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Abstract

We give a self-contained proof of the O'Nan-Scott Theorem for finite primitive permutation
groups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 B 05.

Introduction

The classification of finite simple groups has led to the solution of many prob-
lems in the theory of finite permutation groups. An important starting point
in such applications is the reduction theorem for primitive permutation groups
first stated by O'Nan and Scott (see [9]). The version particularly useful in this
context is that given in Theorem 4.1 of [2]. Unfortunately a case was omitted
in the statements in [2, 9] (namely, the case leading to our groups of type III(c)
in Section 1 below). A corrected and expanded version of the theorem appears
in the long papers [1] and [3]. Our aim here is to update and develop further
the material in Section 4 of [2]. We give a self-contained proof of the theorem
(stated in Section 2), which extends [2, Theorem 4.1], and which we have found
to be in the form most useful for application to permutation groups (see [6] and
[8] for example). Most of the ideas of the proof we owe to [1] and [2].

This work was partially supported by ARGS Grant B 84/15502.
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NOTATION. For groups A, B we denote by A.B an extension of A by B (not
necessarily split). If G, H are permutation groups on fi, A respectively, we say
that G is permutation equivalent to H if there is a bijection <p: fi —> A and an
isomorphism tp: G —> H such that {wg)<p = (u(p)(gip) for all g e G, w € fi.
Notice that if fi and A are identified via the bijection <p, then G and # consist
of the same set of permutations on fi.

1. Classes of finite primitive permutation groups

Before stating our theorem we describe various classes of primitive permuta-
tion groups. For more details of these, see [5].

In what follows, X will be a primitive permutation group on a finite set fi of
size n, and a a point in fi. Let B be the socle of X, that is, the product of all
minimal normal subgroups of X. Then B = Tk with k > 1, where T is a simple
group.

I. Affine groups. Here T = Zp for some prime p, and B is the unique minimal
normal subgroup of X and is regular on fi of degree n = pk. The set fi can be
identified with B = Zk so that X is a subgroup of the affine group AGL(k,p)
with B the translation group and Xa — X n GL(k, p) irreducible on B.

II. Almost simple groups. Here k = 1, T is a nonabelian simple group and
T < X < AutT. Also Ta / 1.

III. In this case B = Tk with fc > 2 and T a nonabelian simple group. We
distinguish three types:

III (a). Simple diagonal action. Define

W = {(ai, . . . ,Ofc).7r | Oj € AutT, •K € Sk, aj = ay modlnnT for all i,j},

where w € Sk just permutes the components a* naturally. With the obvious
multiplication, W is a group with socle B S Tk, and W = £.(OutT x Sk), a
(not necessarily split) extension of J5 by OutT x Sk- We define an action of W
on fi by setting

Wa = {(a,...,a).7r | a € AutT, TT € 5fc}.

Thus WQ S AutT x Sfc, £Q = T and n = \T\k~l.
For 1 < t < fc let Tj be the subgroup of B consisting of the fc-tuples with

1 in all but the ith. component, so that Tj S T and B = Ti x • • • x Tk. Put
T = {Ti,... ,Tfc}, so that W acts on T. We say that the subgroup X of W is
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of type IH(a) if B < X and, letting P be the permutation group Xr, one of the
following holds:

(i) P is primitive on T,
(ii) k = 2 and P = 1.
We have Xa < Aut T x P, and X < B. (Out T x P). Moreover, in case (i) B is

the unique minimal normal subgroup of X, and in case (ii) X has two minimal
normal subgroups Xi and T2, both regular on fi.

III(b). Product action. Let H be a primitive permutation group on a set F,
of type II or III(a). For I > 1, let W = HWTSI, and take W to act on fi = r '
in its natural product action. Then for 7 € F and a = (7 , . . . , 7) G fi we have
Wa = H~,wrSi, and n = |F|'. If K is the socle of H then the socle B of W is
A"', and Ba = (KJ1 jfe 1.

Now W acts naturally on the / factors in Kl, and we say that the subgroup
X of W is of type III(b) if B < X and X acts transitively on these / factors.

Finally, one of the following holds:
(i) H is of type II, K = T, k = I and B is the unique minimal normal subgroup

of X,
(ii) H is of type III(a), K = Tkll and X and H both have m minimal nor-

mal subgroups, where m < 2; if m = 2 then each of the two minimal normal
subgroups of X is regular on fi.

III(c). Twisted wreath action. Here A" is a twisted wreath product Ttwr^P,
defined as follows. (The original construction is due to B. H. Neumann [7]; here
we follow [10, page 269].) Let P be a transitive permutation group on { 1 , . . . , k}
and let Q be the stabilizer Pi. We suppose that there is a homomorphism
<p:Q -+ Aut T such that Im cp contains Inn T. Define

B = {f:P^ T\f(pq) = f(p)*M for all p e P, q £ Q}.

Then B is a group under pointwise multiplication, and B = Tk. Let P act on
Bby

f{x) = f{px) iovp,x€P.

We define X = T twr^, P to be the semidirect product of B by P with this action,
and define an action of X on fi by setting Xa — P. We then have n = \T\k, and
B is the unique minimal normal subgroup of X and acts regularly on fi.

We say that the group X is of type III(c) if it is primitive on fi. (Note that the
primitivity of X in the above construction depends on some quite complicated
conditions on P which we do not investigate here.)

REMARKS. 1. The classes I,..., III(c) are pairwise disjoint; this is clear from
the differing structures and actions of the socles B on fi.
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2. Although III(b) is the only case where X is described as a subgroup of a
group with a product action, some of the groups of other types are subgroups of
a wreath product Sa wr Sb with product action on Q (and n = ab, a> l,b> 1);
these are

(i) groups of type I where Xa is imprimitive as a linear group, b divides k and

(ii) groups of type III(c), with a = \T\ and b = k; in this case X is contained
in the wreath product Hv/rSk, where H = T x T is of type III(a); note that
here the socle of i / w r S * is isomorphic to B x B.

3. Although groups of type III(c) are the only groups described as twisted
wreath products, various primitive groups of types I, III(a) or III(b) may also
be nontrivial twisted wreath products as abstract groups. The distinguishing
feature of III(c) is the existence of a unique nonabelian regular normal subgroup.

4. A full discussion of the permutation isomorphism classes of type III(a)
groups is contained in [4].

2. The theorem and its proof

THEOREM. Any finite primitive permutation group is permutation equivalent
to one of the types I, II, III(a), III(b) owdlll(c) described in Section 1.

PROOF. Let G be a primitive permutation group on a finite set fl of size n,
let a € fi, and let M = soc G, the socle of G.

Let J be a minimal normal subgroup of G. Then J is transitive on fi. The
centralizer CG{J) is also a normal subgroup of G. If CG(J) ^ 1 then CG(J) is
transitive on fi, whence J and CG{J) are both regular on fi; and J and CG{J)
are equal if and only if J is abelian. Here J and CG(J) are minimal normal
subgroups of G and there are no further minimal normal subgroups as such
subgroups would centralize J. Moreover J and CG{J) are isomorphic as they
are right and left regular representations of the same group. If on the other hand
CG{J) = 1 then J is the unique minimal normal subgroup of G. Thus in either
case M = JCG(J) = Tt x • • • x Tfc with k > 1 and H =* T for each t, where T is
a simple group.

If M is abelian then G is of type I, so assume that M is nonabelian. If k = 1
then G is of type II; the fact that Ma ^ 1 here will be shown at the end of the
proof. Assume then that A: > 2. In this case G permutes the set {Ti,... ,
and since Ga is maximal in G,

(1) Ma is a maximal proper GQ-invariant subgroup of M.

For 1 < t < k let pi be the projection of M onto 7\.

https://doi.org/10.1017/S144678870003216X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003216X


[5] Primitive permutation groups 393

Case 1. First suppose tha t Pi(Ma) = Ti for some i. Then it follows from (1)
that pj(Ma) = Tj for all j = 1 , . . . , k and so Ma is a direct product D\ x • • • x £)j
of full diagonal subgroups £>, of subproducts F L e / ^ i where the 7* parti t ion

Choose notation so tha t I\ = { 1 , . . . , m } (so m > 2). By (1) GQ is transitive
on {Di,. •••,Di) and hence each Di involves precisely m of the factors Ti, so A; =
Im. Let P be the permutation group induced by G on the set T = {Ti , . . . , T*}.

Assume first tha t 1 = 1. If P preserved a nontrivial parti t ion of T then the
subgroup Y of all elements of M constant on each block of the partition would
be Ga-invariant with Ma < Y < M, contradicting (1). Thus P leaves invariant
no nontrivial partition of T , and so either P is primitive o n T , o r P = l,A; = 2
and G has two minimal normal subgroups. In either case we show tha t G is of
type III(a) as follows. First we claim tha t up to permutation equivalence we can
identify M with ( InnT)* so that

For let M = (InnT)k and let D - {(i,..., i)\i G InnT} < M. Let E be another
diagonal subgroup of M; thus

E = {(t*1,... ,«*'*-I
)t)|t € InnT}

for some <pu.. .,<pk-i € AutT. Define <p: (M : D) -+ (M : E) (where (M : L)
denotes the set of right cosets of a subgroup L in M), and rp € AutM by

where ij € InnT for 1 < j < k. Then for u 6 (M : D) and m E M, we have
(ujm)ip = (vtp)(mip). Thus the actions of M on (M : D) and on (M : E) are
permutation equivalent, as claimed. Now the full normalizer of M in Sym(n) is
M.(OutT x Sk), and hence Gn is permutation equivalent to a subgroup of Wn,
where W is as described in III (a).

Now let / > 1 and set K = Ti x • • • x Tm and N = NG(K). It follows from
(1) that D\ is a maximal iVQ-invariant subgroup of K. For L < N denote by L*
the group of automorphisms of K induced by L by conjugation, so that L* =
LCG{K)/CG(K). Since N contains M, we see that N is transitive on fl and so
N = MNa. Hence N* = K*N£. Let Y be a maximal subgroup of N containing
NO,CG(K). Then Y (1K is an JVQ-invariant subgroup of K containing £>i, and
by maximality of Z>i we have YnK = Di. Thus Yf\M = D\ x T m + i x • • • xTfc.
Also Y = (YnM)Na so that Y* = D^N* = N*, and hence Y = NaCG{K), that
is, NC,CG{K) is a maximal subgroup of N. Set H = N* and let F be the coset
space (H : N*). Then H has socle K* ~ K and H is a primitive permutation
group on F of type III(a). Also |O| = |F|'.
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We now claim that Gn is permutation equivalent to a subgroup of
in its natural product action on Tl, hence to a group of type III(b)(ii) (the
transitivity of G on the / factors in Kl follows from primitivity). To see this,
let Z = {gi,...,gi} be a right transversal for Na in Ga and for N in G, such
that Df = Di for 1 < i < I. Write Ki = K9i (1 < i < I), so that G permutes
the set {Ki,...,Ki}. For g € G, write g = ngg with g € R. and ng € N.
Writing elements of HV/TSI in the form (hi,...,hi)w with hi € H, ir € Si and
7T permuting the components hi naturally, we define a map p: G —* H wr Si by

p:g i-+(aj,...,a,*)7r (ff e G),

where ir is the permutation induced by g on {/ifi,..., Ki), for 1 < i < I we have
a« = ffiffCffi?)"1! and oj denotes the automorphism of K induced by conjugation
by a,. Then p is a monomorphism; moreover, since gi G Ga for all i, we have
Gap < JV* wr Si, the point stabilizer in the natural action of H wr Si on Tl. Since
|fi| = |F|', identification of G with its image Gp gives the required embedding of
G in HV/TSi, acting naturally on Tl. This proves our claim.

Case 2. Now suppose that Ri = Pi(Ma) is a proper subgroup of Ti for each
i = l,...,fc. Since each Ri is an ^(TD-invariant subgroup of Tj, it follows
from (1) that Ga is transitive on {Ti,...,Tk} and hence for i — 1, • • • , k, Ri is
the image of Ri under an isomorphism Ti —* Ti. Since Ri x •• • x Rk is Go-
invariant we have Ma = Ri x • • • x Rk- Also Ri must be a maximal Noa{Ti)-
invariant proper subgroup of 7\. Set N — NG(TI) and for L < TV denote by
L* the group of automorphisms of T\ induced by L by conjugation, so that
L* = LCG(TI)/CG{TI). Since N contains the transitive subgroup M, we have
N = MNa. Hence N* = TfN*.

Case 2(a). Suppose that I? < N*. Thus N* = T^N* = N*. If i?x # 1 then

"a) = <flfa) < Ga
a

which is not so. Hence Ri = 1 and so Ma = 1. Define <p:Na -+ AutTx to
be the natural homomorphism (that is, for n E Na and t € Ti, ^j(n): < i-> tn),
so that kerp = CG{T{) D Ga and Im£> = iV* contains InnTx = Tj*. Write
Z = p-^InnTi) . Also let Y be the kernel of the action of G on {Ti,... ,Tk}.

We show first that Y — M. Now Ya ~ YaM/M is isomorphic to a subgroup of
(OutTi)fc and hence is soluble by the Schreier "Conjecture". Also Z/C ~ Tx is
simple, where we write C = ker^>. Since YaC and Z are both normal subgroups
of NQ we therefore have [Z/C,YaC/C] = 1 in JVa/C. Thus yQ < C, that is,
Fa centralizes T\. Similarly Ya centralizes T, for all i and hence Ya = 1. Thus
y = M.

Set P = Ga and Q = iVQ so that P acts faithfully and transitively on
{Ti,... ,Tfc} and G = MP. Abusing notation slightly, take P to act on / =
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{1 , . . . , k} by Tf = Tip (i El,pEP). We show finally that there is an isomor-
phism of G onto the twisted wreath product T\ twrip(P

I) (defined in Section 1)
which maps M onto the base group B and Ga — P onto the top group P1, so
that G is of type III(c). For 1 < i < k choose c, E P such that T,e< = Ti (so
that {ci, . . . , Cfc} is a transversal for Q in P). Now each m E M is of the form
m = Ilt=i a« with aj E Ti and hence o '̂ € Ti for 1 < i < k. We define a map d
from G into Ti twr^, P by

i?: mu i—• i?mi i

for m = fj a* € M and u E P, where i?m: P —• Ti is the map given by J?m(cjq') =
a1iQ for 1 < i < k and q E Q. Clearly t?m belongs to the base group B of
Ti twr^, P1, and i? is 1-1 and hence bijective. To see that # is a homomorphism
we need to show that

Write b = Jdm. By the definition of bu in Section 1, bu(ciq) = b(uciq), which
equals b(ciu-iyiq) where j/j = c~J_iUCi E Q. Since b E B, this equals 6(c i u - i ) y ' a ,
and therefore

But this is clearly the same as i?m«(ci^), and hence #mu = (t?m)u, as required.
Thus T? is an isomorphism, and since i?(M) = B and t?(GQ) = P it follows that
G is of type III(c).

Case 2(b). Thus we may assume that Tj" ^ AT*. If F is a maximal subgroup of
./V containing NaCc{Ti) then YnTi is an A^-invariant subgroup of T\ containing
R\. By the maximality of R\ and since Y ^ N we have y D T\ — R\. Thus
7 nM = Rt x T2 x • • • x TV Also K = ( F n M ) ^ so that Y* = R^N* = N*,
and hence Y = NaCG(Ti), that is, A T Q C G ^ ) is a maximal subgroup of N. Let
H = N* and let T be the coset space (H : TV*). Then # has socle Ti* ~ Ti and
i? is primitive on F. Also |F| = |Ti : i?i| and so |fi| = |F|fc. A calculation along
the lines of the case / > 1 of Case 1 shows that Gn is permutation equivalent to
a subgroup of HvivSk in its product action on Ffc. Then G is of type III(b)(i);
for this it remains to show that Ma ^ 1. This will follow from the corresponding
assertion in the simple socle case II.

Thus suppose that T<G < AutT and Ta = 1. Then Ga is soluble by the
Schreier "Conjecture". Let Q be a minimal normal subgroup of Ga. Then Q is
an elementary abelian g-group for some prime q. Now CT{Q) — 1, since both T
and CG{Q) are normalized by Ga, and Ga is maximal in G. It follows that q
does not divide \T\. Hence Q normalizes a Sylow 2-subgroup S of T. We assert
that S is the unique such Sylow 2-subgroup. For suppose that Q normalizes Si,
where Sf = S and x ET. Then Q and Qx are Sylow ^-subgroups of NTQ(S), SO
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Q = Qxv for some y e NT{S). We have [Q, xy] < QnT = 1, so xy € CT(Q) = 1.
Hence x G NT(S) and so Si = S, as asserted. Thus Ga = NG(Q) < NG{S) and
so Ga < GaS < G, contradicting the maximality of Ga.

This completes the proof of the theorem.
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