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Abstract. The case of oblique water-entry of a rigid sphere into an ideal incompressible fluid is studied analytically 
in order to determine the hydrodynamical loads acting on the body. We consider the motion imparted to the fluid by 
an impulsively-started partially-submerged sphere under the large-impact approximation, in which the free surface is 
assumed fiat and equipotential. Asymptotic small-time expressions are derived for both the vertical and horizontal 
time-dependent added masses and analytical expressions for the hydrodynamic forces are obtained by differentiating 
these added masses with respect to the instantaneous submergence depth. The resulting expressions are also 
compared with corresponding numerical solutions and with a known solution for a two-dimensional profile. 

I. Introduction 

The problem of the initial-stage impact between a solid body and an ideal incompressible 
fluid, initially at rest, has become recently a subject of great interest (see the comprehensive 
review by Korobkin and Pukhnachov [10]). Some related problems, for example, are: the 
impulsively-started two-dimensional wave maker (Roberts [23], Joo et al. [7]) and vertical 
circular cylinder (Wang and Chwang [33]), a two-dimensional cylinder in a current (Grosen- 
baugh and Yeung [4]), the oblique water entry of a 2-D profile (Korobkin [9]) and the 
vertical water-entry of a horizontal circular cylinder (Greenhow [3]) or a spherical projectile 
(Miloh [17]). 

Most of the theoretical studies on the time-dependent impact problem have been limited 
to two-dimensional symmetrical shapes in normal entry where the powerful tool of complex 
variables may be employed. The case of an inclined water impact of a symmetric two- 
dimensional profile has been only recently discussed (Korobkin [9]). The few available 
three-dimensional examples are restricted only to vertical entries and to simple shapes such 
as cones, spheres or ellipsoids (Korobkin [8], Miloh [15]). 

The purpose of this paper is to extend the analytical solution, of the vertical water-entry 
problem of a sphere (Miloh [15, 17]), to the case of an oblique entry. In this sense the paper 
may also be considered as a three-dimensional generalization of Korobkin's [9] inclined entry 
analysis of a two-dimensional profile. Here, because of the asymmetry of the pressure field 
on the wetted body surface, there exists a horizontal drag force in addition to the vertical 
(slamming) force. Such a force may give rise to a considerable pitching (whipping) moment 
about the center of gravity of an axisymmetric elongated projectile during early stages of 
water impact. It is well known that the hydrodynamical loads on a blunt rigid body 
penetrating a free surface reach a maximum value at rather small values of the dimensionless 
time, where the time scale is defined as the ratio between the radius of body curvature and 
its velocity. The initial whipping moment acting on the projectile, which results from the 
horizontal drag force, usually affects the trajectory of the body and may cause, in some 
circumstances, phenomena such as broaching or ricocheting off the free surface. On the 
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other hand, most available numerical algorithms which have been developed for computing 
impact loads on water-entry bodies are inappropriate and tend to be inaccurate for very 
small body penetrations. Thus, it is useful to obtain, when possible, asymptotic small-time 
expressions for the initial impact loads, against which existing numerical codes can be 
checked. Such an expression is derived in this paper for the case of an oblique water-entry of 
a spherical-like shape. 

The analytical treatment of the inclined entry case of a rigid sphere is different in some 
respects from the related axisymmetric vertical-entry problem, given in Miloh [15]. In both 
cases it was found convenient to formulate the problem in terms of toroidal harmonics and to 
employ the Kirchhoff-Lagrange energy method rather than using a momentum approach, in 
order to calculate the hydrodynamical loads. However, the advantage of employing the 
Stokes stream function in the vertical axisymmetric case, which fortunately renders a 
closed-form solution, does not prevail in the present oblique case and for this reason the final 
solution is obtained in terms of an integral equation for the velocity potential. 

The general water-entry problem is formulated in Sec. 1, where we consider a partially 
submerged sphere in a quiescent fluid and examine the resulting flow due to an impulsively- 
started motion of the sphere. Of particular interest is the small-submergence case which may 
serve as an analytical framework model for treating the initial stage of water impact of 
arbitrary 3-D bluff shapes. The problem is postulated in terms of a small-time power-series 
expansion, in the manner of Peregrine [21], which provides a systematic procedure for 
obtaining consistent higher-order solutions. Only the first-order solution, in which the free 
surface is approximated by an equipotential horizontal surface (large-impact case) is treated 
here. A general method is proposed to calculate the hydrodynamical loads in terms of the 
time-dependent vertical and horizontal added-masses and their derivatives with respect to 
the instantaneous submergence depth (slamming coefficients). The resulting Fredholm 
integral equation of the first kind, whose solution determines the horizontal (sway) motion, 
is derived in Sec. 3 and some useful small-time approximations of this integral equation are 
presented in Sec. 4. The small-time analytic solution is compared with the full numerical 
solution of the corresponding problem in Sec. 5. Also discussed in this final section, is the 
analogy between the present 3-D asymptotic expressions and Korobkin's [9] corresponding 
solution for the inclined entry of two-dimensional profiles. 

2. General formulation 

We consider a rigid sphere of radius R entering obliquely a half-space filled with an ideal 
incompressible heavy fluid initially at rest. Let b denote the instantaneous penetration depth 
of the sphere below the undisturbed free surface and the constant vertical and horizontal 
velocities of the body centroid are denoted here by V and U, respectively. For large-impact 
velocities, viscous and surface-tension effcts may be ignored with respect to inertia (see 
discussion in Korobkin and Pukhnachov [10]) and the fluid may be assumed to be 
irrotational. The velocity field exterior to the body and the induced pressure distribution on 
its wetted surface may be described in terms of a velocity potential ~(x, y, z, t), where (x, y, 
z) is a Cartesian coordinate system with origin at the undisturbed free surface, with z 
pointing upward in the direction opposite to gravity. Using R and W = ( U  2 + V2) 1/2 as the 
reference length and velocity, the non-dimensional formulation of the nonlinear boundary- 
value problem is 
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(1) 

where z = r/(x, y, t) denotes the free-surface elevation, 6 = tan I ( U / V )  is the incidence 
angle between the total velocity vector and the undisturbed free surface, F = W / ( g R )  1/2 is 
the Froude number,  V denotes the fluid domain and S represents the submerged spherical 
surface. 

We now seek a solution of the nonlinear problem given in (1) which is valid at early stages 
of impact. Towards this goal we formulate an initial boundary-value problem by postulating 
an asymptotic small-time power-series expansion for both the potential and the free-surface 
elevation (Peregrine [21], Chwang [1], Roberts  [23]), i.e. 

(2) 
4) = 4)o(X, y, z; b) + t4)l(x, y,  z; b) + t24)2(X, y,  Z; b) + "'" 

rl = trl~(x, y; b) + t2rl2(x, y; b) + ' " .  

Here 4)o denotes the velocity potential induced by instantaneously introducing a moving rigid 
sphere (submerged to depth b) into a quiescent fluid. 

The leading-order solution is then found by substituting (2) into (1) and letting t -+0 ,  
which gives 
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The next-order solution, valid for large Froude numbers, is given by 
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and higher-order solutions of (1) may be obtained in a similar way. Following such an 
asymptotic solution, the leading gravity-dependent term will enter into the calculation only 
in the expression for the third-order velocity potential term. For a comprehensive discussion 
on the range of validity of the small-time expansion and its rate of convergence, the 
interested reader is referred to Tyvand [29]. 

The boundary-value problem defined in (3) is identical with the classical formulations of 
the high-impact water-entry problem (Von Karman [31], Wagner [32], Sedov [25], Trilling 
[27]). In deriving (3), it is argued in these works that the impact occurs during a very short 
time interval, and may therfore be considered as an impluse. It is also known that in cases of 
impulsive motion, the dynamic pressure is proportional to the velocity potential and for this 
reason the free surface may be considered as equipotential surface. The so-called splash 
contour, or the wetting correction, here denoted by ~71, may then be determined from the 
second-order solution (4) in terms of ~b 0 (see for example the axisymmetric solution of Miloh 
[15]). 

It should be noted that applying the more rigorous Lagrangian approach for treating the 
initial-stage water-entry problem (Korobkin and Pukhnachov [10]), leads to the same 
first-order problem as formulated in (3), from which analytic expressions for the small-time 
slamming coefficient may actually be derived. One way of deriving the hydrodynamic loads is 
by carrying out a pressure integration over the submerged part of the body (Pukhnachov and 
Korobkin [22]). However, a more direct approach for calculating the hydrodynamic forces in 
the present case is by using the generalized Kirchhoff-Lagrange equations (Miloh and 
Landweber [18]), which express these forces in terms of the fluid kinetic energy. 

Thus, within the realm of the first-order problem, where the free surface may be replaced 
by a flat equipotential surface (3), we note that the corresponding dynamical system, 
comprising of body and fluid, is uniquely determined by specifying the initial submergence 
depth b and the velocities U, V (which may be also considered as generalized single 
coordinate and two generalized velocities). For the constant-velocity oblique water-entry 
case, we may therefore express the vertical and horizontal forces as (see also Lamb [11[, pp. 
187-192, and Miloh [16]) 

F ~ = - ~  ~ , Fz= dt O-V + 0---b' (5) 

which may also be written in dimensionless form as 

F~ 1 d C  1 
f ~ -  zrpR2W 2 -  2 d(b/R~) sin 26 ,  

fz - F~ 1 d C 1 1 d C 2 
7rpR2W 2 - 2 d(b/R-----) c°s2c$ 2 d(b/R------) sinZc$ " 

(6) 

Here 6 denotes the velocity angle of incidence (6 = 7r/2 for the vertical entry), and T is the 
kinetic energy 

T =  ½rrpR3(C,(b)U 2 + C2(b)V2) ,  W 2 = U 2 + V 2 , (7) 

given in terms of the horizontal and vertical added masses, 
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1 fs4,~l)°X 1 fs4~2)°z 
C I - ' 7-r R 3 -~n " 7rR3 ~ d S  C 2 = dS (8) 

Thus, in order to determine the hydrodynamical loads acting on the penetrating sphere, it is 
necessary to compute the derivatives of both the vertical and horizontal added masses with 
respect to submergence depth b in the limit as b ~ 0. Employing numerical techniques for 
the evaluation of this limit is not an easy task and for this reason asymptotic analytical 
expressions may be found to be very useful. An asymptotic small-time expansion for the 
vertical slamming coefficient d C e / d ( b / R  ) has been recently derived in Miloh [17], and here 
we complete the solution for the oblique water-entry problem by providing the necessary 
small-time asymptotic expansion for the horizontal slamming coefficient d C 1 / d ( b / R  ). 

3.  S o l u t i o n s  in t e r m s  o f  t o r o i d a l  h a r m o n i c s  

In order  to solve the boundary-value problem formulated in (3), it was found convenient to 
adopt a triply-orthogonal toroidal coordinate system (77, 0, ~0), which is related to the 
Cartesian system (x, y, z) by 

a sin 0 a sinh r 1 • 
z = cosh ~ - cos 0 ' x + iy -- cosh 7 / -  cos 0 elO ' (9) 

where a is a characteristic parameter  which is equal to the radius of the contour of 
intersection of the sphere and the free surface. We also note, following Moon and Spencer 
[20], that 7/= const (0 ~< ~t ~< 2) denote toroidal surfaces, 0 = const ( -  7r ~< 0 ~< 7r) are spheri- 
cal bowls and qJ = const (0 < ~0 < 2~') represent half-planes. Thus, the submerged portion of 
the sphere is given by 0 = 00 = const, where 

a = R sin 00 b = 2R cos 2 0° (10) 
' 2 ' 

with b again denoting the instantaneous vertical submergence-depth below the undisturbed 
free surface. 

It is known that a general solution of the Laplace equation may be expressed in terms of 
exterior toroidal harmonics in a form which is only partially separable. Hence,  following 
Sneddon [26], an arbitrary exterior potential function which decays at infinity, may be 
represented as 

~b(r/, 0, ~) = (cosh 7 / -  cos 0) 1/2 e imq' f o  [am(P) cosh pO + [3m(p) sinh p O ] K ~ ( c o s h  ~q) dp  , 

(11) 

m where o~ m and ~m are some complex-valued unknown coefficients and Kp denotes the 
Legendre polynomial of the first kind of order  - 1 + ip and degree m, i.e. 

Kp(COsh rt) = Pm I/e+ip(COsh n)"  (12) 
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Thus, since the surface z = 0 is being represented now by 0 = 0, equations (3) and (11) 
suggest that 

4~01)(T/, 8, ~; 00) = a cos 0(cosh n - cos  8)  1/2 f0 ~ 
sinh pO 

A(p; 8o)Klp(cosh~l) cosh P~---~0 dp (13) 

represents the horizontal velocity potential with Klp(cosh ~/)= (d/dT1)Kp(COsh ~/), and that 
the vertical potential is similarly given by 

~b~2)(n, O, qJ; 8o) = a(cosh n - cos  0 )  1/2 fo ~ 
sinh pO 

B(p; Oo)Kp(cosh ~?) cosh p ~  d p ,  (14) 

where A(p) and B(p) are some unknown real coefficients. The particular representation 
given in (13) and (14) automatically satisfies the field equation, the linearized free-surface 
condition and renders the proper decay at infinity. The only boundary condition not yet 
satisfied is the no-flow condition across the wetted part of the body, which, when applied, 
provides a closure integral equation for determining these coefficients. 

Substituting (9) and (13) into (3) and recalling that the normal derivative on S is 
proportional to a partial derivative with respect to 0 evaluated at 0 = 0 o, yields the following 
integral relationship 

f o  1 sin80 f o  pA(p;Oo)Klp(c°shv)dP+~ cosh n _ cos 8 ° A(p;8o)Klp(c°shT1)tanhp8odp 

sinh r/sin 00 
= (cosh 7 / -  cos 80) 5/2 " (15) 

Next, we employ a particular form of the Four ier -Mehler  integral transform (Robin [24], 
Sneddon [26]) 

f(cosh rl) = f~ p tanh(pTr)Kp(cosh rl) dp fo Kp(cosh "q')f(cosh V')sinh ~/' d r '  (16) 

together with the relationship (Miloh [15]) 

(cosh 7 / -  cos O) 1/2 = V~ sech(p~-) cosh[p(Tr - O)]Kp(cosh rl) dp , (17) 

and substitute both (16) and (17) into (15). Making use of the orthogonality properties of 
the toroidal function Kp, finally leads to the following Fredholm integral equation of the 
second kind for A(p) :  

A(p; 00) + ~ sin 80 tanh p~r 
4X/2 sinh p(~" ' 8o) 

A(q; 8o)I(p, q; 80) tanh q8 o dq - 3 cosh p~r 
(18) 

where 

f ~   ,(cosh ~')Kq(COsh ~')  
I(p, q; ~) = J o  sinh~'  d~ ' .  cosh ~ ' -  cos 

(19) 
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A similar integral equation may also be obtained for B(p ) ,  representing the axisymmetric 
motion (14), by substituting (16), (17) and (9) into (3), which eventually gives 

B(p; 0o) + ~ sin 0 o tanh prr B(q; Oo)I(p, q; 0o) tanh qO o dq 

3 cosh p ~  
[cot 0 o sinh p(Tr - 00) - 3p cosh p(rr - 0o) ] . (20) 

Once A(p) and B(p) are determined by solving (18) and (20), the added-mass coefficients 
for both the horizontal and vertical motions are evaluated by substituting (13) and (14) into 
(8), which yields (Appendix A) 

io( ) C1(0°) = T sin30° p2 + A(p; 00) sinh p(~r - 00) sinh p~" tanh pO o dp, (21) 

and 

f C2(0o) = ~ -  sin300 [2p coth p(rr - 00) - cot OolB(p; 0o) 
sinh p(~r - 00) 

sinh p~r tanh pO o dp. 
(22) 

It is important to note that there exists an alternative analytic expression for the 'heave' 
added mass, (22) which does not require the solution of an integral equation. Such an 
expression is obtained by formulating the axisymmetric vertical motion in terms of a Stokes 
stream function rather than a velocity potential. The resulting Dirichlet-type boundary-value 
problem (instead of a Neumann type), may then be solved exactly (Miloh [15]) yielding 

cosh2p(~- - 00) 
8 1 )  [3 tanh P0° - tanh P ( ~ -  0°)] sinh(2p~-) d p .  c2(oo)= g sin3Oo f] (p2 + (23) 

However ,  it is rather unfortunate that such an approach cannot be used when solving for 
the horizontal (sway) motion and that the computation of the corresponding added mass, 
using (21), involves first the solution of a Fredholm integral equation (18). A general 
procedure for solving such an integral equation has been recently outlined by Mclver [13] in 
his study of the sloshing frequencies of a partially-filled spherical container. The proposed 
numerical scheme is rather involved and is based on the representation of the toroidal 
functions in terms of the Gauss hypergeometric functions (Gradshteyn and Ryzhik [2], p. 
1039). These functions were evaluated by approximating them in terms of the Chebyshev 
polynomials, using Luke's  [12] algorithm. Problems of very slow convergence were en- 
countered for small submergence depth, even when using Shank's transformation in order to 
accelerate the convergence. Since our interest lies mainly in the case of small submergence, 
it is next demonstrated how asymptotic analytic solutions of the integral equation (18) may 
be obtained without actually having to solve it numerically. 

4. The small-depth approximation 

We consider here the initial-stage of an oblique water impact with constant velocity W and 
angle of incidence 6. The instantaneous vertical submergence below the undisturbed free 
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surface, varies linearly with time t according to 

b(t) = Wt sin 6 . (24) 

Let us next define a dimensionless time r by 

r = b ( t ) / R  = 2 cos 2 0° 1 2 2 - = 5  e + O ( e 3 ) ,  (25) 

where e is a small parameter defined in terms of Oo(r ) as 

e(r) = ~ - O o ( r ) ,  (26) 

which follows from the geometrical relationship (10). 
We seek an asymptotic solution of the integral equation (18), valid for small , ,  in the form 

A ( p ;  e) = e A ~ ( p )  + e2A2(p) + . . .  (27) 

since just prior to first contact A ( p ;  0)---~ 0. Substituting (27) into (18) and collecting terms 
of O(e), yields 

4V~ p (28) 
A I ( p ) -  3 cosh pTr 

The next-order term in (27) is then obtained from (18) as 

2X/2 (~  q sinh qTr 
A z ( p ) -  ~ -  tanh p~r J0 coshZq~ - I ( p ,  q; ~r) d q ,  (29) 

which, after some elaborate transformations (see Appendix B), renders 

A z ( p  ) _ X/2 sinh p~- 
3 (pZ + 1/4) coshZp~r . (30) 

In order to determine the 'sway' added mass, we substitute (28) and (30) into (27) and 
(21), which finally leads to (Appendix C) 

CI(E ) = _ 8 23 
7r 45 2167r e . (31) 

Using the relationship between e and the dimensionless submergence • (25), we obtain 
from (31) the following two-term asymptotic expansion for the sway slamming coefficient 

d C , ( r ) -  1 dC~(e) _ 1 / 8  3 
dr  e de 7r ~ e  - - -  

23 ) 16V~ 23 
367re4 = _ _  3 / 2 _ _ _  2 97r r 97r2 r + 0(r5/2) .  (32) 

A similar small-time expansion may be also found for the heave slamming factor by letting 
e = ~ - -  00~ 1 in the added-mass expression (23), and by differentiating the resulting 
expansion with respect to the submergence depth b, thus following Miloh [17] it is shown 
that 
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dC2(7- ) _ 4V~ 
dr 7r 

1/2 - -  r - 1.19r - 1 .057-  3/2 + 0 ( 7  "2) , (33) 

implying that the vertical slamming coefficient varies for small r like ,].1/2, reaching a 
maximum of 0.47 at r - 0 . 2 1 ,  in agreement with the analytical solution of Miloh [15]. The 
first-order asymptotic term in (33) has been also obtained by Pukhnachov and Korobkin [22] 
by using a Lagrangian approach and employing a pressure integration. Experimental results 
for the early stages of vertical water impact of a rigid sphere (Moghisi and Squire [19]) were 
also found to correlate very well (when introducing a wetting correction) with the theoretical 
asymptotic prediction (33) (Miloh [17]).The corresponding asymptotic expression for the 
horizontal drag (32) has not been considered before and it is given here for the first time. 

5.  D i s c u s s i o n  a n d  c o n c l u s i o n s  

The horizontal drag force experienced by a sphere during an oblique water entry, varies 
initially as r 3/2 (32), which exhibits a somewhat stronger dependence on the dimensionless 
depth r than the corresponding two-.dimensional case, where the horizontal force was found 
to vary linearly with r (Korobkin [9]). It follows also from (6) that the presence of a 
horizontal component of the velocity always tends to reduce the maximum vertical slamming 
loads; a conclusion which has been also demonstrated numerically by Trilling [27], and 
experimentally by Troesch and Kang [28] for the sphere inclined-entry problem. For 
example, for an entry angle of 45 ° , the maximum vertical slamming load, which in the case of 
normal impact occurs at r - -0 .2 ,  is only 85 percent of the corresponding value for a pure 
vertical entry with the same vertical velocity (see Fig. 7 in Trilling [27]). We may also 
conclude that to O(r) and for moderate angles of incidence, the vertical slamming force is 
almost unaffected by the horizontal velocity and the angle of attack and may be thus 
obtained by solving only for the vertical entry problem. A similar conclusion has been also 
obtained for a two-dimensional entry but there the range of validity of the small-time 
expansion was found to be smaller (when compared against the present 3-D case) and is 
correct only to O(r 2) (Korobkin [9]). Nonetheless, the horizontal drag force acting on the 
sphere solely depends on the solution for the horizontal motion, and is given in terms of the 
derivative of the horizontal added-mass coefficient C 1 with respect to the instantaneous 
submergence depth. 

In order to numerically determine the variation of the sway added-mass with submer- 
gence, one has to solve the integral equation (18) and substitute the results in (21). This 
integral equation has been solved numerically by using McIver's [13] procedure for evaluat- 
ing the kernel function I(q, p; 00) for 7r > 00 >0 ,  which covers the whole range of depths 
starting from first contact ( r = 0 )  to full submergence ( r = 2 ) .  Once Ci(0o) has been 
calculated, the horizontal slamming coefficient 

dCl(7-) dC,(Oo) 
- sin 00 - -  (34) 

dr d00 

is determined from (25) by numerical differentiation. The analytical results thus obtained 
were also compared with the full numerical solution of a boundary-value problem defined in 
(3), obtained by distributing singularities (sources) on the wetted surface of the spherical 
bowl and by determining their strength by solving a Fredholm integral equation of the 
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second kind. These two methods were found to render almost identical results (depending on 
the mesh size selected), but the first method of solving directly the integral equation (18) was 
much more efficient in the sense that it does not involve any surface integration over the 
body wetted part, which becomes rather problematic for small submergences. 

The numerical results thus obtained for the sway added mass and for the horizontal drag 
coefficient, are plotted in Figs 1 and 2, respectively. Two limiting cases for which an exact 
solution exists may be readily confirmed. The first is the sway added-mass coefficient of a 
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totally submerged sphere, tangent to a horizontal equipotential surface, given by A1(2 ) = 

0.4198 (Miloh [14]). The second is the infinite-frequency limit of a half-submerged swaying 
sphere, which following Hulme [6] is given by AI(] ) =0.2732. Note that the added-mass 
coefficients A i (i = 1, 2) are here defined with respect to the submerged volume of the sphere, 
given by ½~'R3(2 + 3 cos 00 -cos300). Thus the relationship between A i and the coefficients 
C i, defined in (7) and (8), is 
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Fig. 3. Comparison between the exact (full line) and the asymptotic (broken line) small-depth values for the 
slamming coefficients: a) vertical case; b) horizontal case. 
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Ai(T ) = 3(3,r2 _ ~ . 3 ) - ] C / T ) .  (35) 

The  asymptot ic  small-time expression for the horizontal  drag coefficient (32) is plotted 
against the exact solut ion in Fig. 3, and it is shown that it may serve as a reasonable  
approximation in the range of  ~-~< 0.3,  with a maximum error of  less than 8 percent.  Also  
shown in the same figure is a comparison be tween  the asymptotic  expans ion  for the vertical 
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slamming force (33), and the exact solution found from (23). The agreement between the 
two is almost perfect for the same range of depths. For reasons of completeness we also 
present here the plots of the added-mass and slamming coefficients, which were obtained 
analytically by Miloh [15] for the vertical motion (Figs 4 and 5). Using these figures in 
conjuction with (6) enables us to evaluate the first-order hydrodynamical loads acting on a 
spherical projectile during early stages of an inclined water-entry at arbitrary angles of 
attack. The analytic solution for the sphere oblique-entry problem thus obtained is employed 
in a subsequent paper to determine the critical conditions for the ricocheting of a spherical 
projectile off a free surface. 

Appendix A 

Substitution of (13) in (8) yields 

C1 = _  1 (~1) OX h,h+ 
~rR 3 a0 h~- dqJdr/ at 0 = 00, (A.1) 

where h, ,  h o and h ,  are the three linearizing coefficients of the orthogonal transformation 
(9), which are given by (Moon and Spencer [20]) 

h, = h o = h, /s inh r /= a(cosh r / -  cos 0) -1 . (A.2) 

Thus, because of (9), 

C1 = - sin40° f o  sinh2r/ (cosh ~---~os 00) 5/2 d r / ~  A(p)Ktp(cosh r/) tanh pO 0 dp.  (A.3) 

Following Miloh [15], we also have 

sin0 ° f0 ~ sinh2r/ d Kp(COshr/)dr/- 4X/2 (p2 
(cosh ~---co~ 00) 5/2 d-~ 3 

+ ~) sinh P ( ~ -  00) 
pg 

(A.4) 

which, when substituted in (A.3), leads to (21). 
The added mass for the vertical (heave) motion is given in a similar manner to (A.3) by 

afo4~°2)  Ozh 'h*  fo  sinhr/ 0)1/2 0 ( sin0 ) 
C2-  R 3 O0 h o dr/=-sin300 ( cosh r / - cos  0--0 cosh77-cos0  dr/ 

x fo x B(p)Kp(cosh r/) tanh pO o dp ,  at 0 = 0 o . (A.5) 

Using the following identity (Robin [24], p. 170) 

(~ Kp(cosh r/) sinh r/ = 23/2 sinh p(Tr - 00) 
sin 00 (cosh---~ ~ cos 0 ~  -2 dr/ sin--ff p-~ J0 (A.6) 

in (A.5), the latter reduces to (22). 
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Appendix B 

Substitution of (19) in (29) yields 

2X/2 f f  q sinh q~" f0 = gp(cosh 'lT')gq(cosh '0') 
A2(p)  = - -- if-  tanh pzr dq r/' sinh r/' (B.1) cosh2qzr cosh + 1 dr/ ' .  

In order to evaluate the above integral we employ the following Mehler formula for the 
toroidal function (Hobson [5], p. 451) 

Kq(cosh "r/) = __V~ coth qzr sin qu du 
zr (cosh u - cosh r/) 1/2 ' (B.2) 

which, when substituted in (B.1) yields 

fo  fo° f :  Kp(cosh ~7') sinh r/' 4 q sin qu dq , 
A2(p)  = - ~  tanh p~" co-~ q~r (cosh r l - ; + ~ u C c ~ s s h  ,)1/2 du drl' 

u 
sinh ~ du 

- 67r dr/' 
cosh z 2 cosh 2 u ~/, ~,/2 --  c o s h  2 ~ - /  

Kp (cosh ~1') sinh ~1' 
- - - -  tanh p~r cosh ~1' + 1 

since (Gradshteyn and Ryzhik [2], p. 525) 

(B.3) 

u 

sinh ~ (B.4) f~ q sin qu d q -  1 
cos-h q~ 4 

c o s h  2 u 
2 

Using in (B.3) the following transformations: 

cosh h = cosh u/2/cosh ~ ' / 2 ,  ~ = cosh ~' (B.5) 

and the identity 

fo d A _ 1 (B.6) 
c o s h 2 A  

leads to 

2V'2 f~  Kp(/Z) d/z (B.7) 
A2(p)  - 3~- tanh p~- (/z + 1)  2 

Following Robin [24] (p. 168), we have for arbitrary ]v[ ~< 1 

+---~ cosh p-----~ Kp(v), (B.8) 

o r  
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fl ~ Kp(Ix) d t z -  rr d (/x + v) 2 cosh pTr d---v Kp(v) .  (B.9) 

Recalling that (Robin [24], p. 150) 

Kp(v) = 1 + ~ (4p2 + 1)(4p2 + 3 ) . . .  [4p 2 + (2m - 1) 2] 
m = l  23re(m!)2 

(1 - p)m, ( B . 1 0 )  

o n e  g e t s  

lim d Kp(v) = 4p2 + 1 (B.11) 
~ ,  ~ 8 ' 

which, when substituted in (B,7),  finally leads to (30). 

Appendix C 

A two-term expansion of the sway added-mass is obtained by substituting (28) and (30) into 
(21) and (27), which yields 

32 5 f )  p2(p2 + 1/4) 8 6 f  O p(p2 _jr 1/4)2 sinh prr 
C~(e) = ~-  e coshZp~r d p -  ~ e cosh3plr d p .  (C.1) 

Integration by parts of the last integral in (C.1) gives 

32 5foP2(p2+1/4) 4 6fo (p2+l /4 ) (p2+4p+1/4)  
C~(e) = ~-  e cosh2plr dp - ~ e cosh2plr d p .  (C.2) 

Following Gradshteyn and Ryzhik [2], we use in (C.2) 

~ v--1 4 

P d p =  ( 1 - 2 2  ~ ) F ( v ) f f ( v - 1 )  
cosh2,n-p (27r) ~ 

(C.3) 

where v is an arbitrary integer, F is the Gamma function and ~" denotes the Riemann zeta 
function. Substitution of (C.3) in (C.2) leads to (31). The above relationship may also be 
used to derive the asymptotic two-term expansion of (23) as given in (33). 
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