) and (1.2) are exponentially large in N . Thus, if a = (a−N , . . . , aN )⊤ is the
vector of coefficients of the continuous or discrete FE (i.e. FN (f) or F̃N (f) is given by

∑

|n|≤N anφn),
one expects small perturbations in f to lead to large errors in a. In other words, the computation of
the coefficients of the (continuous or discrete) FE is unstable. In the first result of this paper we prove
such exponential growth of the condition numbers of these matrices, and derive the precise rate.

Because of this ill-conditioning, it is tempting to think that FE’s will be useless in applications.
Indeed, at first sight it is reasonable to expect that the good approximation properties of exact FE’s
(i.e. those obtained in exact arithmetic) will be destroyed when computing numerical FE’s in finite
precision. However, previous numerical studies [1, 7, 10, 18, 20, 21] indicate otherwise. Despite very
large condition numbers, one typically obtains an extremely good approximation with a numerical FE,
even for poorly behaved functions and in the presence of noise. The aim of this paper is to give a full
explanation of this phenomenon.

The explanation we provide can be summarised as follows. In computations, our interest does not lie
with the accuracy in computing the coefficients {an}Nn=−N , but rather the accuracy of the numerical FE
∑

|n|≤N anφn. As we show, although the mapping from a function to its coefficients is ill-conditioned,
the mapping from f to its numerical FE is, in fact, well-conditioned. In other words, small singular
values of A (or Ã) have a significant effect on a, but little effect on the FE itself.

Whilst this observation explains the apparent stability of numerical FE’s, it does not address their
approximation properties. In [1, 18] it was shown that the exact continuous and discrete FE’s FN (f)
and F̃N (f) converge exponentially fast inN . However, the fact that there may be substantial differences
between the coefficients of FN (f), F̃N (f) and those of the numerical FE’s, which henceforth we denote
by GN (f) and G̃N (f), suggests that exponential convergence may not be witnessed in finite arithmetic.
As we show later, for a large class of functions, exponential convergence of FN (f) (or F̃N (f)) essentially
implies exponential growth of the norm ‖a‖ of the exact (infinite precision) coefficient vector. Hence,
whenever N is sufficiently large, there must be a discrepancy between this coefficient vector and its
numerically computed counterpart, meaning that the numerical extensions GN (f) and G̃N (f) may not
exhibit the same convergence. In the first half of this paper, besides showing stability, we also give a
complete analysis and description the convergence of GN (f) and G̃N (f), and discuss how this contrasts
with that of FN (f) and F̃N (f).

In summary, the main results of the first half of the paper are as follows:
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1. The condition numbers of the matrices A and Ã of the continuous and discrete FE’s are expo-
nentially large in N (Theorems 3.1 and 3.2).

2. The condition number of the numerical continuous FE mapping f 7→ GN (f) satisfies

κ(GN ) .
1√
ǫ
, ∀N ∈ N,

where ǫ = ǫmach is the machine precision used (Theorem 4.7 – see §4.3 for a definition of κ).
Moreover, the error ‖f −GN (f)‖ decays exponentially fast in N up to some breakpoint N0, and
spectrally fast once N > N0 down to a particular tolerance (see §4.2.1). This tolerance, the
maximal achievable accuracy of GN (f), is of order

√
ǫ, i.e.

lim sup
N→∞

‖f −GN (f)‖ .
√
ǫ.

In addition, the breakpoint N0 is independent of f and depends only on ǫ and T .

3. The numerical discrete FE f 7→ G̃N (f) satisfies κ(G̃N ) . 1, ∀N ∈ N (Theorem 4.7). Moreover,
the error ‖f − G̃N (f)‖ is exponentially decaying for N ≤ N1 := 2N0, and decreases spectrally
once N > N1. The maximal achievable accuracy for G̃N (f) is of order ǫ (see §4.2.2).

Remark 1.1 In this paper we refer to three types of convergence of an approximation fN ≈ f . We say
that fN converges algebraically fast to f at rate k if ‖f − fN‖ = O

(

N−k
)

as N → ∞. Conversely, fN
converges spectrally fast if the error ‖f − fN‖ decays faster than any algebraic power of N−1. Finally,
we say fN converges exponentially fast to f if there exists a ρ > 1 such that ‖f − fN‖ = O

(

ρ−N
)

.

As we explain in §4, the reason for the disparity between the exact and numerical FE’s can be
traced to the fact that the system of functions {einπ

T
·}n∈Z forms a frame for L2(−1, 1). The inherent

redundancy of this frame, i.e. the fact that any function f has infinitely many expansions in this system,
leads to both the ill-conditioning in the coefficients of FN and F̃N , as well as the numerical stability
and differing convergence of GN and G̃N .

This comment aside, the above results show that the numerical continuous FE converges exponen-
tially fast in the regime N < N0, and then spectrally fast beyond this point down to a best achievable
accuracy of order 10−8 (we use standard precision ǫmach ≈ 10−16 in our experiments). This latter
property is undesirable: it means that one cannot obtain more than 7 or 8 digits of accuracy in gen-
eral. When combined with the fact that the condition number κ(GN ) ≈ 108 is rather large, this
suggests that the continuous FE may be unreliable in practice. However, the above results also show
that the discrete FE is completely stable when implemented numerically. Moreover, it possesses the
same qualitative convergence behaviour as the continuous FE, but with two key differences. First,
the region of guaranteed exponential convergence is precisely twice as large, N1 = 2N0, and second
the maximal achievable accuracy is on the order of machine precision, as opposed to its square-root.
Thus, an important conclusion of the first half of this paper is the following: it is possible to compute
numerically stable FE’s of analytic functions which converge at least spectrally fast in N (in particular,
exponentially fast for all small N), and which attain close to machine accuracy for N sufficiently large.

Remark 1.2 This paper is about the discrepancy between theoretical properties of solutions to (1.1)
and (1.2) and their numerical solutions when computed with standard solvers. Throughout we shall
consistently use Mathematica’s LeastSquares routine in our computations, though we would like to
stress that Matlab’s command \ gives very similar results. Occasionally, to compare theoretical and
numerical properties, we shall carry out computations in additional precision to eliminate the effect
of round-off error. When done, this will be stated explicitly. Otherwise, it is to be assumed that all
computations are carried out as described in standard precision.

1.3 Fourier extensions from equispaced data

In many applications, one is faced with the problem of recovering an analytic function f to high
accuracy from its values on an equispaced grid

{

f
(

−1 + 2m
M

)

: m = 0, . . . ,M
}

. This problem turns
out to be quite challenging. For example, recalling the famous Runge phenomenon, one notices that
the M th degree polynomial interpolant of this data will diverge exponentially as M → ∞ unless f is
analytic in a sufficiently large region.
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Numerous approaches have been proposed to address this problem, and thereby ‘overcome’ the
Runge phenomenon (see [8, 24] for a comprehensive list). Indeed, many are quite effective in practice.
However, a common feature of many such methods is instability. This was explained recently by
Platte, Trefethen & Kuijlaars in [24], wherein it was shown that any exponentially convergent method
for recovering analytic functions f from equispaced data must also be exponentially ill-conditioned.
As was also proved, the best possible that can be achieved by a stable method is root-exponential
convergence in M . This profound result, most likely the first of its kind for this type of problem, places
an important theoretical barrier and benchmark against which all such methods must be measured.

As we show in the first half of this paper, the numerical discrete and continuous FE’s are well-
conditioned and have good convergence properties. However, neither deals with equispaced data. In
the second half of this paper we consider the use of FE’s for this problem. Specifically, if xn = n

M for
|n| ≤ M , we study the so-called equispaced Fourier extension

FN,M (f) := argmin
φ∈GN

∑

|n|≤M

|f(xn)− φ(xn)|2, (1.3)

and its numerically computed counterpart GN,M (f). Note that our primary interest lies with the case
where M = γN for some γ ≥ 1, i.e. where the number of equispaced points M scales linearly with N .
We refer to γ as the oversampling parameter: observe that (1.3) results in an (2M + 1) × (2N + 1)
overdetermined least squares problem for the coefficients of FN,M (f). We denote the corresponding
matrix by Ā.

Our main results concerning the equispaced FE are as follows:

1. The condition number of Ā is exponentially large as N,M → ∞ with M ≥ N (see §5.2.2).

2. The approximation FN,γN (f) suffers from a Runge phenomenon for any fixed γ ≥ 1. In particular,
if f has a complex singularity sufficiently close to [−1, 1], then the error ‖f −FN,γN (f)‖ diverges
exponentially fast in N (see §5.2).

3. The scaling M = O
(

N2
)

is required to avoid a Runge phenomenon in FN,M (f). In this case,
FN,M (f) converges at the same rate as the exact continuous FE FN (f), i.e. exponentially fast in
N (see §5.2.1). However, the condition number of Ā remains exponentially large (see §5.2.2).

At first sight, these results appear to indicate that FE’s perform suboptimally in view of the barrier
of Platte, Trefethen & Kuijlaars. Indeed, convergence can only be ensured with M = O

(

N2
)

, resulting
in only root-exponential convergence in M , and one is still faced with ill-conditioning. However, much
like with the continuous and discrete extensions, there is a significant discrepancy between the exact
equispaced extension FN,M (f) and its numerical counterpart GN,M (f). Indeed, in §5.3 and 5.4 we
establish the following results:

1. The condition number κ(GN,γN ) satisfies

κ(GN,γN ) . ǫ−a(γ;T ), ∀N ∈ N,

where ǫ = ǫmach is the machine precision used, and 0 < a(γ;T ) < 1 is a constant independent of
N with a(γ;T ) → 0 as γ → ∞ for fixed T .

2. The error ‖f −GN,γN (f)‖ behaves as follows:

(i) IfN < N2, whereN2 is a function-independent breakpoint, ‖f−GN,γN (f)‖ converges/diverges
exponentially at the same rate as ‖f − FN,γN (f)‖.

(ii) If N2 ≤ N < N1, where N1 is as introduced previously in §1.2, then ‖f −GN,γN (f)‖ decays
exponentially at the same rate as ‖f − FN (f)‖, where FN (f) is the exact continuous FE.

(iii) If N > N1 then ‖f −GN,γN (f)‖ decays spectrally fast in N down to a maximal achievable
accuracy of order ǫ1−a(γ;T ).

These results show that, after a (function-independent) regime of possible divergence, we witness
exponential convergence followed by spectral convergence, down to a best achievable accuracy depend-
ing only on the machine precision used. Furthermore, since a(γ;T ) → 0 as γ → ∞, more oversampling
leads to an improved maximal achievable accuracy, as well as better stability. As we show via numeri-
cal experiment and numerical computation of the relevant constants, double oversampling γ = 2 gives
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perfectly adequate numerical results in practice. Note that a larger γ also yields a less severe rate of
exponential divergence for N < N2, with γ = 2 virtually eliminating such behaviour for all reasonable
functions f (see §5.3 for details).

The main conclusion of this analysis is that equispaced FE’s obtain overall spectral convergence in
a numerically stable manner. Hence, there is no contradiction with the theorem of Platte, Trefethen
& Kuijlaars. Moreover, in some senses we get the best possible convergence permitted by this theorem
(i.e. spectral convergence), thereby making FE’s eminently well suited for this problem. Numerical
results confirm both the excellent accuracy and stability of this approach.

1.4 Relation to previous work

One-dimensional FE’s for overcoming the Gibbs and Runge phenomena were studied (without analysis)
in [7] and [8], and applications to surface parametrizations considered in [10]. Analysis of the conver-
gence of the exact continuous and discrete FE’s was presented by the authors in [1, 18], along with a
study of resolution power [1]. The content of the first half of this paper, namely stability analysis of
exact/numerical FE’s, follows on directly from this previous work.

A different approach to FE’s, known as the FC–Gram method, was introduced in [22]. This approach
forms a central part of an extremely effective method for solving PDE’s in complex geometries [2, 9].
For previous work on using FE’s for PDE problems (so-called Fourier embeddings) see [4, 23].

FE’s from equispaced data were arguably first considered in detail in [7, 10]. In particular, Boyd
[7] describes the use of truncated singular value decompositions (SVD’s) to compute equispaced FE’s,
and gives extensive numerical experiments (see also [8]). Most recently Lyon has presented an analysis
of equispaced FE’s computed using truncated SVD’s [20]. In particular, numerical stability and con-
vergence (down to close to machine precision) were shown. In §5.3 we discuss this work in more detail
(see, in particular, Remark 5.9), and give further insight into some of the questions raised in [20].

1.5 Outline of the paper

The main results of this paper are as described above. Besides these, a consistent theme of this paper
is the question of how to choose the extension parameter T . Specifically, we provide results for the
effect of T on exact and numerical FE’s, and discuss the cases corresponding to small T ≈ 1 and large
T ≫ 1. We also consider strategies for varying T with N .

The outline of the remainder of this paper is as follows. In §2 we recap properties of the continuous
and discrete FE’s from [1, 18], including convergence. Ill-conditioning of the coefficient map is proved
in §3, and in §4 we consider the stability of the numerical extensions and their convergence. Finally,
in §5 we consider the case of equispaced FE’s.

Notation. If I ⊆ R is an interval we write L2(I) for the space of square-integrable functions on I, with
corresponding inner product 〈·, ·〉I and norm ‖·‖I . When I = [−1, 1] is the unit interval then we shall
merely write 〈·, ·〉 and ‖·‖. If w is a nonnegative and integrable weight function on I then L2

w(I) will
denote the space of weighted square-integrable functions on I with respect to w. We write 〈·, ·〉w,I

and ‖·‖w,I for the corresponding inner product and norm (as before, we drop the I subscript whenever
I = [−1, 1]). We shall occasionally write ‖·‖∞,I for the uniform norm on I.

2 Fourier extensions

In this section we discuss FE’s, and recap the important details from [1, 18].

2.1 Two interpretations of Fourier extensions

There are two important interpretations of FE’s which inform their approximation properties and their
stability respectively. These are described in the next two sections.

2.1.1 Fourier extensions as polynomial approximations

The space GN can be decomposed as GN = CN ⊕ SN , where

CN = span
{

cos nπ
T x : n = 0, . . . , N

}

, SN = span
{

sin nπ
T x : n = 1, . . . , N

}

,

5



consist of even and odd functions respectively. Likewise, for f we have

f(x) = fe(x) + fo(x), fe(x) =
1
2 [f(x) + f(−x)] , fo(x) =

1
2 [f(x)− f(−x)] ,

and for any FE fN of f :
fN = fe,N + fo,N , fe,N ∈ CN , fo,N ∈ SN . (2.1)

Throughout this paper we shall use the notation fN to denote an arbitrary FE of f when not wishing
to specify its construction. From (2.1), it follows that the problem of approximating f via a FE fN
decouples into two problems fe,N ≈ fe and fo,N ≈ fo on the half-interval [0, 1].

Let us define the mapping y = y(x) : [0, 1] → [c(T ), 1] by y = cos π
T x, where c(T ) = cos π

T . The

functions cos nπ
T x and sin (n+1)π

T x/ sin π
T x are algebraic polynomials of degree n in y. Therefore, CN

and SN are (up to multiplication by sin π
T x for the latter) the subspaces PN and PN−1 of polynomials

of degree N and N − 1 respectively in the transformed variable y. Letting

g1(y) = fe(x), g2(y) =
fo(x)

sin π
T x

, g1,N (y) = fe,N (x), g2,N (y) =
fo,N (x)

sin π
T x

,

with g1,N (y) ∈ PN and g2,N (y) ∈ PN−1, we now conclude that the approximation problem of the
FE fN in the variable x is completely equivalent to two polynomial approximation problems in the
transformed variable y ∈ [c(T ), 1]. This fact is central to the analysis of FE’s. Specifically, one can use
the rich literature on polynomial approximations to determine explicitly the theoretical behaviour of
the exact/discrete Fourier extension (see §2.3).

Remark 2.1 The interpretation of fN as essentially a polynomial approximation is purely for the
purposes of analysis. We always carry out computations in the x-domain, i.e. by using the standard
trigonometric basis for GN (see §2.2).

The interval [c(T ), 1] ⊆ (−1, 1] is not standard. Therefore, it is convenient to map it affinely to
[−1, 1]. To this end, let

u := u(y) = 2
y − c(T )

1− c(T )
− 1 ∈ [−1, 1].

Observe that y = y(u) = c(T ) + 1−c(T )
2 (u+ 1). Denote by m : [0, 1] → [−1, 1] the mapping x 7→ u, i.e.

u = m(x) = 2
cos π

T x− c(T )

1− c(T )
− 1. (2.2)

Note that x = m−1(u) = T
π arccos

[

c(T ) + 1−c(T )
2 (u+ 1)

]

. If we now let

hi(u) = gi(y(u)), i = 1, 2, (2.3)

then the FE fN is equivalent to the two polynomial approximations

h1,N (u) = g1,N (y(u)) = fe,N (m−1(u)), h2,N (u) = g2,N (y(u)) =
fo,N (m−1(u))

sin
(

π
T m

−1(u)
) , (2.4)

of degree N and N − 1 respectively in the new variable u ∈ [−1, 1].

2.1.2 Fourier extensions as frame approximations

Definition 2.2. Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. A set {φn}∞n=1 ⊆ H
is a frame for H if (i) span{φn}∞n=1 is dense in H and (ii) there exist c1, c2 > 0 such that

c1‖f‖2 ≤
∞
∑

n=1

|〈f, φn〉|2 ≤ c2‖f‖2, ∀f ∈ H. (2.5)

If c1 = c2 then {φn}∞n=1 is referred to as a tight frame.
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Introduced by Duffin & Schaeffer [14], frames have become vitally important in signal processing
[12]. Note that all orthonormal, indeed Riesz, bases are frames, but a frame need not be a basis. In
fact, frames are typically redundant : any element f ∈ H may well have infinitely many representations
of the form f =

∑∞
n=1 αnφn with coefficients {αn}∞n=1 ∈ l2(N).

The following lemma is important to subsequent analysis:

Lemma 2.3 ([1]). The set { 1√
2T

ei
nπ
T

x}n∈Z is a tight frame for L2(−1, 1) whenever T > 1.

Note that { 1√
2T

ei
nπ
T

x}n∈Z is an orthonormal basis for L2(−T, T ): it is precisely the standard Fourier

basis on [−T, T ]. However, it forms only a frame when considered as a subset of L2(−1, 1) . This fact
means that ill-conditioning may well be an issue in numerical algorithms for computing FE’s, due to the
possibility of redundancies. As it happens, it is trivial to see that the set { 1√

2T
ei

nπ
T

x}n∈Z is redundant.

Indeed, any function f ∈ L2(−1, 1) has infinitely many extensions f̃ ∈ L2(−T, T ). For each such f̃ , the
sum

∑

n∈Z
αnφn, where αn = 〈f̃ , φn〉[−T,T ] and φn(x) =

1√
2T

ei
nπ
T

x, coincides with f̃ on [−T, T ] (it is

precisely the Fourier series of f̃) and therefore f when restricted to [−1, 1].
The previous argument is valid for arbitrary f ∈ L2(−1, 1). When f has higher regularity, say

f ∈ Hk(−1, 1), where Hk(−1, 1) is the kth standard Sobolev space on [−1, 1], it is useful to note that
there exist extensions f̃ with the same regularity on the torus T = [−T, T ). This is the content of the
next lemma. For convenience, given a domain I, we write ‖·‖Hk(I) for the standard norm on Hk(I):

Lemma 2.4. Let f ∈ Hk(−1, 1) for k ∈ N. Then there exists an extension f̃ ∈ Hk(T) of f satisfying
‖f̃‖Hk(T) ≤ ck(T )‖f‖Hk(−1,1), where ck(T ) > 0 is independent of f . Moreover, f =

∑

n∈Z
αnφn, where

αn = 〈f̃ , φn〉[−T,T ] satisfies αn = O
(

n−k
)

as |n| → ∞.

Proof. The first part of the lemma follows directly from the proof of Theorem 2.1 in [1]. The second
follows from integrating by parts k times and the fact that f̃ is periodic.

This lemma, which shall be used later in studying stability of FE’s, states that there exist represen-
tations of f in the frame { 1√

2T
ei

nπ
T

x}n∈Z that have nice (i.e. rapidly decaying) coefficients and which

cannot grow large on the extended region [−T, T ].

2.2 The continuous and discrete Fourier extensions

We now describe the two types of FE’s we consider in the first part of this paper.

2.2.1 The continuous Fourier extension

The continuous FE of f ∈ L2(−1, 1), defined by (1.1), is the orthogonal projection onto GN . We have
the following characterization:

Proposition 2.5 ([1, 18]). Let FN (f) be the continuous FE (1.1) of a function f , and let hi,N (u) and
hi(u) be given by (2.3) and (2.4) respectively. Then h1,N (u) and h2,N (u) are the expansions of h1(u)
and h2(u) respectively in orthogonal polynomials with respect to the weight functions

w1(u) = [(1− u)(u−m(T ))]
− 1

2 , w2(u) = [(1− u)(u−m(T ))]
1
2 , u ∈ [−1, 1], (2.6)

where m(T ) = 1− 2cosec2
(

π
2T

)

< −1. In other words, hi,N (u), i = 1, 2, is the orthogonal projection of
hi(u) onto PN+1−i with respect to the weighted inner product 〈·, ·〉wi

with weight function wi.

Computation of the FN (f) involves solving a linear system. Let us write FN (f) =
∑N

n=−N anφn

with unknowns {an}Nn=−N . If a = (a−N , . . . , aN )⊤ and b = (b−N , . . . , bN )⊤, where

bn = 〈f, φn〉 =
∫ 1

−1

f(x)φn(x) dx, n = −N, . . . , N, (2.7)

and A ∈ C
(2N+1)×(2N+1) is the matrix with (n,m)th entry

An,m = 〈φm, φn〉 =
∫ 1

−1

φm(x)φn(x) dx, n,m = −N, . . . , N, (2.8)
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then a is the solution of the linear system Aa = b. We refer to the values {an}Nn=−N as the coefficients
of the FE FN (f). Note that the matrix A is a Hermitian positive-definite, Toeplitz matrix with

An,m = An−m, where A0 = 1
T and An =

sin nπ
T

nπ otherwise. In fact, A coincides with the so-called
prolate matrix [27, 29]. We shall discuss this connection further in §4.

2.2.2 The discrete Fourier extension

The discrete FE F̃N (f) is defined by (1.2). To use this extension it is first necessary to choose nodes
{xn}Nn=−N . This question was considered in [1], and a solution was obtained by exploiting the charac-
terization of FE’s as polynomial approximations in the transformed variable u.

A good system of nodes for polynomial interpolation are the Chebyshev nodes

un = cos

(

(2n+ 1)π

2N + 2

)

, n = 0, . . . , N. (2.9)

Mapping these back to the x-variable and symmetrizing about x = 0 leads to the so-called mapped
symmetric Chebyshev nodes

xn = −x−n−1 =
T

π
arccos

[

1

2
(1− c(T )) cos

(

(2n+ 1)π

2N + 2

)

+
1

2
(1 + c(T ))

]

, n = 0, . . . , N. (2.10)

This gives a set of 2N + 2 nodes. Therefore, rather than (1.2), we define the discrete FE by

F̃N (f) := argmin
φ∈G′

N

N
∑

n=−N−1

|f(xn)− φ(xn)|2, (2.11)

from now on, where G′
N = CN ⊕ SN+1. Exploiting the relation between FE’s and polynomial approxi-

mations once more, we obtain the following:

Proposition 2.6. Let fN = F̃N (f) ∈ G′
N be the discrete FE (2.11) based on the nodes (2.10), and

let hi(u) and hi,N (u) ∈ PN be given by (2.3) and (2.4) respectively. Then hi,N (u), i = 1, 2 is the N th

degree polynomial interpolant of hi(u) at the Chebyshev nodes (2.9).

Write φn(x) = cosnπx, φ−n−1(x) = sinnπx, n ∈ N, and let F̃N (f)(x) =
∑N

n=−N−1 anφn(x). If

a = (a−N−1, . . . , aN )−T and Ã ∈ R
(2N+2)×(2N+2) has (n,m)th entry

Ãn,m = φm(xn), n,m = −N − 1, . . . , N, (2.12)

then we have Ãa = b, where b = (b−N−1, . . . , bN )⊤ with bn = f(xn).
The following lemma concerning the matrix Ã will prove useful for what follows:

Lemma 2.7 ([1]). Let D ∈ R
(2N+2)×(2N+2) denote the diagonal matrix with entries π

N+1 . Then

AW = Ã⊤DÃ has entries

〈φn, φm〉W =

∫ 1

−1

φn(x)φm(x)W (x) dx, n,m = −N − 1, . . . , N,

where W is the positive, integrable weight function given by W (x) =
√
2π
T

cos π
2T x√

cos π
T
x−cos π

T

.

Note that this lemma implies that the left-hand side of the normal equations (with constant weight-
ing D) of the discrete FE correspond to the equations of a continuous FE based on the weighted
least-squares minimization with weight function W .

2.3 Convergence of Fourier extensions

A detailed analysis of the convergence of the exact continuous FE, which we now recap, was carried
out in [1, 18]. We commence with the following theorem:

Theorem 2.8 ([1]). Suppose that f ∈ Hk(−1, 1) for some k ∈ N and that T > 1. If FN (f) is the
continuous FE of f defined by (1.1), then

‖f − FN (f)‖ ≤ ck(T )N
−k‖f‖Hk(−1,1), ∀n ∈ N, (2.13)

where ck(T ) > 0 is independent of f and N .
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This theorem confirms algebraic convergence – that is, convergence of order N−k for some fixed
k – of the continuous FE FN (f) whenever the approximated function f has only finite degrees of
smoothness. Conversely, if f is smooth, this theorem implies spectral convergence of FN (f), i.e. faster
than any algebraic power of N−1.

Suppose now that f is analytic. Although Theorem 2.8 indicates spectral convergence, it transpires
that the convergence is actually exponential. This is a direct consequence of the interpretation of the
FN (f) as the sum of two polynomial expansions in the transformed variable u (Proposition 2.5). To
state the corresponding theorem, we first require the following definition:

Definition 2.9. The Bernstein ellipse B(ρ) ⊆ C of index ρ ≥ 1 is given by

B(ρ) =
{

1
2

(

ρ−1eiθ + ρe−iθ
)

: θ ∈ [−π, π]
}

.

Given a Bernstein ellipse B(ρ), we write D(ρ) ⊆ C for its image in the complex x-plane under the
mapping x = m−1(u), where m is as in (2.2). We now have the following:

Theorem 2.10 ([1], [18]). Suppose that f is analytic in D(ρ∗) and not analytic inside any D(ρ′) with
ρ′ > ρ∗. Then, for some constant cf > 0 proportional to supz∈D(ρ∗) |f(z)|, we have ‖f − FN (f)‖ ≤
cfρ

−N , where ρ = min {ρ∗, E(T )} and E(T ) = cot2
(

π
4T

)

.

Proof. A full proof was given in [1, Thm 2.3]. The expansion gN of an analytic function g in a system
orthogonal polynomials with respect to some integrable weight function satisfies ‖g − gN‖∞ ≤ cgρ

−N ,
where cg is proportional to supz∈B(ρ) |g(z)| [26]. Using this and Proposition 2.5, it remains only to
determine the maximal parameter ρ of Bernstein ellipse B(ρ) within which h1(u) and h2(u) are analytic.

The mapping u = m(x) introduces a square-root type singularity into the functions hi(u) at the
point u = m(T ) < −1. Hence the maximal possible value of the parameter ρ satisfies

1
2 (ρ+ ρ−1) = −m(T ). (2.14)

Observe that if F (x) = x+
√
x2 − 1 then

F (m(T )) = E(T ). (2.15)

Thus, since ρ > 1, the solution to (2.14) is precisely ρ = E(T ). On the other hand, any complex
singularity of f introduces a complex singularity of hi(u), which also limits this value. Hence we obtain
stated minimum.

Remark 2.11 Although Theorems 2.8 and 2.10 apply to FN (f), they also hold (up to a possible log
factor corresponding to the Lebesgue constant of Chebyshev interpolation) for the discrete FE F̃N (f).
This follows from the interpretation of F̃N (f) as a sum of polynomial interpolants (Proposition 2.6).

Theorem 2.10 shows that if f is analytic in a sufficiently large region (for example, if f is entire)
then the rate of exponential convergence is precisely E(T ). Recall that the parameter T can be chosen
by the user. We now discuss the effect of different choices of T .

2.3.1 The choice of T

Note that E(T ) ∼ 1 + π(T − 1) as T → 1+ and E(T ) ∼ 16
π2T

2 when T → ∞. Thus, small T leads to
a slower rate of exponential convergence, whereas large T gives a faster rate. However, as discussed in
[1], a larger value of T leads to a worse resolution power, meaning that more degrees of freedom are
required to resolve oscillatory behaviour. On the other hand, setting T sufficiently close to 1 yields a
resolution power that is arbitrarily close to optimal.

In [1] a number of fixed values of T were used in numerical experiments. These typically give good
results, with small values of T being particularly well suited for oscillatory functions. Another approach
for choosing T was also discussed. This involves letting

T = T (N ; ǫtol) =
π

4

(

arctan(ǫtol)
1

2N

)−1

, (2.16)

where ǫtol ≪ 1 is some tolerance (note that this is very much related to the Kosloff Tal–Ezer map in
spectral methods for PDEs [6, 19] – see [1] for a discussion). This choice of T , which now depends
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on N , is such that E(T )−N = ǫtol. Note that this limits the best achievable accuracy of the FE with
this approach to O (ǫtol). However, setting ǫtol = 10−14 is normally sufficient in practice. Numerical
experiments [1] indicate that this works well, especially for oscillatory functions. In fact, since

T (N ; ǫtol) ∼ 1− log(ǫtol)

πN
+O

(

N−2
)

, N → ∞, (2.17)

this approach has formally optimal resolution power.

Remark 2.12 The strategy (2.16) is particularly good for oscillatory problems. However, if this is not
a concern, then an optimal choice appears to be T = 2. In this case, the FE has a particular symmetry
which can actually be exploited to allow the efficient computation of FE’s in only O

(

N(logN)2
)

operations [21]. The underlying reason for this is the particular structure of the singular values of the
matrix A (see Remark 3.4 for further details).

3 Ill-conditioning of Fourier extension matrices

The redundancy of the frame { 1√
2T

ei
nπ
T

·}n∈Z means that the matrices associated with the continuous

and discrete FE’s are ill-conditioned. We next derive bounds for the condition number of these matrices.
The spectrum of A is discussed further in §3.2.

3.1 The condition number of the exact/discrete Fourier extension

Theorem 3.1. Let A be the matrix (2.8) of the continuous FE. Then the condition number of A is
O
(

E(T )2N
)

for large N . Specifically, the maximal and minimal eigenvalues satisfy

T−1 ≤ λmax(A) ≤ 1, c1(T )N
−3E(T )−2N ≤ λmin(A) ≤ c2(T )N

2E(T )−2N , (3.1)

where c1(T ) and c2(T ) are positive constants with c1(T ), c2(T ) = O (1) as T → 1+.

Proof. It is a straightforward exercise to verify that

λmin(A) = min
φ∈GN

{

‖φ‖2 : ‖φ‖[−T,T ] = 1
}

, λmax(A) = max
φ∈GN

{

‖φ‖2 : ‖φ‖[−T,T ] = 1
}

. (3.2)

Using the fact that ‖φ‖ ≤ ‖φ‖[−T,T ] we first notice that λmax(A) ≤ 1. On the other hand, setting

φ = 1√
2T

, we find that λmax(A) ≥ T−1, which completes the result for λmax(A).

We now consider λmin(A). Recall that any φ ∈ GN can be decomposed into even and odd parts φe

and φo, with each function corresponding to a polynomial in the transformed variable u. Hence,

λmin(A) = min
φ∈GN

φ 6=0

{

‖φ‖2
‖φ‖2[−T,T ]

}

= min
p1∈PN

p1 6=0

min
p2∈PN−1

p2 6=0

{

‖p1‖2w1
+ ‖p2‖2w2

‖p1‖2w1,[m(T ),1] + ‖p2‖2w2,[m(T ),1]

}

, (3.3)

where wi, i = 1, 2, is given by (2.6). Since the weight function wi is integrable, we have

‖pi‖wi,[m(T ),1] ≤
√

Ci(T )‖pi‖∞,[m(T ),1], i = 1, 2, (3.4)

where Ci(T ) =
∫ 1

m(T )
dwi, i = 1, 2. Moreover, by Remez’s inequality,

‖p‖∞,[m(T ),1] ≤ ‖TN‖∞,[m(T ),1]‖p‖∞, ∀p ∈ PN ,

where TN ∈ PN is the N th Chebyshev polynomial. Since TN is monotonic outside [−1, 1], we have
‖TN‖∞,[m(T ),1] = |TN (m(T ))|. Moreover, since

TN (x) =
1

2

[(

x−
√

x2 − 1
)n

+
(

x+
√

x2 − 1
)n]

,

an application of (2.15) gives

‖TN‖∞,[m(T ),1] =
1

2

[

tan2N
(

π
4T

)

+ cot2N
(

π
4T

)]

≤ E(T )N . (3.5)
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Next we note that w1(u) ≥ D1(T ) and w2(u) ≥ D2(T )
√
1− u2, ∀u ∈ [−1, 1], for positive constants

D1(T ) and D2(T ). Moreover, there exist constants d1, d2 > 0 independent of T such that

‖p‖∞ ≤ d1N‖p‖, ‖p‖∞ ≤ d2N
3
2 ‖p‖v, p ∈ PN ,

where v(u) =
√
1− u2 (this follows from expanding p in orthonormal polynomials {pn}n∈N on [−1, 1]

corresponding to the weight function w(u) = 1, i.e. Legendre polynomials, or w(u) = v(u), i.e.

Chebyshev polynomials of the second kind, and using the known estimate ‖pn‖∞ = O(n
1
2 ) for the

former and ‖pn‖∞ = O(n
3
2 ) for the latter [3, chpt. X]). Therefore

‖p‖∞ ≤ di
Di(T )

N
1+i
2 ‖p‖wi

, ∀p ∈ PN , i = 1, 2. (3.6)

Substituting (3.4), (3.5) and (3.6) into (3.3) now gives

λmin(A) ≥ c

max{C1(T )/D1(T ), C2(T )/D2(T )}2
N−3E(T )−2N ,

which gives the lower bound in (3.1).
For the upper bound, we set p2 = 1 and p1 = TN in (3.3) to give

λmin(A) ≤
‖1‖2w1

+ ‖TN‖2w2

‖1‖2w1,[m(T ),1] + ‖TN‖2w2,[m(T ),1]

≤ C1(T ) + C2(T )

‖TN‖2w2,[m(T ),1]

. (3.7)

Using (3.5) we note that ‖TN‖∞,[m(T ),1] ≥ 1
2E(T )N . Recall also that ‖p‖∞ ≤ d1N‖p‖,∀p ∈ PN . Scaling

this inequality to the interval [m(T ), 1] now gives

‖p‖∞,[m(T ),1] ≤ d1

√

2

1−m(T )
N‖p‖[m(T ),1] =

√

C3(T )N‖p‖[m(T ),1].

Note also that w1(u) ≥ D3(T ), ∀u ∈ [m(T ), 1]. Therefore,

‖TN‖w1,[m(T ),1] ≥
√

D3(T )‖TN‖[m(T ),1] ≥
√

D3(T )
√

C3(T )N
‖TN‖∞,[m(T ),1] ≥

√

D3(T )

2
√

C3(T )N
E(T )N .

Substituting this into (3.7) now gives the result.

We now consider the case of the discrete FE:

Theorem 3.2. Let Ã be the matrix (2.12) of the discrete FE. Then the condition number of Ã is
O
(

E(T )N
)

for large N . Specifically, the maximal and minimal singular values of Ã satisfy

c1(T ) ≤ σmax(Ã) ≤ c2(T )N
3
2 , d1(T )N

− 3
2E(T )−N ≤ σmin(Ã) ≤ d2(T )N

5
2E(T )−N , (3.8)

where c1(T ), c2(T ), d1(T ), d2(T ) are positive constants that are O (1) as T → 1+.

Proof. Using Lemma 2.7, the values σ2
min(Ã) and σ2

max(Ã) may be expressed as in (3.2) (with ‖·‖
replaced by ‖·‖W ). Note that W (0)‖φ‖2 ≤ ‖φ‖2W ≤ ‖φ‖2∞

∫ 1

−1
dW. It is a straightforward exercise

(using the bound (3.6) and the fact that φ can be expressed as the sum of two polynomials) to show

that ‖φ‖∞ ≤ C1(T )N
3
2 ‖φ‖, where C1(T ) = O (1) as T → 1+. Thus we obtain

W (0)
‖φ‖2

‖φ‖2[−T,T ]

≤ ‖φ‖2W
‖φ‖2[−T,T ]

≤
(

C1(T )
2

∫ 1

−1

dW

)

N3 ‖φ‖2
‖φ‖2[−T,T ]

.

The result now follows immediately from the bounds (3.1).

Remark 3.3 Theorems 3.1 and 3.2 imply that the matrices of the continuous and discrete FE’s are ill-
conditioned. Note, however, that the discrete FE is substantially better than its continuous counterpart
in this regard: the condition number grows only like E(T )N as opposed to E(T )2N . This can be
understood using Lemma 2.7: the normal equations of the discrete FE correspond to a continuous FE
with a particular weight function, and therefore κ(Ã) ≈

√

κ(A). As discussed in [1, 18], this translates
into improved numerical performance (see also §3.3). With the continuous FE, the best achievable
accuracy is typically O (

√
ǫ), where ǫ is the machine precision used. On the other hand, for the discrete

FE the corresponding value is O (ǫ). We give a full analysis of this difference in §4.2.
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Figure 1: Eigenvalues of the matrices (2.8) (left) and (2.12) (right) for N = 200 and T = 2.

Since the constants in Theorems 3.1 and 3.2 are bounded as T → 1+, this allows one to determine
the condition number in the case that T → 1+ as N → ∞ (see §2.3.1). If T → 1+ sufficiently rapidly,
then (up to possibly small algebraic factors in N) κ(A) and κ(Ã) are O (1). In particular, when T is
given by (2.16), then κ(A) and κ(Ã) are at worst O

(

(ǫtol)
−2
)

and O
(

(ǫtol)
−1
)

respectively.

3.2 The singular value decomposition of A

Although we have now determined the condition number of A, it is actually possible to give a very
detailed analysis of its spectrum. This follows from the identification of A with the well-known prolate
matrix, which was analysed in detail by Slepian [27, 29]. We now review some of this work.

Using Slepian’s notation, let us define the matrix ρ(N,W ) ∈ C
N×N with entries

ρ(N,W )m,n =

{

sin 2πW (m−n)
π(m−n) m 6= n

2W m = n,
m, n = 0, . . . , N − 1,

where W < 1
2 is fixed, and write λ0(N,W ) > . . . > λN−1(N,W ) > 0 for its eigenvalues. Note that

λk(N, 1
2 −W ) = 1− λN−1−k(N,W ). (3.9)

The following asymptotic results are found in [27]:

(i) For fixed and small k, we have

1− λk(N,W ) ∼
√
π(k!)−12(14k+9)/4α(2k+1)/4(2− α)−(k+1/2)Nk+1/2e−γN , (3.10)

where α = 1− cos 2πW and γ = log
[√

2+
√
α√

2−√
α

]

.

(ii) For large N and k with k = ⌊2WN(1− ǫ)⌋ and 0 < ǫ < 1, we have 1−λk(N,W ) ∼ e−c1−c2N , for
explicitly known constants c1, c2 depending only on W and ǫ.

(iii) For large N and k with k = ⌊2WN + (b/π) logN⌋, we have λk(N,W ) ∼ 1
1+eπb

(Slepian also derives similar asymptotic results for the eigenvectors of ρ(N,W ) [27]). From these results
we conclude that the eigenvalues of the prolate matrix cluster exponentially near 0 and 1 and have a
transition region of width O (logN) around k = 2WN . This is shown in Figure 1.

The matrix A of the continuous FE is precisely ρ(2N +1, 1
2T ). Note that the asymptotic behaviour

derived in Theorem 3.1 agrees with that of (3.10): when W = 1
2T we have

√
2 +

√
α√

2−√
α

= cot2
( π

4T

)

= E(T ),

as expected. Thus, using Slepian’s analysis, we see that the eigenvalues of A cluster exponentially at rate
E(T )2 near zero and one (note that A corresponds to a prolate matrix of size 2N), and in particular, the
condition number is O

(

E(T )2N
)

, in agreement with Theorem 3.1. We remark, however, that Theorem
3.1 gives explicit bounds for the minimal eigenvalue of A which hold for all N and T (unlike (3.10)
which holds only for fixed T and sufficiently large N). In particular, Theorem 3.1 remains valid when
T is varied with N , an option which, as discussed in §2.3.1, can be advantageous in practice.

Although the matrix Ã of the discrete FE is not directly related to A (see Lemma 2.7), we expect
a similar structure for the singular values. This is illustrated in Figure 1. Indeed, the only qualitative
difference is in the large singular values. The other key features – the narrow transition region and the
exponential clustering of singular values near 0 – are much the same.
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Figure 2: The error ‖f − fN‖∞, where fN = GN (f) (squares and circles) or fN = G̃N (f) (crosses and
diamonds) and T = 2 (squares/crosses) or T = T (N ; ǫtol) (circles/diamonds) with ǫtol = 10−14.

Remark 3.4 The choice T = 2 (W = 1
4 ) is special. As shown by (3.9), the eigenvalues λk(N,W )

are symmetric in this case, and the transition region occurs at k = 1
2N . This is unsurprising. When

T = 2, the frame {einπ
2 x}n∈Z decomposes into two orthogonal bases, related to the sine and cosine

transforms. Using this decomposition and the associated discrete transforms, M. Lyon has introduced
a fast implementation of FE’s for equispaced data [21].

3.3 Numerical examples

Having discussed the ill-conditioning of the matrices associated to the continuous and discrete FE’s,
we now consider several numerical examples. In Figure 2 we plot the error ‖f − fN‖∞ against N for
various choices of f . Here the extension fN is the the numerically computed continuous or discrete FE
– i.e. the result of solving the corresponding linear system in standard precision (recall Remark 1.2).
Henceforth, we use the notation GN (f) and G̃N (f) for such extensions, so as to distinguish them from
their ‘exact’ counterparts FN (f) and F̃N (f).

At first sight, Figure 2 appears somewhat surprising: for all three functions we obtain good accuracy,
and there is no drift or growth in the error, even in the case where f is nonsmooth or has a complex
singularity near x = 0. Thus, in practice, the ill-conditioning established in Theorems 3.1 and 3.2
appears to have little effect on the numerical extensions GN (f) and G̃N (f). The purpose of the next
section is to explain this apparent contradiction.

In Figure 2 we also compare two choices of T : fixed T = 2 and the N -dependent value (2.16)
with ǫtol = 10−14. Note that the latter typically outperforms the fixed value T = 2, especially for
oscillatory functions. This is unsurprising in view of the discussion in §2.3.1. Figure 2 also exhibits
the disadvantage of the continuous extension described in Remark 3.3: namely, the error levels off at
around

√
ǫmach, as opposed to around ǫmach for the discrete extension. This will be confirmed in the

next section by analyzing the numerical method.

4 Numerical stability of Fourier extensions

Figure 2 suggests the following conclusion: although there may be extreme sensitivity in the coefficients
of the extensions GN (f) and G̃N (f) (due to the large condition numbers), this has little effect on the
extensions themselves. In this section we precisely explain this phenomenon.

4.1 The magnitude of the coefficients

To understand the numerical extensions GN (f) and G̃N (f), it is first necessary to determine the
behaviour of the coefficients {an}Nn=−N of the exact extensions FN (f) and F̃N (f). Specifically, we wish
to estimate how large ‖a‖ can be. We have

Theorem 4.1. Suppose that f is analytic in D(ρ∗) and not analytic inside any D(ρ) with ρ > ρ∗. If
a ∈ C

2N+1 is the vector of coefficients of the continuous FE FN (f), then

‖a‖ ≤ cf

{

(

E(T )
ρ∗

)N

ρ∗ < E(T ),

N ρ∗ ≥ E(T ),
(4.1)
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where cf > 0 is as in Theorem 2.10. If f ∈ L2(−1, 1) is not analytic, then

‖a‖ ≤ c‖f‖E(T )N . (4.2)

Proof. Write FN (f) = fN = fe,N + fo,N , where fe,N and fo,N are the even and odd parts of fN
respectively. Since the set {φn}n∈Z is orthonormal over [−T, T ] we find that

‖a‖ = ‖fN‖[−T,T ] ≤ 2
(

‖fe,N‖[0,T ] + ‖fo,N‖[0,T ]

)

≤ 2
√
T
(

‖fe,N‖∞,[0,T ] + ‖fo,N‖∞,[0,T ]

)

.

Recall from §2.1.1 that fe,N (x) = h1,N (u) and fo,N (x) = sin
(

π
T m

−1(u)
)

h2,N (u), where hi,N ∈ PN+1−i,

i = 1, 2, is defined by (2.4). Thus, ‖a‖ ≤ c
(

‖h1,N‖∞,[m(T ),1] + ‖h2,N‖∞,[m(T ),1]

)

for some c > 0
independent of N and f . Consider h1,N (u). This is precisely the expansion of h1 in polynomials

{pn}∞n=0 orthogonal with respect to the weight function w1: i.e. h1,N =
∑N

n=0〈h1, pn〉w1
pn, where

h1(u) = f1(m
−1(u)). Therefore

‖h1,N‖∞,[m(T ),1] ≤
N
∑

n=0

|〈h1, pn〉w1
|‖pn‖∞,[m(T ),1].

It is known that ‖pn‖∞,[m(T ),1] ≤ cE(T )n [18]. Also, since h1 is analytic in B(ρ′), where ρ′ =
min{ρ∗, E(T )}, we have that |〈h1, pn〉w1

| ≤ cf (ρ
′)−n. Hence

‖h1,N‖∞,[m(T ),1] ≤ cf

N
∑

n=0

(

E(T )

ρ′

)n

,

which gives (4.1). For (4.2) we use the bound |〈h1, pn〉w1 | ≤ ‖h1‖w1 ≤ c‖f‖ instead.

Corollary 4.2. Let f be as in Theorem 4.1. Then the vector of coefficients a ∈ C
2N+2 of the discrete

Fourier extension F̃N (f) of f satisfies the same bounds as those given in Theorem 4.1.

Proof. The functions hi,N , i = 1, 2 are the polynomial interpolants of hi at the nodes (2.9) (Proposition

2.6). Write hi,N (u) =
∑N

n=0 ũnTn(u), where Tn(u) is the nth Chebyshev polynomial, and let ûn =
〈hi, Tn〉w be the exact Chebyshev polynomial coefficient of hi. Note that |ûn| ≤ cfρ

−n. Moreover, the
aliasing formula gives that ũn = ûn +

∑

k 6=0(û2kN+n + û2kN−n) (see [11, Eqn. (2.4.20)]). Therefore,

|ũn| ≤ cf

(

ρ−n +

∞
∑

k=1

ρ−2kN−n +

∞
∑

k=1

ρ−2kN+n

)

≤ cf
(

ρ−n + ρn−2N
)

≤ cfρ
−n.

The result now follows along the same lines as the proof of Theorem 4.1.

Recall that to compute the continuous or discrete FE we need to solve the linear system Aa = b
(respectively Ãa = b). When N is large, the columns of A (Ã) become near-linearly dependent. Indeed,
as shown in §3.2, the numerical rank of A is roughly 1/T times its dimension for large N . As discussed,
this is a direct consequence of the redundancy of the frame.

Now suppose we solve Aa = b with a standard numerical solver. Loosely speaking, the solver will
use the extra degrees of freedom to construct approximate solutions a′ with small norm. However, the
previous theorem and corollary give conditions under which ‖a‖ is exponentially large in N . Using
these, we may now conclude the following: only in the case where f is analytic with ρ∗ ≥ E(T ) can we
expect the theoretical coefficient vector a to be produced by the numerical solver for all N . In all other
cases, we may well have that a′ 6= a for sufficiently large N , and therefore GN (f) will not coincide with
the exact extension FN (f).

This raises the following question: if the numerical solver does not output the coefficients of FN (f),
then what does it yield? The following proposition confirms the existence of infinitely many approxi-
mate solutions of the equations Aa = b with small norm coefficient vectors:

Proposition 4.3. Suppose that f ∈ Hk(−1, 1). Then there exist a[N ] ∈ C
2N+1, N ∈ N, satisfying

‖a[N ]‖ ≤ ck(T )‖f‖Hk(−1,1), (4.3)

and
‖Aa[N ] − b‖ ≤ ck(T )N

−k‖f‖Hk(−1,1). (4.4)
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Figure 3: Comparison of the numerical continuous and discrete FE’s GN (f) and G̃N (f) (squares and circles)
and their exact counterparts FN (f) and F̃N (f) (crosses and diamonds) for T = 2. Top row: the uniform error
‖f − fN‖∞ against N . Bottom row: the norm ‖a‖ of the coefficient vector.

Moreover, if gN =
∑

|n|≤N a
[N ]
n φn then

‖f − gN‖ ≤ ck(T )N
−k‖f‖Hk(−1,1). (4.5)

Proof. Let f̃ ∈ Hk(T) be the extension guaranteed by Lemma 2.4, and write a[N ] for the vector of its
first 2N + 1 Fourier coefficients. By Bessel’s inequality, ‖a[N ]‖ ≤ ‖f̃‖[−T,T ] ≤ ck(T )‖f‖Hk(−1,1) which

gives (4.3). For (4.4), we merely note that (Aa[N ] − b)n = 〈f − gN , φn〉. Using the frame property
(2.5) we obtain ‖Aa[N ] − b‖ ≤ c2‖f − gN‖. Thus, (4.4) follows directly from (4.5), and the latter is a
standard result of Fourier analysis (see [11, eqn. (5.1.10)], for example).

This proposition states that there exist vectors with norm bounded independently of N which
approximately solve the equations Aa = b (up to an error of order N−k). Moreover, these coefficient
vectors yield extensions which converge algebraically fast to f at rate k. Whilst it does not imply that
these are the coefficient vectors produced by the numerical solver, it does indicate that, in the case
where the exact extension FN (f) has large coefficient norm, exponential convergence of the numerical
extension GN (f) may be sacrificed for spectral convergence so as to retain boundedness of the computed
coefficients.

This hypothesis is confirmed in Figure 3 (all computations were carried out in Mathematica, with
additional precision used to compute the exact FE’s and standard precision used otherwise). As we see,
exponential convergence of the exact extension is replaced by slower, but still high-order convergence,
for sufficiently large N . Note that this ‘breakpoint’ occurs at roughly the same value of N , regardless
of the function. Moreover, the breakpoint occurs at a larger value of N for the discrete extension than
the continuous extension.

These observations, as well as the intuitive arguments above, will be confirmed in the next section
by an analysis of the numerical extensions GN (f) and G̃N (f). However, let us first make several further
comments about the results in Figure 3. First, note that the breakdown of exponential convergence
is far less severe for the classical Runge function f(x) = 1

1+100x2 than for f(x) = 1
8−7x and the

entire function f(x) = 1 + cosh 40x
cosh 40 . This can be explained by Proposition 4.3. When a > 1 the

derivatives of the Runge function f(x) = 1
1+a2x2 are reasonably small, and therefore the approximate

coefficient vectors of Proposition 4.3 are also reasonably small in norm for all k. On the other hand,
the functions f(x) = 1

1+b−bx and f(x) = 1 + cosh bx
cosh b have boundary layers near x = 1 (also x = −1

for the latter). In particular, the kth derivative scales like bk. Thus, for these functions, approximate
solutions corresponding to larger k have much larger norm.

Second, although it is not apparent from Figure 3 that the convergence rate beyond the breakpoint
is truly spectral (or merely algebraic of high order), this is in fact the case. Such convergence is
confirmed by Figure 4: the slight downward curve in the error indicates spectral convergence.
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Figure 4: Comparison of the numerical continuous and discrete FE’s GN (f) and G̃N (f) (squares and circles)
and their exact counterparts FN (f) and F̃N (f) (crosses and diamonds) for T = 2 and f(x) = 1

101−100x
. Left:

the uniform error in log scale. Right: the error in log-log scale.

4.2 Analysis of the numerical method

We now wish to analyse the numerical extensions GN (f) and G̃N (f) obtained by implementing the
continuous and discrete FE’s in finite arithmetic. Since the numerical solvers used in environments such
as Matlab or Mathematica are difficult to analyse directly, we now look at the result of solving Aa = b
(or Ãa = b) via a truncated singular value decomposition (SVD). This represents an idealization of
the numerical solver. Indeed, neither Matlab’s \ or Mathematica’s LeastSquares actually performs a
truncated SVD. However, in practice, this simplification appears reasonable: numerical experiments
(see later in this section) indicate that these standard solvers give roughly the same results as the
truncated SVD with suitably small truncation parameter (typically ǫ = 10−14). We shall also assume
throughout that the truncated SVD is computed without error. However, this also seems reasonable: in
numerical experiments we observe that the SVD, when computed in finite precision, gives near-identical
results to the numerical solver, provided once more that the tolerance is set sufficiently small.

Suppose that A (respectively Ã) has SVD USV ∗ with S = diag(σ0, . . . , σ2N ) being the diagonal
matrix of singular values. Given a truncation parameter ǫ > 0, we now consider the solution

aǫ = V S†U∗b, (4.6)

where S† is the diagonal matrix with nth entry 1/σn if σn > ǫ and 0 otherwise. We write

HN,ǫ(f) =
∑

|n|≤N

(aǫ)nφn,

for the corresponding FE. Let vn ∈ C
2N+1 be the right singular vector of A with singular value σn,

and define
Φn =

∑

|m|≤N

(vn)mφm ∈ GN ,

to be the Fourier series corresponding to vn. Note that the functions Φn are orthonormal with respect
to 〈·, ·〉[−T,T ] and span GN . Also, if we denote GN,ǫ = span{Φn : σn > ǫ}, then we have HN,ǫ(f) ∈ GN,ǫ.

We now consider the cases of the continuous and discrete FE’s separately.

4.2.1 The continuous Fourier extension

In this case, since A is Hermitian and positive definite, the singular vector vn are actually eigenvectors
of A, with Avn = σnvn. By definition, we have 〈Φn,Φm〉 = (vn)

∗Avm = σnδn,m, and therefore

HN,ǫ(f) =
∑

n:σn>ǫ

1

σn
〈f,Φn〉Φn. (4.7)

Our main result is as follows:

Theorem 4.4. Let f ∈ L2(−1, 1) and suppose that HN,ǫ(f) is given by (4.7). Then

‖f −HN,ǫ(f)‖ ≤ ‖f − φ‖+
√
ǫ‖φ‖[−T,T ], ∀φ ∈ GN , (4.8)

and

‖aǫ‖ = ‖HN,ǫ(f)‖[−T,T ] ≤
1√
ǫ
‖f − φ‖+ ‖φ‖[−T,T ], ∀φ ∈ GN . (4.9)
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Proof. The function HN,ǫ(f) is the orthogonal projection of f onto GN,ǫ with respect to 〈·, ·〉. Hence
for any φ ∈ GN we have ‖f − HN,ǫ(f)‖ ≤ ‖f − HN,ǫ(φ)‖ ≤ ‖f − φ‖ + ‖φ − HN,ǫ(φ)‖. Consider the
latter term. Since φ ∈ GN , the observation that the {Φn} are orthonormal on [−T, T ] gives

‖φ−HN,ǫ(φ)‖2 =

∥

∥

∥

∥

∥

∑

n:σn<ǫ

〈φ,Φn〉[−T,T ]Φn

∥

∥

∥

∥

∥

2

=
∑

n:σn<ǫ

σn|〈φ,Φn〉[−T,T ]|2 ≤ ǫ‖φ‖2[−T,T ].

This yields (4.8). For (4.9) we first write ‖HN,ǫ(f)‖[−T,T ] ≤ ‖HN,ǫ(f − φ)‖[−T,T ] + ‖HN,ǫ(φ)‖[−T,T ].
By orthogonality,

‖HN,ǫ(f − φ)‖2[−T,T ] =
∑

n:σn>ǫ

1

σ2
n

|〈f − φ,Φn〉|2 ≤ 1

ǫ

∑

n:σn>ǫ

1

σn
|〈f − φ,Φn〉|2 =

1

ǫ
‖HN,ǫ(f − φ)‖2.

Since HN,ǫ is an orthogonal projection, we conclude that ‖HN,ǫ(f −φ)‖2[−T,T ] ≤ 1
ǫ ‖f −φ‖2, which gives

the first term in (4.9). For the second, we notice that

‖HN,ǫ(φ)‖2[−T,T ] ≤
∑

n:σn>ǫ

|〈φ,Φn〉|2 ≤ ‖φ‖2[−T,T ],

since φ ∈ GN .

This theorem allows us to explain the behaviour of the numerical FE GN (f). Suppose that f is
analytic in D(ρ), where ρ < E(T ) and D(ρ) is as Theorem 2.10. Set φ = FN (f) in (4.8), where FN (f)
is the exact continuous FE. Then, using Theorems 2.10 and 4.1, we obtain the bound

‖f −HN,ǫ(f)‖ ≤ cf
(

1 +
√
ǫE(T )N

)

ρ−N .

For small N , the first term in the brackets dominates. Thus we expect exponential convergence of
HN,ǫ(f), and therefore also the numerical extension GN (f), at rate ρ. However, once

N > N0(ǫ, T ) := − log ǫ

2 logE(T )
, (4.10)

the second term dominates and the bound begins to increase. On the other hand, Proposition 4.3 es-
tablishes the existence of functions φ ∈ GN with bounded coefficients which approximate f to arbitrary
orders of accuracy. Substituting such a function φ into (4.8) gives

‖f −HN,ǫ(f)‖ ≤ ck(T )
(

N−k +
√
ǫ
)

‖f‖Hk(−1,1), ∀N, k ∈ N.

Therefore, once N > N0(ǫ, T ) we expect spectral convergence of HN,ǫ(f), and consequently GN (f),
down to a maximal achievable accuracy of order

√
ǫ.

Theorem 4.1 also explains the behaviour of the coefficient norm ‖aǫ‖. Observe that breakpoint
N0(ǫ, T ) is (up to a small constant) the largest N for which all singular values of A are included in its
truncated SVD (see Theorem 3.1). Thus, when N < N0(ǫ, T ), we have HN,ǫ(f) = FN (f), and Theorem
4.1 gives exponential growth of ‖aǫ‖. On the other hand, once N > N0(ǫ, T ), we use (4.9) to obtain

‖aǫ‖ ≤ ck(T )
(

N−k/
√
ǫ+ 1

)

‖f‖Hk(−1,1), ∀N, k ∈ N.

In particular, for N > N0(ǫ, T ), we see decay of ‖aǫ‖ down from its maximal value at N = N0(ǫ, T ).
This analysis precisely explains the numerical results of the previous section. Note that the maximal

achievable accuracy is O (
√
ǫ), where ǫ is the tolerance used. This is also shown in Figure 5. Since

N0(10
−6, 2) ≈ 4, N0(10

−10, 2) ≈ 7, and N0(10
−14, 2) ≈ 9, this figure also confirms the expression (4.10)

for the breakpoint N0(ǫ, T ).
Figure 5 also demonstrates that the numerical solver (in this case, Mathematica’s LeastSquares)

exhibits very similar behaviour to a truncated SVD with tolerance ǫ = 10−14, as remarked earlier in
this section. In particular, for the numerical continuous FE GN (f), one cannot expect more than 7
digits of accuracy in general. This explains the comments made in Remark 3.3. As we see next, for
the discrete FE the corresponding factor in the error bound is ǫ (as opposed to

√
ǫ), which confirms

the significant advantage of the latter approach.
Observe that the breakpoint N0(ǫ, T ), although derived by assuming f was analytic in a particular

region, is actually independent of f . Interestingly, one still witnesses such a breakdown, even when f
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Figure 5: Error (top) and coefficient norm (bottom) against N for the continuous FE with T = 2. Squares
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Figure 6: The functions |Φn(x)| for n = 0, n = 20 and n = 40, where N = 20 and T = 2.

is entire. In Figure 5 we also consider the function f(x) = x. The quantity ‖a‖ initially grows (albeit
not exponentially), before decaying slowly once the breakpoint N0(T ; ǫ) is reached.

This fact is unsurprising. As noted, the breakpoint N0(ǫ, T ) is the largest N for which HN,ǫ(f)
coincides with FN (f). Beyond this point, regardless of the function being approximated, we will
not obtain FN (f) from the truncated SVD, and thus we will not in general get further exponential
convergence. Having said this, if f is entire, or even analytic in a sufficiently large region, and not
possessing large oscillations or derivatives, then once the breakpoint N0(ǫ, T ) is reached, f will already
typically be resolved down to O (

√
ǫ). Hence, there is no visible breakdown in exponential convergence.

Remark 4.5 At first sight, it may appear counterintuitive that, by excluding all singular values below
a certain tolerance, one can still obtain good accuracy. However, recall that we are not interested in
the accuracy of computing a, but rather the accuracy of FN (f) on the domain [−1, 1]. Since the nth

singular value σn is equal to ‖Φn‖2 we see that the functions Φn excluded from HN,ǫ(f) are precisely
those for which ‖Φn‖2 < ǫ‖Φn‖[−T,T ]. In other words, they have little effect on FN (f) in [−1, 1].

In Figure 6 we plot the functions Φn for several n. As predicted, when n is small, the function Φn is
large in [−1, 1] and small in [−T, T ]\[−1, 1]. When n is in the transition region (n ≈ 2N/T — see §3.2),
the function Φn is roughly of equal magnitude in both regions, and for n ≈ 2N , Φn is much smaller
in [−1, 1] than on [−T, T ]. Note also that Φn is increasingly oscillatory in [−1, 1] as n increases, and
decreasingly oscillatory in [−T, T ]\[−1, 1]. This follows from the fact that Φn has precisely n zeroes
in [−1, 1] and 2N − n zeroes in [−T, T ]\[−1, 1] [27]. Note that this behaviour implies that any ‘nice’
function will be well approximated by functions Φn corresponding to ‘nice’ eigenvalues, as expected.
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4.2.2 The discrete Fourier extension

In this case, we have (Φn,Φm)N = σ2
nδn,m, where

(f, g)N =
π

N + 1

N
∑

n=−N−1

f(xn)g(xn),

is the discrete inner product corresponding to the quadrature nodes {xn}Nn=−N−1. Therefore

H̃N,ǫ(f) =
∑

n:σn>ǫ

1

σ2
n

(f,Φn)NΦn ∈ G′
N,ǫ := span {Φn : σn > ǫ} , (4.11)

is the orthogonal projection of f onto G′
N,ǫ with respect to the discrete inner product (·, ·)N .

Theorem 4.6. Let f ∈ L∞(−1, 1) and H̃N,ǫ(f) be given by (4.11). Then

‖f − H̃N,ǫ(f)‖W ≤ ‖f − φ‖W +
√

2πS(N ; ǫ)‖f − φ‖∞ + ǫ‖φ‖[−T,T ], ∀φ ∈ GN , (4.12)

and

‖aǫ‖ = ‖H̃N,ǫ(f)‖[−T,T ] ≤
1

ǫ

√

2πS(N ; ǫ)‖f − φ‖∞ + ‖φ‖[−T,T ], ∀φ ∈ GN , (4.13)

where S(N ; ǫ) = |{n : σn > ǫ}| ≤ 2(N + 1) and W is the weight function of Lemma 2.7.

Proof. By the triangle inequality,

‖f − H̃N,ǫ(f)‖W ≤ ‖f − φ‖W + ‖φ− H̃N,ǫ(φ)‖W + ‖H̃N,ǫ(f − φ)‖W , ∀φ ∈ G′
N .

Consider the second term. Since φ ∈ G′
N and the quadrature is exact on G′

N , we have

‖φ− H̃N,ǫ(φ)‖2W = (φ− H̃N,ǫ(φ), φ− H̃N,ǫ(φ))N =
∑

n:σn<ǫ

σ2
n|〈φ,Φn〉[−T,T ]|2 ≤ ǫ2‖φ‖2[−T,T ].

For the third term, let g be arbitrary. Then (H̃N,ǫ(g), H̃N,ǫ(g))N =
∑

n:σn>ǫ
1
σ2
n
|(g,Φn)N |2. Hence

‖H̃N,ǫ(g)‖2W = (H̃N,ǫ(g), H̃N,ǫ(g))N ≤ (g, g)N
∑

n:σn>ǫ

1 = (g, g)NS(N ; ǫ). (4.14)

It is straightforward to show that (g, g)N ≤ 2π‖g‖2∞. Setting g = f − φ now gives (4.12). For (4.13),
we proceed as in the proof of Theorem 4.4. Note that

‖H̃N,ǫ(g)‖2[−T,T ] =
∑

n:σn>ǫ

1

σ4
n

|(g,Φn)N |2 ≤ 1

ǫ2
‖H̃N,ǫ(g)‖2W , (4.15)

for any g ∈ L∞(−1, 1). Also,

‖H̃N,ǫ(φ)‖[−T,T ] ≤ ‖φ‖[−T,T ], φ ∈ GN . (4.16)

The result now follows by writing ‖H̃N,ǫ(f)‖[−T,T ] ≤ ‖H̃N,ǫ(f − φ)‖[−T,T ] + ‖H̃N,ǫ(φ)‖[−T,T ] and using
(4.14)–(4.16) with g = f − φ.

As with the continuous FE, this theorem allows us to analyze the numerical discrete extension
G̃N (f). Once more we deduce exponential convergence in N up to the function-independent breakpoint
N1(T ; ǫ) := − log ǫ

logE(T ) , with spectral convergence beyond this point. Note, however, two key differences.

First, the bound (4.12) involves ǫ, as opposed to
√
ǫ, meaning that we expect convergence of G̃N (f)

down to machine precision (as seen in the experiments of the §4.1). Second, the breakpoint N1(T ; ǫ)
is precisely twice N0(T ; ǫ). Hence, the regime of exponential convergence of G̃N (f) is exactly twice as
large as that of the continuous FE GN (f).

These observations are verified in Figure 7. Note that with the truncated SVD (computed in infinite
precision) it is actually possible to get a smaller error than the O (ǫ) bound, especially if f does not
have large derivatives near the endpoints x = ±1. However, this effect would obviously be destroyed
by roundoff when computing the SVD in finite precision.
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Figure 7: Error (top) and coefficient norm (bottom) against N for the discrete FE with T = 2. Squares corre-
spond to the numerical FE G̃N (f), circles, crosses and diamonds correspond to the truncated SVD extension
H̃N,ǫ(f) with ǫ = 10−14, 10−10, 10−6 respectively, and dashes correspond to the exact extension F̃N (f).

4.3 The condition number of the numerical method

Having analysed the numerical FE, we next consider its stability with respect to perturbations (e.g.
noise). As discussed previously, the condition numbers of the FE matrices (which are exponentially
large) are poor predictors for the stability of the FE mappings GN and G̃N . Hence we now consider the
condition number of the mappings themselves. Proceeding in a standard manner [28], let F : H → H be
a mapping taking a vector of inputs b = bf to an approximation F (f). Here H denotes some function
space. We define the condition number κ(F ) by

κ(F ) = sup
f∈H

lim
δ→0

sup
g∈H

0<‖bg‖≤δ

|||F (f + g)− F (f)|||
‖bg‖

, (4.17)

where ‖b‖ is the l2-norm of the vector b, and ||| · ||| is a norm on H. Specifically, in the case of the
continuous FE, F = GN , H = L2(−1, 1), ||| · ||| is the standard Euclidean norm, and b = bf has entries

given by (2.7). For the discrete extension, F = G̃N , H = L2
W (−1, 1), where the weight function W is

as in Lemma 2.7, ||| · ||| = ‖·‖W is the usual norm on this space, and b = bf is as defined in §2.2.2.
Note that (4.17) gives the absolute condition number of F , as opposed to the more standard relative

condition number [28]. The key results proved later in this section can easily be reformulated for the
latter. However, since the work of [24] is relevant to what follows (§5, in particular), we shall continue to
use (4.17), which coincides with the definition used therein. We remark in passing that κ(F ) measures
the absolute sensitivity of the mapping F to perturbations of the inputs bf . Specifically, one has

|||f − F (f + g)||| ≤ |||f − F (f)|||+ κ(F )‖bg‖.

Thus, perturbations are magnified by at most κ(F ) times their amplitude. This aside, it is also worth
noting that, since all the methods considered in this paper are linear, the condition number (4.17)
reduces to

κ(F ) = sup
f∈H
bf 6=0

|||F (f)|||
‖bf‖

.

As in the previous section, we analyse the condition number for the numerical FE’s GN and G̃N by
considering the truncated SVD extensions HN,ǫ and H̃N,ǫ. Our main result is as follows:

Theorem 4.7. Let F = HN,ǫ be the continuous truncated SVD FE given by (4.7). Then

κ(HN,ǫ) =
1

min{√σn : σn > ǫ} ≤ min

{

1√
ǫ
, C(T )N

3
2E(T )N

}

, N ∈ N, ǫ > 0.
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where C(T ) is a positive constant independent of N . Conversely, if F = H̃N,ǫ is the discrete extension

(4.11), then κ(H̃N,ǫ) = 1 for all N ∈ N and ǫ > 0.

Proof. Consider the continuous FE first and let g be arbitrary. By definition,

‖HN,ǫ(f)‖2 =
∑

n:σn>ǫ

1

σn
|〈g,Φn〉|2 ≤ 1

min{σn : σn > ǫ}

2N
∑

n=0

|〈g,Φn〉|2. (4.18)

Note that 〈g,Φn〉 =
∑2N

m=0〈g, φn〉(vn)m = 〈bg, vn〉. By orthogonality of the singular vectors vn, we

therefore have that
∑2N

n=0 |〈g,Φn〉|2 = ‖bg‖2. Recall that the minimal singular value of A is bounded
by c(T )N−3E(T )2N (Theorem 3.1). Hence, using (4.18), we deduce that

‖HN,ǫ(g)‖
‖bg‖

≤ min

{

1√
ǫ
, c(T )N

3
2E(T )N

}

,

as required.
For the discrete FE, note that (g,Φn)N = 〈bg, Ãvn〉 = σn〈bg, un〉, where un is the corresponding

left singular vector of Ã. Therefore

‖bg‖2 =

2N
∑

n=0

1

σ2
n

|(g,Φn)N |2 ≥
∑

σn>ǫ

1

σ2
n

|(g,Φn)N |2 = ‖H̃N,ǫ(g)‖2W ,

which gives the result. Finally, we note that the bounds for both the continuous and discrete extension
hold with equality since we can take bg to be the corresponding singular vector.

This theorem has some interesting consequences. First, the discrete FE is perfectly stable! Second,
the continuous FE is, as one might expect, far from stable. Indeed, the condition number grows
exponentially fast at rate E(T ) until it reaches the level 1√

ǫ
, where ǫ is the truncation parameter in

the SVD. Thus, with the continuous FE we may see perturbations being magnified by a factor of
1√

ǫmach
≈ 108 in practice.

We also note another implication of Theorem 4.7: varying T has no substantial effect on stability
(for sufficiently large N in the case of the continuous extension). Although the condition number of
the FE matrices depends on T (recall Theorems 3.1 and 3.2), the condition numbers of the numerical
mappings GN and G̃N are actually independent of this parameter.

Much as in the previous section, it is important to confirm that the results of this theorem on the
condition number of the truncated SVD extensions correspond closely to the behaviour of the numerical
extensions GN and G̃N . Unfortunately, κ(GN ) and κ(G̃N ) cannot be computed. However, they can
be approximated by taking repeated draws of randomly-chosen input vectors b. We therefore define

κt(F ) = max
j=1,...,t

|||F (bj)|||
‖bj‖

, (4.19)

where each bj , j = 1, . . . , t, is the realization of a vector b whose entries are independent uniformly
distributed random variables taking values in [−1, 1] (for the continuous extension we allow complex
values of b) and the parameter t is the number of trials.

In Figure 8 we plot κt(GN ) and κt(G̃N ) for various choices of N . As we see, the discrete FE is
extremely stable: not only is there no blowup with N , the value of κt(G̃N ) is very close in magnitude
to 1, indicating that κ(G̃N ) ≈ 1 in this case. For the continuous extension, κt(GN ) initially grows
exponentially, before levelling off at around 108 ≈ √

ǫmach in magnitude. This behaviour is in good
agreement with Theorem 4.7.

The difference in stability between the continuous and discrete FE’s is highlighted in Figure 9.
Here we perturbed the right-hand side b of the function f(x) = ex by noise of magnitude δ, and then
computed its FE. As is evident, the discrete extension approximates f to an error of magnitude roughly
δ, whereas for the continuous extension the error is of magnitude ≈ 108δ, as predicted by Theorem 4.7.

Remark 4.8 The disparity between the condition number of the coefficients of the FE (i.e. the
condition number of FE matrix) and that of the mapping can be explained by intuitive arguments.
Perturbations η in the input b = bf are magnified in the FE coefficients if η has a large component
corresponding to small singular vectors vn. However, since the singular functions Φn are small on
[−1, 1] (Remark 4.5), any magnification in the FE coefficients is cancelled out in the extension itself.
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Figure 8: The function δκt(F ) for the continuous (left) and discrete (right) FE’s GN and G̃N respectively
against N = 1, . . . , 200, where δ = 10−4, 10−6, 10−8, 10−10 (squares, circles, crosses and diamonds).
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Figure 9: The error |f(x) − fN (x)| against x, where fN = GN (f) (left) or fN = G̃N (f) (right), for N = 30,
T = 2 and f(x) = ex, with noise at amplitudes δ = 10−4, 10−6, 10−8, 10−10, 0.

5 Fourier extensions from equispaced data

Having analyzed the stability of the continuous and discrete FE’s, we now turn our attention to the
problem of computing FE’s when only equispaced data is prescribed.

As discussed in §1, one feature common to all rapidly convergent methods for overcoming the Runge
phenomenon is ill-conditioning. This observation was explained by Platte, Trefethen & Kuijlaars in
[24], wherein it was proved that any exponentially convergent method for this problem must also be
exponentially ill-conditioned. The presence of such poor conditioning in an, albeit rapidly convergent,
numerical method may appear highly disadvantageous. Indeed, at first sight at least, it is reasonable
to expect that any such method must be highly susceptible to noise and round-off error, and therefore
not useful in practice. However, it was noted in [24] that some methods for this problem do seemingly
exhibit both high accuracy and numerical stability. The purpose of the remainder of this paper is
to demonstrate that FE’s give rise to such a method, the so-called equispaced Fourier extension, and
explain precisely how this relates the stability barrier of Platte, Trefethen & Kuijlaars.

5.1 The equispaced Fourier extension

Let
xn =

n

M
, n = −M, . . . ,M, (5.1)

be a set of 2M + 1 equispaced points in [−1, 1], where M ≥ N . We define the equispaced Fourier
extension of a function f ∈ L∞[−1, 1] by

FN,M (f) := argmin
φ∈GN

∑

|n|≤M

|f(xn)− φ(xn)|2. (5.2)

Observe that if FN,M (f) =
∑

|n|≤N anφn, then the vector a = (a−N , . . . , aN )⊤ is the least squares

solution to Āa ≈ b, where Ā ∈ C
(2M+1)×(2N+1) has (n,m)th entry φm(xn) and b = {f(xn)}|n|≤M .

Note that FN,M (f), as defined by (5.2), is (up to minor changes of parameters/notation) identical
to the extensions considered in the previous papers [7, 8, 10, 20, 21] on equispaced FE’s.

5.2 Theory of the equispaced Fourier extension

Consider first the case M = N . Then FN,N (f) is equivalent to polynomial interpolation in u:
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Proposition 5.1. Let FN,N (f) = fN = fe,N + fo,N ∈ G′
N be defined by (5.2) with N = M and let

hi,N (u) ∈ PN be given by (2.4). Then hi,N (u), i = 1, 2 is the (N+1−i)th degree polynomial interpolant
of hi(u) at the nodes {un}Nn=i−1 ⊆ [−1, 1], where

un = m(xn) = 2
cos
(

nπ
NT

)

− c(T )

1− c(T )
− 1, n = 0, . . . , N. (5.3)

This proposition allows us to analyze the theoretical convergence/divergence of FN,N (f) using
standard results on polynomial interpolation. Recall that associated to a set of nodes {un}Nn=0 is a

node density function µ(u), i.e. a function such that (i)
∫ 1

−1
µ(u) du = 1 and (ii) each small interval

[u, u+ h] contains a total of Nµ(u)h nodes for large N [16]. In the case of (5.3) we have

Lemma 5.2. The nodes (5.3) have node density function µ(u) = c 1√
(1−u)(u−m(T ))

, where c−1 =

2arctan

( √
2√

−1−m(T )

)

.

Proof. Note first that
∫ 1

−1
µ(u) du = 1. Now let I = [u, u+ h] ⊆ [−1, 1] be an interval. Then the node

un ∈ I if and only if m−1(u+h) ≤ xn ≤ m−1(u). Therefore, as N → ∞, the proportion of nodes lying
in I tends to m−1(u)−m−1(u+ h). Now suppose that h → 0. Then

m−1(u+ h) =
T

π
arccos

[

c(T ) +
1− c(T )

2
(u+ h+ 1)

]

= m−1(u)− µ(u)h+O
(

h2
)

.

Thus m−1(u)−m−1(u+ h) = µ(u)h+O
(

h2
)

, as required.

It is useful to consider the behaviour of µ(u). Near u = 1, µ(u) ∼ c 1√
1−u

. On other hand, µ is

continuous at u = −1 with µ(−1) = c 1√
2(−1−m(T ))

. Hence the nodes {un}Nn=0 cluster quadratically near

u = 1 and are linearly distributed near u = −1. It is well known that to avoid the Runge phenomenon
in a polynomial interpolation scheme, it is essentially necessary that the nodes cluster quadratically
near both endpoints (as is the case with Chebyshev nodes) [16]. If this is not the case, one expects
the Runge phenomenon: that is, divergence (at exponential rate) in the interpolant at some points
u ∈ [−1, 1] for any function having a singularity in a certain complex region containing [−1, 1] (the
Runge region for the interpolation scheme). Since the nodes (5.3) do not exhibit the correct clustering,
we therefore expect this behaviour in the equispaced FE FN,N (f).

As it transpires, the corresponding Runge region R = R(T ) for FN,N (F ) can actually be defined

in terms of the potential function φ(z) = −
∫ 1

−1
µ(u) log |z − u| du+ c (here c is an arbitrary constant).

Standard polynomial interpolation theory [16] then gives that

R(T ) = {x ∈ C : φ(m(x)) = φ(−1)} ,

(observe that this is a subset of the complex x-plane). We note also that the convergence/divergence
of FN,N (f) at a point x will be exponential at a rate eφ(m(x0))−φ(m(x)), where x0 is the limiting
singularity of f (this follows from a general result on polynomial interpolation [16]). In particular, if f
has a singularity in R(T ), then there will be some points x ∈ [−1, 1] for which FN,N (f) diverges.

We next discuss two approaches to overcome the Runge phenomenon in FN,N (f).

5.2.1 Overcoming the Runge phenomenon

One way to attempt to overcome (or, at least, mitigate) the Runge phenomenon is to vary the parameter
T . We observe the following:

Lemma 5.3. The Runge region R(T ) satisfies R(T ) → [−1, 1] as T → 1+, and R(T ) → R as T → ∞,
where R is the Runge region for equispaced polynomial interpolation.

This lemma comes as no surprise (we omit the proof for brevity’s sake). As T → 1+, the system
{einπ

T
·}|n|≤N tends to the standard Fourier basis on [−1, 1]. The problem of equispaced interpolation

with trigonometric polynomials is well-conditioned and convergent. On the other hand, when T → ∞
for fixed N , the subspaces CN and SN both resemble spaces of algebraic polynomials in x. Thus, in
the large T limit, FN,N (f) is an algebraic polynomial interpolant of f at equispaced nodes.
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Since the Runge region R(T ) can be made arbitrarily small by letting T → 1+, one way to overcome
the Runge phenomenon is to vary T in the way described in §2.3.1 and set T = T (N ; ǫ). Note that,
since T (N ; ǫ) ∼ 1 for large N (see (2.17)), this approach will not suffer from a Runge phenomenon.
One could also take T ≈ 1 fixed. However, this will always lead to a nontrivial Runge region, and
therefore there will always be divergence for some functions.

An alternative way to overcome the hypothesized Runge phenomenon is to oversample. In other
words, allow M ≥ N . Oversampling is well known to defeat the Runge phenomenon in equispaced
polynomial interpolation [5, 8, 24], and the same is true here (see [7, 10] for previous discussions on
oversampling for equispaced FE’s). The key theorem is as follows (for brevity we shall omit the proof
– a very similar argument is given in [5] for the case of polynomial interpolation):

Theorem 5.4. Let FN,M (f) be given by (5.2), and suppose that

D(N,M) = sup {‖φ‖ : φ ∈ GN , ‖φ‖M = 1} , (5.4)

where ‖φ‖2M = 1
M+ 1

2

∑

|n|≤M |φ(xn)|2 and {xn}2M+1
n=0 are the nodes (5.1). Then

‖f − FN,M (f)‖ ≤ (1 + 2D(N,M)) inf
φ∈GN

‖f − φ‖∞.

This theorem implies that the FE based on equispaced nodes will converge, regardless of the an-
alyticity of f , provided M is chosen such that D(N,M) is bounded. Up to possible small algebraic
factors in M and N , the quantity D(N,M) is equivalent to

D̃(N,M) = sup {‖p‖∞ : p ∈ PN , |p(un)| ≤ 1, n = 0, . . . ,M} . (5.5)

Note the meaning of this quantity: it informs us how large a polynomial of degree N can be on [−1, 1],
if that polynomial is bounded at the M points un. Unfortunately, numerical evidence suggests that

a
N2

M ≤ D̃(N,M) ≤ b
N2

M . (5.6)

for constants a, b > 1. Thus one requires M = O
(

N2
)

nodes to ensure boundedness of D(N,M). This
is clearly less than ideal: it means that we require many more samples of f to compute its N -term
equispaced FE, and, in particular, the FE (5.2) converges only root-exponentially fast in the number
of given grid values of f .

Had the nodes {un}Mn=0 clustered quadratically near u = ±1, then M = O (N) would be sufficient to
ensure boundedness of D̃(N,M) (note that when N = M , D̃(N,M) is precisely the Lebesgue constant
of polynomial interpolation). On the other hand, if {un}Mn=0 were equispaced nodes on [−1, 1] then
(5.6) would coincide with a well-known result of Coppersmith & Rivlin [13]. The intuition for a bound
of the form (5.6) for the nodes (5.3) comes from the fact that these nodes are linearly distributed near
u = −1. Thus, at least near u = −1 they behave like equispaced nodes.

Since the scaling M = O
(

N2
)

is undesirable, one can ask what happens when M = γN for some

fixed oversampling parameter γ ≥ 1. Using potential theory arguments, one can show that D̃N,γN grows
exponentially in N (with the constant of this growth becoming smaller as γ increases), as predicted
by the conjectured bound (5.6). We shall write c(γ;T ) for such a constant: i.e. DN,γN = c(γ;T )N .1

Incidentally, this also proves that linear oversampling is not sufficient for theoretical convergence.
In view of this behaviour, Theorem 5.4 guarantees convergence of the FE (5.2), provided ρ ≥ c(γ;T ),

where ρ is as in Theorem 2.10. In other words, f needs to be analytic in the region D(c(γ;T )) (recall D
from Theorem 2.10) to ensure convergence, and therefore one expects a Runge phenomenon whenever
f has a complex singularity lying in the corresponding Runge region R(γ;T ) = D(c(γ;T )). Naturally,
a larger value of γ leads to a smaller (but still nontrivial) Runge region. However, regardless of the
choice of γ, there will always be analytic functions for which one expects divergence of FN,γN (f) (see
[5] for a related discussion in the case of equispaced polynomial interpolation).

5.2.2 Numerical examples

In summary, to obtain a convergent FE using equispaced data it appears that one either needs to
oversample quadratically (and thereby reduce the convergence rate to only root-exponential), or scale

1The constant of growth was obtained in private communication with A. Kuijlaars. A closed expression (up to several
integrals involving the potential function φ for the nodes un) can be found for c(γ;T ). We omit the full argument as it
is rather lengthy, but note that it is based on standard results in potential theory. A general reference is [25].
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Figure 10: The error ‖f − fN‖∞ against N for the equispaced FE’s fN = FN,γN (f) (left) and fN = GN,γN (f)
(right) of f(x) = 1

1+100x2 with oversampling factor γ = 1, 2, 4 (squares, circles and crosses) and T = 2.

the extension parameter suitably with N or both. However, recall from §4 that an FE obtained from
a computation carried out in finite precision may differ quite dramatically from the exact, infinite
precision extension. Is it therefore possible that the unpleasant effects described in the previous section
may not be witnessed in finite precision? The answer transpires to be yes, and consequently FE’s can
be used for equispaced data, even in situations where theoretical divergence is expected.

To illustrate, consider the approximation of the function f(x) = 1
1+100x2 . When T = 2, this function

has a singularity lying in the Runge region R(1; 2), and so we expect divergence of its equispaced FE.
This is shown in Figure 10. Note that double oversampling also gives divergence, whilst with quadratic
oversampling the singularity of f no longer lies in R(γ;T ), and thus we witness exponential convergence
(although at a very slow rate).

However, the situation changes completely when we carry out computations in finite precision. In
all cases, the approximation, which we denote GN,M (f), converges exponentially fast, and there is no
drift in the error once the best achievable accuracy is attained. Note that oversampling by a constant
factor improves the approximation, but, this aside, in all cases we still witness convergence.

This figure suggests the following conclusion: equispaced FE’s are theoretically unstable and diver-
gent, but numerically stable and convergent in finite arithmetic. In the next section we explain this
apparent contradiction.

Before doing so, we remark that the condition number κ(Ā) of the matrix Ā is always exponentially
large. Indeed, suppose that we write

σmin(Ā)
−1 = sup

{

‖φ‖[−T,T ] : φ ∈ GN , ‖φ‖M = 1
}

= B(N,M). (5.7)

Then, up to small algebraic factors in M and N , the quantity B(N,M) is equivalent to

B̃(N,M) = sup
{

‖p‖∞,[m(T ),1] : p ∈ PN , |p(un)| ≤ 1, n = 0, . . . ,M
}

, (5.8)

(this is analogous to D(N,M) and D̃(N,M) – see §5.2.1). From this, it is a straightforward exercise
to show that E(T )N ≤ B(N,M) ≤ D̃(N,M)E(T )N , and therefore

E(T )N . κ(Ā) . D(N,M)E(T )N ,

which implies that κ(Ā) is exponentially large in N , regardless of M . Consequently, one expects
extreme sensitivity in the coefficients of the equispaced FE. However, in the next section we show that
this does not lead to significant instability in the equispaced FE itself, much as in the case of the
continuous and discrete FE’s.

5.3 Analysis of the numerical method

Proceeding as in §4.2 we now analyze the truncated SVD approximation, which we denote HN,M,ǫ(f).
Note that a similar analysis has also recently been presented in [20] – see Remark 5.9 for further details.

Let Φn ∈ GN be the function corresponding to singular value σn of the matrix Ā. Write GN,M,ǫ =
span {Φn : σn > ǫ} and G⊥

N,M,ǫ = span{Φn : σn < ǫ}, and let (·, ·)M be the discrete bilinear form

(g, h)M = 1
M+1

∑2M+1
n=0 g(xn)h(xn), with corresponding discrete semi-norm ‖·‖M . Observe that HN,M,ǫ

is the orthogonal projection onto GN,M,ǫ with respect to (·, ·)M . Since (Φn,Φm)M = σ2
nδn,m, we have

HN,M,ǫ(f) =
∑

n:σn>ǫ

1

σ2
n

(f,Φn)MΦn. (5.9)

Our main result is as follows:
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Theorem 5.5. Let f ∈ L∞(−1, 1) and HN,M,ǫ(f) be given by (5.9). Then

‖f−HN,M,ǫ(f)‖ ≤ ‖f−φ‖+
√
2C1(N,M ;T, ǫ)‖f−φ‖∞+C2(N,M ;T, ǫ)‖φ‖[−T,T ], ∀φ ∈ GN , (5.10)

and

‖aǫ‖ = ‖HN,M,ǫ(f)‖[−T,T ] ≤
√
2

ǫ
‖f − φ‖∞ + ‖φ‖[−T,T ], ∀φ ∈ GN , (5.11)

where

C1(N,M ;T, ǫ) = sup
φ∈GN,M,ǫ

φ 6=0

{ ‖φ‖
‖φ‖M

}

, C2(N,M ;T, ǫ) = sup
φ∈G⊥

N,M,ǫ

φ 6=0

{ ‖φ‖
‖φ‖[−T,T ]

}

. (5.12)

Proof. Let φ ∈ GN . Then

‖f −HN,M,ǫ(f)‖ ≤ ‖f − φ‖+ ‖HN,M,ǫ(f − φ)‖+ ‖φ−HN,M,ǫ(φ)‖. (5.13)

Consider the second term. By definition of C1(N,M ;T, ǫ),

‖HN,M,ǫ(f − φ)‖ ≤ C1(N,M, ǫ)‖HN,M,ǫ(f − φ)‖M ≤ C1(N,M, ǫ)‖f − φ‖M ,

where the second inequality follows from the fact that HN,M,ǫ is an orthogonal projection with respect
to (·, ·)M . Noting that ‖g‖M ≤

√
2‖g‖∞ for any function g now gives the corresponding term in (5.10).

The bound for the third term of (5.13) follows immediately from the definition of C2(N,M ;T, ǫ) and
the inequality ‖φ−HN,M,ǫ(φ)‖[−T,T ] ≤ ‖φ‖[−T,T ].

For (5.11), we first write ‖HN,M,ǫ(f)‖[−T,T ] ≤ ‖HN,M,ǫ(f −φ)‖[−T,T ]+‖HN,M,ǫ(φ)‖[−T,T ]. Observe
that, for any g, we have

‖HN,M,ǫ(g)‖2[−T,T ] =
∑

n:σn>ǫ

1

σ4
n

|(g,Φn)M |2 ≤ 1

ǫ2
‖HN,M,ǫ(g)‖2M ≤ 1

ǫ2
‖g‖2M ≤ 2

ǫ2
‖g‖2∞.

Also, ‖HN,M,ǫ(φ)‖[−T,T ] ≤ ‖φ‖[−T,T ] for φ ∈ GN . Combining these two bounds, and setting g = f − φ,
now gives (5.11).

An immediate corollary of this theorem shows that the truncated SVD equispaced Fourier extension
HN,M,ǫ does not suffer from a Runge phenomenon:

Corollary 5.6. If f ∈ L∞(−1, 1) then

‖HN,M,ǫ(f)‖ ≤
√
2

ǫ
‖f‖∞, ∀N ∈ N, M ≥ N.

Moreover, if f ∈ H1(−1, 1), then

lim sup
N,M→∞
M≥N

‖HN,M,ǫ(f)‖ ≤ inf
{

‖f̃‖[−T,T ] : f̃ ∈ H1(T), f̃ |[−1,1] = f
}

≤ c1(T )‖f‖H1(−1,1),

where T = [−T, T ) is the torus and c1(T ) > 0 is as in Theorem 2.8.

Proof. By (5.11), we have

‖HN,M,ǫ(f)‖ ≤ ‖HN,M,ǫ(f)‖[−T,T ] ≤
√
2

ǫ
‖f − φ‖∞ + ‖φ‖[−T,T ], ∀φ ∈ GN . (5.14)

Setting φ = 0 gives the first result. For the second, we let φ be the N -term Fourier series of f̃ , so that
‖f − φ‖∞ → 0 as N → ∞. The final inequality follows from the fact that there exists an extension f̃
of f with ‖f̃‖H1(T) ≤ c1(T )‖f‖H1(−1,1) (Lemma 2.4).

This corollary shows that the Runge phenomenon, i.e. divergence of HN,M,ǫ(f), cannot occur in
finite precision. This should come as no surprise. Divergence of HN,M,ǫ(f) would imply unboundedness
of the coefficients aǫ, a behaviour which is prohibited by truncating the singular values of Ā at level ǫ.
Note that this corollary actually shows a much stronger result, namely that HN,M,ǫ(f) is bounded on
the extended domain [−T, T ], not just on [−1, 1].

Although this corollary demonstrates lack of divergence of HN,M,ǫ(f), it says littles about its con-
vergence besides the observation that ‖HN,M,ǫ(f)‖ is asymptotically bounded by ‖f‖H1(−1,1). To study
convergence we shall use (5.10). For this we first need to understand the constants Ci(N,M ;T, ǫ).
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Figure 11: The quantity C1(N, γN ;T, ǫ) against N for γ = 1 (top row) or γ = 2 (bottom row) and ǫ =
10−6, 10−12, 10−18, 10−24, 10−30 (squares, circles, crosses, diamonds and dashes respectively).

5.3.1 Behaviour of Ci(N,M ;T, ǫ)

Although Theorem 5.5 holds for arbitrary M ≥ N , we now focus on the case of linear oversampling,
i.e. M = γN for some γ ≥ 1.

Let N2(γ, T, ǫ) be the largest N such that all the singular values of the matrix Ā are at least ǫ in
magnitude. For N ≤ N2(γ, T, ǫ) we have GN,γN,ǫ = GN and therefore C1(N, γN ;T, ǫ) = D(N, γN),
where D(N,M) is given by (5.4). Thus we witness exponential divergence of C1(N, γN ;T, ǫ) at rate
c(γ;T ), where c(γ;T ) is the fixed constant introduced in §5.2.1. This is shown in the Figure 11.

However, once N > N2(γ, T, ǫ) the numerical results in Figure 11 indicate a completely different
behaviour: namely, C1(N, γN ;T, ǫ) appears to be bounded. Although we have no proof of this fact,
extensive numerical experiments indicate that

C1(N, γN ;T, ǫ) . C1(N2, γN2;T, ǫ) ∼ c(γ;T )N2 , ∀N > N2. (5.15)

Thus, C1(N, γN ;T, ǫ) achieves its maximal value at N ≈ N2, and is approximately bounded by this
value for all N > N2.

Recall the expression (5.7) for the minimal singular value of Ā. Much like before, potential theory
arguments can be used once more to obtain the behaviour of the quantity B̃(N, γN). In particular,
one can show that B(N, γN) ∼ d(γ;T )N as N → ∞, for some constant d(γ;T ) > 1. With this in hand,
it is now easy to verify that

N2(γ, T, ǫ) ∼ − log ǫ

log d(γ;T )
. (5.16)

Thus, substituting this into the conjectured bound (5.15) gives

C1(N, γN ;T, ǫ) . min
{

c(γ;T )N , ǫ−
log c(γ;T )
log d(γ;T )

}

, ∀N ∈ N. (5.17)

In particular, C1(N, γN ;T, ǫ) is bounded for all N by some power of ǫ−1. Importantly, this power
cannot be too large. Note that c(γ;T ) ≤ d(γ;T ), ∀T > 1, since the maximum of a polynomial on
[m(T ), 1] is bigger than its maximum on the smaller interval [−1, 1] – compare (5.8) to (5.5). Therefore

the ratio log c(γ;T )
log d(γ;T ) is at most one. Moreover, for T not too close to 1, we have c(γ;T ) ≪ d(γ;T ).

The quantity C2(N,M ;T, ǫ) is harder to analyze, although clearly we have C2(N,M ;T, ǫ) = 0 when
N < N2. Figure 12 demonstrates that C2(N, γN, ǫ) is bounded in N . Moreover, closer comparison
with Figure 11 indicates the existence of a bound of the form

C2(N, γN ;T, ǫ) . ǫC1(N, γN ;T, ǫ). (5.18)

Once more, we have no proof of this observation (see §6 for a discussion).
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Figure 12: The quantity C2(N, γN ;T, ǫ) against N for γ = 1 (top row) or γ = 2 (bottom row) and ǫ =
10−6, 10−12, 10−18, 10−24, 10−30 (squares, circles, crosses, diamonds and dashes respectively).

Remark 5.7 Note that C1(N,M ;T, ǫ) and C2(N,M ;T, ǫ) can each be identified with the norm of a
certain matrix, meaning that they can be computed explicitly. These expressions were used to obtain
the numerical results in Figures 11 and 12 (computations were carried out with additional precision to
avoid effects due to round-off).

With the above results in hand, we can now explain the effect of oversampling on the constants
Ci(N, γN ;T, ǫ). Observe that, for fixed T ,

c(γ;T ) → 1, d(γ;T ) → E(T ), γ → ∞. (5.19)

Thus, increasing the oversampling factor γ leads to a smaller bound in (5.17). As can be seen in Figure
11 and 12, this effect is quite dramatic. In particular, C1(N, γN, ; 2, 10−12) ≈ 104 for γ = 1, whereas
by setting γ = 2 we reduce this to the significantly smaller value C1(N, γN ; 2, 10−12) ≈ 10.

Remark 5.8 The main conclusion of this section is that one requires a lower asymptotic scaling of
M with N for the numerical equispaced FE than the exact equispaced FE. Indeed, since GN,M,ǫ is a
subset of GN , we clearly have C1(N,M ;T, ǫ) ≤ D(N,M), where D(N,M) is given by (5.4). Hence
the discussion in §5.2.1 implies that quadratic scaling M = O

(

N2
)

is sufficient to ensure boundedness
of C1(N,M ;T, ǫ) (one can make a similar argument for C2(N,M ;T, ǫ)). However, Figures 11 and 12
indicate that this condition is not necessary, and that one can get away with M = O (N) in practice.

This difference can be understood intuitively in terms of the singular values of Ā. Recall that
small singular values of Ā correspond to functions φ ∈ GN with ‖φ‖[−T,T ] ≫ ‖φ‖M . Now consider an
arbitrary φ ∈ GN . If the ratio ‖φ‖/‖φ‖M is large, then this suggests that φ must lie approximately in
the space G⊥

N,M,ǫ corresponding to small singular values. Hence, ‖φ‖/‖φ‖M cannot be too large over
φ ∈ GN,M,ǫ, and thus we see boundedness of C1(N,M, ǫ), even when D(N,M) – the supremum of this
ratio over the whole of GN – is unbounded.

5.3.2 Behaviour of the truncated SVD solution

Combining the analysis of the previous section with Theorem 5.5, we now conjecture the bound

‖f −HN,γN,ǫ(f)‖ ≤ C(γ, T, ǫ)
(

‖f − φ‖∞ + ǫ‖φ‖[−T,T ]

)

, ∀φ ∈ GN , (5.20)

where C(γ, T, ǫ) is proportional to ǫ−
log c(γ;T )
log d(γ;T ) . In particular, numerical results (Figures 11 and 12)

indicate that using T = 2 and γ = 2 gives a bound of a little over 1 in magnitude for ǫ = 10−14.
This estimate allows us to understand the behaviour of the equispaced FE in finite precision. Clearly,

when N < N2 the numerically computed extension will diverge exponentially in N whenever f has a
singularity in the Runge region R(γ;T ) (see §5.2.1). However, once N exceeds N2, one witnesses con-
vergence. Indeed, substituting the exact continuous FE into (5.20), we expect exponential convergence
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Figure 13: Error for the equispaced FE of f(x) = 1

1+100x2 . Squares correspond to the numerical solution,
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dashes correspond to the exact equispaced FE.

up to the breakpoint N1, followed by spectral convergence. Note that the maximal achievable accuracy

is of order C(γ, T, ǫ)ǫ ∼ ǫ1−
log c(γ;T )
log d(γ;T ) .

Figure 13 confirms these observations for the function f(x) = 1
1+100x2 . For γ = 1 the initial

exponential divergence is quite noticeable, however this effect can almost be completely removed by
doubling γ. Notice that a large cutoff ǫ actually gives a smaller error (since there is a smaller regime
of divergence). However, this will also limit the maximal achievable accuracy accordingly.

To summarize, we have now identified three regimes that distinguish the behaviour of HN,γN,ǫ(f):

(i) N < N2(γ, T, ǫ) ≈ − log ǫ
log d(γ;T ) . Exponential divergence/convergence ofHN,γN,ǫ(f) at rate c(γ;T )/ρ,

where ρ is as in Theorem 2.10.

(ii) N2(γ, T, ǫ) ≤ N < N1(T, ǫ) ≈ − log ǫ
logE(T ) . Exponential convergence of HN,γN,ǫ(f) at rate ρ.

(iii) N ≥ N1(γ, T ). Spectral convergence of HN,γN,ǫ(f) down to a maximal achievable accuracy

proportional to ǫ1−
log c(γ;T )
log d(γ;T ) .

Let us make several remarks. First, in practice the regime N < N1 is typically very small (recall
that N1 is around 20 for T = 2 – see §4.2.2), and therefore one usually does not witness all three types
of behaviour in numerical examples. Second, as γ → ∞, we have N2 → N1 (recall (5.19)). Thus, with
a sufficient amount of oversampling, the regime (ii) of exponential convergence will be arbitrarily small.
On the other hand, oversampling decreases c(γ;T ), and therefore the rate of divergence in the regime
(i) is also lessened by taking γ > 1. Indeed, the numerical experiments in this section indicate that
oversampling by a factor of 2 is typically sufficient in practice to mitigate the effects of divergence for
all reasonable functions.

Remark 5.9 A similar analysis of the equispaced FE, also based on truncated SVD’s, was recently
presented by M. Lyon in [20]. In particular, our expressions (5.10) and (5.20) are similar to equations
(30) and (31) of [20] (albeit slightly sharper). Lyon also provides extensive numerical results for his
analogues of the quantities C1(N,M ;T, ǫ) and C2(N,M ;T, ǫ), and describes a bound which is somewhat
easier to use in computations. The main contributions of our analysis are the scaling of the constant
C(γ, T, ǫ) in terms of ǫ, γ and T , the description and analysis of the breakpoints N2 and N1, and the
differing convergence/divergence in the corresponding regions.

5.4 The condition number of the numerical method

Having analysed the convergence of the numerical equispaced FE, we now wish to consider its condition
number

κ(GN,M ) = sup
f∈L∞(−1,1)

bf 6=0

‖GN,M (f)‖
‖bf‖

.

Here bf = {f(xn)}|n|≤M (note that this is an instance of the condition number of Platte et al [24]).
We also define κt(GN,M ) analogously to (4.19).

In Figure 14 we plot the κt(GN,γN ) against N . The results indicate numerical stability, and, as
we expect, improved stability with more oversampling. To illustrate this further, in Figure 15 we
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plot κt(GN,γN ) as a function of the oversampling parameter γ. As is evident, stability improves with
increasing γ. The rate of improvement also declines as γ increases, therefore, in most circumstances,
setting γ = 2 is typically sufficient.

The disadvantage of increasing γ is that one requires more evaluations of f . As an alternative, we
may consider varying T . In Figure 15 we also plot the stability function against T . Evidently, larger T
leads to better stability. However, the downside of this approach is worse resolution power. In practice,
unless given some additional information on the problem, a neutral choice appears to be T = 2 and
γ = 2 (recall also Remark 3.4).

The fact that larger T actually leads to better stability may at first sight be surprising. The
analysis of §3 suggests that increasing T worsens the condition number of Ā. However, numerical
stability actually appears to improve. This discrepancy can be explained using Proposition 4.3. When
T is small, the constant ck(T ) is large. In other words, extending a function periodically from [−1, 1]
to [−T, T ] with k orders of smoothness involves large derivatives for T ≈ 1. On the other hand, for
large T , such a construction need not involve such large derivatives, and hence stability improves.

Such arguments can be made precise using the analysis of §5.3 (the proof is similar to that of
Theorem 4.7 and hence omitted):

Theorem 5.10. The condition number κ(HN,M,ǫ) for the truncated SVD equispaced FE HN,M,ǫ sat-
isfies κ(HN,M,ǫ) ≤ C1(N,M ;T, ǫ), where C1(N,M ;T, ǫ) is given by (5.12).

From the analysis of §5.3.1 we conclude that κ(HN,γN,ǫ) . ǫ−
log c(γ;T )
log d(γ;T ) . In particular, (5.19) implies

that κ(HN,γN,ǫ) . 1 as γ → ∞: in other words, by oversampling sufficiently we can render the
equispaced FE completely stable. On the other hand, d(γ;T ) → ∞ as T → ∞ (for fixed γ), whereas
c(γ;T ) is bounded. Hence κ(HN,γN,ǫ) can again be made arbitrarily close to 1 by taking T sufficiently
large. This confirms the arguments given above.

5.5 Numerical examples and relation to Platte, Trefethen & Kuijlaars

In Figure 16 we consider the equispaced FE for three test functions. In all cases we use γ = 2, with T
either being fixed, or given by (2.16). As is evident, all choices of T give good, stable numerical results,
with the best achievable accuracy being at least 10−12. Moreover, we observe that larger T leads to
a slightly better best achievable accuracy, exactly as predicted in §5.4. On the other hand, larger T
means worse resolution power, as can be seen in the oscillatory example.
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Robustness in the presence of noise is shown in Figure 17. Observe that when γ = 1, noise
at amplitude δ is magnified by around 105, consistently with Theorem 5.10 (note that the constant
C1(N,N ;T, ǫ) is roughly 105 in magnitude for ǫ = 10−14 – see Figure 11). Conversely, with double
oversampling, this factor drops to around 102, again in agreement with Theorem 5.10.

Finally, we are now in a position to explain how the equispaced FE relates to the theorem of Platte,
Trefethen & Kuijlaars. First, it has bounded condition number. Second, after small regimes (whose
sizes are function independent) of possible exponential divergence and convergence, it is spectrally
convergent down to a maximal achievable accuracy on the order of machine precision.

6 Conclusions and challenges

We conclude by making the following remark. Extensive numerical results [7, 8, 10, 20, 21] have shown
the effectiveness of FE’s in approximating even badly behaved functions to high accuracy in a stable
fashion. The purpose of this paper has been to present an explanation and analysis as to why this is
the case. For the three types of extensions considered, we have shown that, whilst the computation of
the coefficients of the FE is exponentially ill-conditioned, the computation of the extension itself is, in
fact, numerically stable. Moreover, even when there is significant error in the computed coefficients,
one still obtains a spectrally convergent approximation. This is due to the facts that the FE is a frame
approximation and that, for all functions f , even those with oscillations or r:scalinglarge derivatives,
there eventually exist coefficient vectors with small norm which approximate f to high accuracy.

The main outstanding challenge is to understand the constants Ci(N,M ;T, ǫ) of the equispaced
FE. In particular, we wish to show that linear scaling M = γN is sufficient to ensure boundedness
of these constants in N , with a larger γ corresponding to a smaller bound. Note that the analysis of
§5.2.1 implies the suboptimal result that M = O

(

N2
)

is sufficient (Remark 5.8). It is also a relatively
straightforward exercise to show that if M = cN/ǫ for some c > 0, then Ci(N,M ;T, ǫ) is bounded
(this is based on making rigorous the arguments given in Remark 5.8 – we do not report it here for
brevity’s sake). Unfortunately, although this estimate give the correct scaling M = O (N), it is wildly
pessimistic: it implies that M should scale like ≈ 1016N , whereas the numerics in §5.3.1 indicate that
M = γN is sufficient for any γ ≥ 1.

One approach to establish a more satisfactory result is to perform a closer analysis of the singular
values of the matrix Ā. Some preliminary insight into this problem was given in [15], wherein it was
proved that (whenever M = N and 2T ∈ N) the singular values cluster near zero and one, and the
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transition region is O (logN) in width (much like for the prolate matrix A). Unfortunately, little
is known outside of this result: there is no existing analysis for Ā akin to that of Slepian’s for the
prolate matrix – see [15] for a discussion. Note, however, that the normal form B = Ā∗Ā, with entries

Bn,m =
sin

(n−m)π
T

MT sin
(n−m)π

MT

, can be viewed as a discretized version of the prolate matrix A. Indeed, B → A

as M → ∞ for fixed N . Given the similarities between the two matrices, there is potential for Slepian’s
analysis to be extended to this case. However, this remains an open problem.
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