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ABSTRACT

Context. The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances
with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to
drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the
collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets
on circular orbits.
Aims. We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses
and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters.
Methods. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravita-
tional influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet.
Results. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to
the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the
resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity
of less than than 0.1 in order to keep the resonant clumps visible.
Conclusions. This numerical work extends previous analytical studies and provides a collection of disk images that may help in
interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain ob-
servable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how
planetary systems remain in a suitable configuration to reproduce the observed structures.
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1. Introduction

Since the first direct imaging of a debris disk around β Pictoris
by Smith & Terrile (1984), a dozen other optically thin dust
disks have been spatially resolved around nearby main-sequence
stars showing an infrared excess (Kalas et al. 2007; Schneider
et al. 2006, and references there in). The images often reveal
asymmetric structures and clumps, interpreted as the signature
of gravitational perturbations. A planet immersed in a debris
disk usually produces structures such as a gap along its orbit, by
ejecting particles during close encounters, or density waves (e.g.
a one-arm spiral), by modifying the precession rate of the dust
particles (Wyatt 2005a). However, such structures cannot explain
the observations of clumpy, non-axisymmetric disks (Augereau
2004; Meyer et al. 2007), and resonant mechanisms with unseen
planets have been proposed to account for the observed asymme-
tries (Ozernoy et al. 2000; Quillen & Thorndike 2002; Kuchner
& Holman 2003; Wyatt 2003). A particle belongs to a mean mo-
tion resonance (MMR) when the particle to planet period ra-
tio is a rational number, m:n with m and n integers. An MMR
is located at a semi-major axis a given by a/ap = (m/n)2/3,
where ap is the planet semi-major axis. In the Solar System,
for example, about 15% of the known Kuiper Belt objects, in-
cluding Pluto, are trapped in the 3:2 resonance with Neptune
(Chiang et al. 2007). The interesting property of MMRs for

⋆ Figures 4–7 and Tables 2–4 are only available in electronic form at
http://www.aanda.org

modeling asymmetric disks is that, as explained for example in
Murray & Dermott (2000), resonant objects are not uniformly
distributed in azimuth around a star: rather they gather at specific
longitudes relative to the perturbing planet and subsequently
form clumps. This arises from properties specific to MMRs as
a given particle trapped in a MMR with a planet undergoes con-
junctions with the planet at specific locations along its orbit. The
particles tend to gather around the most stable orbital configu-
rations that ensure that the conjunctions occur at the maximum
relative distance. The clumps, which are the result of the col-
lective effects of resonant particles, generally corotate with the
planet (Kuchner & Holman 2003), while each of these resonant
bodies has a different period from that of the planet (except for
1:1 resonant planetesimals): hence the motion of these density
waves differs from the orbital motion of the resonant particles.
However, MMRs are very thin radial structures that usually trap
a small number of particles in a given disk. Therefore, any struc-
ture due to MMRs has a high chance of being totally hidden by
the emission of the non-resonant particles, as illustrated in Fig. 1.

For clumps due to MMRs to be observed, the population of
resonant particles must be significantly enhanced by an addi-
tional physical process. Two mechanisms can account for this:
Poynting-Robertson (P−R) drag and planet migration. Dust par-
ticles that are too large to be ejected from the system by radia-
tion pressure can spiral inward into the star due to P − R drag
and to some other minor forces like stellar wind drag (e.g.
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Fig. 1. Example of a planetesimal disk without outward planet migra-
tion, nor inward P − R drag migration of the test particles, according to
our numerical simulations as explained in Sect. 2. The star and planet
locations, projected onto the orbital plane of the planet, are represented
by large red points, and the planet orbit by a thin green line. The ini-
tial planetesimal disk consists of 50 000 planetesimals distributed be-
tween 40 and 75 AU, with the surface density distribution proportional
to r−1. Although some planetesimals are trapped in MMRs with the
planet, they are not sufficiently numerous to generate spatial structures
(besides the 1:1 MMR). (See the electronic edition of the Journal for a
color version of this figure.)

Augereau & Beust 2006). In the course of its inward migra-
tion, a dust particle can be trapped into exterior MMRs with a
planet, hence increasing the contrast of their asymmetric pat-
terns (Kuchner & Holman 2003; Deller & Maddison 2005).
Planet migration, on the other hand, involves particles of all
sizes, except those ejected by radiation pressure. Many parti-
cles can be trapped in MMRs by a planet migrating outward
in the disk. Each non-resonant particle crossing an MMR has
a chance trapped and subsequently migrating, following the res-
onance (Wyatt 2003).

Several authors have studied either the effect of P−R drag, or
of planet migration, on disk structures, using different methods
(analytic, semi-analytic or numerical) and various planet param-
eters (mass and orbital eccentricity). A summary of the main pre-
vious studies is provided in Table 1. The P−R drag scenario has
been extensively studied for a wide range of parameters, while
the migrating planet scenario has been investigated only for a
planet on a circular orbit by Wyatt (2003). It is thus important
to better characterize the latter scenario in order to distinguish
which of the two dominates the morphology of debris disks.
Moreover, a number of studies (Lecavelier Des Etangs et al.
1996; Wyatt 2005b; Krivov et al. 2007) have shown that colli-
sions may prevent MMRs from being populated by P − R drag
since the collision timescale in massive debris disks might be
much shorter than the P − R drag migration timescale.

Therefore, we propose in this paper to extensively study the
planet migration scenario, using numerical modeling, by gener-
ating a synthetic catalog similar to what has been done for the
P − R drag scenario using analytical (Kuchner & Holman 2003)
or numerical studies (Deller & Maddison 2005). We extend the
pioneering work done by Wyatt (2003) in studying the influence
of the planet eccentricity on the visibility of the resonant pat-
terns. In Sect. 3, we discuss the case of a planet migrating on a
circular or low-eccentricity orbit. In Sect. 4, we extend this study

to planets on orbits with eccentricities up to 0.7. This study is
generalized to various migration rates and disk initial states in
Sect. 5, and compared to previous studies in Sect. 6. The limita-
tions of our approach are discussed in Sect. 7.

2. Numerical model

We consider a planetary system consisting of a star surrounded
by a planet and a debris disk. We address the case of large par-
ticles, which are insensitive to pressure forces (radiation, stellar
wind or gas pressure). The simulated disk is thus rather a plan-
etesimal disk than a debris disk and we only consider gravita-
tional forces. Importantly, we also do not take into account the
gravitational interactions between planetesimals as they are neg-
ligible, nor mutual collisions. Dynamically speaking, the plan-
etesimals are thus considered as test particles. A typical configu-
ration for the simulations is a Vega-like central star (2.5 M⊙) and
a planet orbit with a 40 AU pericenter at the starting time. The
initial planetesimal disk consists of 50 000 planetesimals dis-
tributed between 40 and 75 AU on circular orbits, with a surface
density distribution proportional to r−1. The disk midplane coin-
cides with the orbital plane of the planet, and the inclinations of
the planetesimals are randomly distributed within ±3◦.

In this model, the planet keeps a Keplerian orbit around the
star, or migrates at a constant rate without modification of its
eccentricity. This basic model is easy to implement and to an-
alyze, and corresponds to the case described by Wyatt (2003).
The goal of this paper is to extend this initial work to a wider
range of planet eccentricities by a numerical study. We start by
studying planets on low-eccentricity orbits (e < 0.1), and then
extend our work to larger eccentricities.

To perform our simulations we have used the symplectic
package SWIFT (Wisdom & Holman 1991; Levison & Duncan
1994), to which we have added planetary migration. To do
this, we plugged in the Wyatt (2003) prescription. This method
consists of adding an acceleration in the direction of the or-
bital motion of the planet, with an intensity equal to: v̇p =

0.5ȧp

√

GM∗/a
3
p, where G is the gravitational constant, M∗ the

stellar mass and ȧp the variation rate of the planet semi-major
axis ap. This causes a change in the planet semi-major axis with-
out modifying its eccentricity (for a planet on a low-eccentricity
orbit; for a planet on a higher eccentricity orbit the change is not
significant) or its inclination. We do not discuss here the origin
of the migration. It can be due either to the migration of a large
internal planet, or to the gravitational influence of the planetes-
imals themselves. The most important here is that we keep ȧp

constant during each simulation, generally at 0.5 AU Myr−1, to
match the Wyatt (2003) model for the Vega disk. We have used
the RMVS3 version of the SWIFT integrator, in order to have a
better modeling of the close encounters between the planet and
the planetesimals. In all the simulations, the system evolution is
followed for 40 Myr.

3. Planets on low-eccentricity orbits

The scenario of a planet on a low-eccentricity orbit is the most
studied case (see Table 1), for several reasons. First, planets were
originally expected to be on almost circular orbits because, dur-
ing the protoplanetary phase, circumstellar gas forces the planets
to remain on very low eccentricity orbits. A planet on such an or-
bit therefore corresponds to the “standard scenario”. Also, a low
or zero planetary eccentricity simplifies an analytical analysis
(Kuchner & Holman 2003). Nevertheless, it must be noted that
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Table 1. Summary of recent papers on particles trapping in MMRs with a planet.

Authors Method Planet parameters Migration Notes

Mass ratioa eccentricity

Wyatt (2003) semi-analytic 0.0003 to 3 0 planet Forced migration

Wyatt (2006) semi-analytic none This work extends the previous one

to smaller particles sensitive to radiation pressure

Kuchner & Holman (2003) analytic 0.005 to 15 0 to 0.6 particles Only resonant particles trapped

during migration due to P − R drag

Deller & Maddison (2005) numerical 0.01 to 3 0 to 0.7 particles Particles migrate due to P − R drag and solar wind

Moro-Martín & Malhotra (2002) numerical 0.05 0 particles Study of the Kuiper Belt.

This paper numerical 0.001 to 3 0 to 0.7 planet Only planetesimals disk, forced migration

a Planetary mass in Jovian mass divided by stellar mass in solar mass.

many of the extrasolar planets detected so far have high eccen-
tricities1, and we will therefore extend our study to high eccen-
tricities in Sect. 4.

Although this standard scenario has already been well stud-
ied, all its aspects have not yet been investigated. Wyatt (2003)
studied the case of an outward migrating planet on a strictly
circular orbit, while Kuchner & Holman (2003) and Deller &
Maddison (2005) studied the case of planets on fixed low-
eccentricity orbits, considering only inward dust migration due
to P − R drag. We propose in this section to numerically study a
migrating planet on a circular or low-eccentricity orbit to search
for possible differences with respect to previous studies.

3.1. General trends

Figures 2 to 5 show examples of results obtained with our
numerical model. It appears that, with a planet on a low-
eccentricity orbit, the planetesimals trapped in MMRs are nu-
merous and dominate the shape of the disk. Four important fac-
tors must be taken into account to determine which resonances
govern the aspect of the structures in the disk:

– External MMRs at large a/ap are weaker and less able to
trap numerous planetesimals than closer MMRs (Kuchner &
Holman 2003). First-order resonances (i.e. m = n + 1) with
large m values are the closest and hence the strongest MMRs.
However, MMRs near the planet are located close to each
other and compete. A resonance overlap criterion (Wisdom
1980; Duncan et al. 1989) predicts that first-order resonances
become completely chaotic when m > 0.45µ−2/7 + 1, where
µ = mp/M∗. This places a limit on the nearest resonance that
can be populated. In the Solar System, the first completely
overlapped MMR is the 17:18 for the Earth and the 4:5 in the
case of Jupiter.

– Wyatt (2003) showed that the planetary mass acts as a
threshold for the probability of capture in first-order exter-
nal MMRs: for a fixed migration rate, the probability drops
quickly to 0 below a certain planetary mass, while above this
mass the probability grows quickly to 1. For MMRs of higher
order, the transition is less sharp.

– An MMR that traps all the planetesimals at a given semi-
major axis ar stops the growth of any other resonance that
reaches this ar afterward. Resonances like 3:2 or 5:3 can thus
trap a large number of planetesimals thanks to a large enough
spatial separation, while resonances near the planet are too
close to each other to trap large populations. This shows that
any modeling of structure generation with this process must

1 http://www.extrasolar.eu

be done globally, as the various MMRs compete with each
other to be filled.

– The long term evolution of planetesimals trapped in MMRs
globally results in an increase of their eccentricity. If this ec-
centricity becomes high enough, planetesimals can become
planet-crossing. Thanks to the resonance, they are neverthe-
less phase-protected against close encounters with the planet.
But if the eccentricity grows too high, this phase-protection
does not hold any longer, due to strong modulations of the
angular velocity. Hence MMRs are limited in eccentricity
(Sicardy et al. 1993), with emax = (2/5mp)1/2. This concerns
more specifically the MMRs that are close to the planet, as the
planetesimals may easily become planet crossing. We thus ex-
pect the closest MMRs to lose planetesimals when they reach
a given eccentricity limit. This is illustrated in Fig. 3 where the
limits in eccentricity of the resonant populations are clearly
visible.

In conclusion, only a few resonances, namely the most exter-
nal of the first or second order resonances (4:3, 3:2, 5:3 and 2:1
resonance) capture most of the planetesimals. However, depend-
ing on the planet mass, the planetesimals that are not trapped in
resonances can, or not, change the shape of the disk. In our sim-
ulations, planets with a mass above 1 Jupiter mass eject almost
all the non-resonant planetesimals: the MMR structures there-
fore appear clearly. Below 1 Jupiter mass, planets cannot eject
all the non-resonant planetesimals, which can then partly hide
the MMR structures.

3.2. Circular orbits

In the circular orbit case (Figs. 2 and 3), differences appear be-
tween the simulations, depending on the planet mass:

– For an Earth mass planet, non resonant planetesimals are
still bound to the system and hide all the resonant structures.
However, a small hole at the planet location can be observed.

– For a Neptune mass planet, two clumps of equal density are
generated by the 3:2 resonance and they are located in oppo-
sition with respect to the star. It also appears that the planet is
not massive enough to capture many planetesimals in the 2:1
resonance and thus does not generate thin rings at large dis-
tances like more massive planets. Non-resonant planetesimals
create a ring inside the planet orbit.

– For a Saturn mass planet, the 2:1 resonant pattern appears in
addition to the 3:2 one. The 2:1 MMR produces only one
clump near one of the two generated by the 3:2 resonance:
the global structure thus becomes asymmetric. But, as in the

http://www.extrasolar.eu


554 R. Reche et al.: On the observability of resonant structures in planetesimal disks due to planetary migration

Fig. 2. Spatial distribution of planetesimals for a planet on a strictly circular orbit. The star and planet locations, projected onto the orbital plane of
the planet, are represented by larger red points, and the planet orbit by a thin green line. Green (resp. red) points represent planetesimals trapped
in 3:2 (resp. 2:1) resonance. The 4 rows correspond respectively to Earth mass, Neptune mass, Saturn mass and 3 Jupiter mass planets, from top to
bottom. The 3 columns show the disk after 5, 15 and 40 Myr. The initial planetesimal disk consists of 50 000 planetesimals distributed between 40
and 75 AU, with the surface density distribution proportional to r−1. (See the electronic edition of the Journal for a color version of this figure.)

previous case, the non-resonant planetesimals are still numer-
ous in the inner part of the disk and partly hide the resonant
structures.

– For a 3 Jupiter mass planet, the 2:1 resonant pattern changes
and generates two clumps of equal density near those of the
3:2 resonance. The global structure is symmetric but the two

clumps are no longer in opposition, because the libration cen-
ters of the 2:1 resonance are separated by less than 180◦ in
longitude. The change in the 2:1 pattern is discussed in sev-
eral papers (Chiang & Jordan 2002; Wyatt 2003; Murray-Clay
& Chiang 2005): this resonance has two libration centers but
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Fig. 3. Same simulations as in Fig. 2, with the planetesimals represented in a (semi-major axis, eccentricity) plane. The plotting conventions are
the same as in Fig. 2. (See the electronic edition of the Journal for a color version of this figure.)

they do not have the same trapping probability and only mas-
sive planets can populate the second libration center.

3.3. Low-eccentricity orbits

Most of the structures discussed in Sect. 3.2 disappear as the
planet eccentricity increases (Fig. 4). The libration amplitude of
resonant planetesimals indeed increases, smoothing the density
waves along the orbit. For eccentricities between 0.05 and 0.1,

the disk looks like a ring with a hole at the location of the planet,
or no longer shows structures for the lower mass planets. The
rings are not only due to the 1:1 resonant planetesimals coro-
tating with the planet, but are also populated by other major
resonances (e.g., 2:1, 3:2). Massive planets (last row of Fig. 4)
are less sensitive to this effect because they can more efficiently
eject planetesimals during close encounters, even if they are in
the MMRs. Only resonant planetesimals with low libration am-
plitudes can survive and the disk remains structured as in the
strictly circular case.
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Fig. 8. Phase portraits (Hamiltonian level
curves in an (ν, e) plane) of the secular non-
resonant dynamics in the planar restricted
three body problem, for a fixed semi-major
axis a = 1.3ap, and planet eccentricities ep =

0.5 (left plot) and ep = 0.1 (right plot). The
red line separates regions where the planetesi-
mal orbit does not cross that of the planet (low
eccentricities for ep = 0.1 and a small island
around ν = 0 for ep = 0.5) from regions where
both orbits cross each other. (See the electronic
edition of the Journal for a color version of this
figure.)

4. Planets on eccentric orbits

At eccentricities larger than 0.1, planets can significantly modify
the disk geometry and produce a dynamically warm disk where
all planetesimals may reach high eccentricities. Analytical de-
velopments are more complex, but are still feasible as shown by
Kuchner & Holman (2003) for resonant planetesimals and by
Wyatt et al. (1999) for non-resonant planetesimals. So far, only
the P−R drag migration scenario has been tested for such plane-
tary orbits. We explore here the planet migration scenario in the
case of eccentric orbits (Figs. 6 and 7).

According to previous works, three phenomena should
change in our simulations with respect to the low-eccentricity
orbit case. First, close encounters between the planet and the
planetesimals are more frequent, increasing the depletion rate of
the disk. As the probability of ejection increases with the plan-
etary mass, the more massive the planet, the more depleted the
disk. Second, even the non-resonant planetesimals see their ec-
centricities rise significantly due to the gravitational perturbation
of the planet. Finally, the trapping probability is also modified
(Quillen 2006): increasing the planetary eccentricity decreases
the trapping probability of the first order resonances but can in-
crease it for higher order resonances. With a planet on an eccen-
tric orbit, the resonant planetesimals are also not well protected
against close encounters, which limits even more the number
of planetesimals in MMRs. The migration thus cannot populate
the MMRs enough to generate detectable patterns: for structures
generated by a planet on a moderate or high eccentricity orbit,
the MMRs, and thus the migration of the planet, is no longer an
important factor whatever the planet mass as the non-resonant
dynamics dominates the shape of the disk.

The depletion rate is so efficient that the disk is almost en-
tirely depleted during our 40 Myr simulations, except in the case
of an Earth mass or Neptune mass planet on moderate eccen-
tric orbits (below 0.2 or 0.3). An Earth mass planet on a more
eccentric orbit (above 0.5) can also produce transient collective
non-resonant effects, spatially fixed, in the azimuthal distribu-
tion of the planetesimals (Fig. 9) before the disk is depleted, as
explained below.

4.1. Non-resonant structures

The theoretical background for the dynamics of the planetesi-
mals in our simulations is the restricted three-body problem, i.e.,
a problem where a mass-less test particle orbiting a star is per-
turbed by a planet orbiting the star on an unperturbed Keplerian
orbit. We restrict ourselves to the planar case for simplicity. In

this framework, the Hamiltonian of the problem is (see, for in-
stance Morbidelli & Moons 1993)

H0 = −
GM∗

2a
− Gmp

⎛
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where a is the osculating semi-major axis of the orbit of the plan-
etesimal, M∗ is the mass of the star, mp that of the planet,G is the
constant of gravitation, and r and rp are the heliocentric position
vectors of the planetesimal and of the planet respectively. If the
test particle is not locked into a mean-motion resonance with the
planet, its secular motion is investigated by performing a double
temporal averaging of H0 over the orbital motions of the planet
and of the planetesimal (Beust & Dutrey 2006). In this context,
the semi-major axis a is a secular constant, as it is canonically
coupled with the mean anomaly that has been removed from the
Hamiltonian by the averaging process. The secular Hamiltonian
of the planar problem turns out to have only one degree of free-
dom. It depends for instance only on the eccentricity of the plan-
etesimal e and of its longitude of periastron ν with respect to that
of the planet. For any given fixed values for a and for the planet
eccentricity ep, we can draw a phase portrait (i.e., level curves of
Hamiltonian) of the dynamics in an (ν, e) plane.

Two examples for ep = 0.1 and ep = 0.5 are shown in Fig. 8.
They both correspond to a = 1.3ap (ap is the semi-major axis
of the planet). The whole dynamical problem obviously simply
scales with ap, so that a only needs to be given in units of ap.
The present case (a = 1.3ap) corresponds to a planetesimal or-
biting outside the planet’s orbit, like those we are simulating.
Note also that the topology of the Hamiltonian is independent of
the mass mp of the planet, because the non-constant part ofH0 is
proportional to mp. Hence the plots in Fig. 8 hold for any plane-
tary mass. The planetary mass mp only affects the speed at which
the planetesimal moves along the Hamiltonian level curves (the
speed is ∝mp).

The plots in Fig. 8 hold for a = 1.3ap, but for other values
of a, we have similar plots. Conversely, the shape of the phase
portrait depends critically on ep. We see that for a small ep, a
planetesimal with a small initial e will keep e small for ever. For
a large ep however, any planetesimal with a small initial e will
be driven to high e values and ν ≃ 0. Starting from a population
of planetesimals with negligible eccentricities, we end up after
a certain delay with many highly eccentric planetesimals with
their lines of apsides more or less aligned with that of the planet
ν ≃ 0. This naturally generates a clump of planetesimals close
to the apoastron of their orbits, as due to Kepler’s second law,
the planetesimals spend most of their time near apoastron. This
is the origin of the clumps we obtain in our simulations with
low-mass planets (Fig. 9).
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Fig. 9. An Earth mass planet on a very eccentric orbit (ep = 0.6). The
plotting conventions are the same that Fig. 1. The disk structure does not
rotate with the planet and is spatially fixed. (See the electronic edition
of the Journal for a color version of this figure.)

So, why does this not hold for more massive planets? The
secular dynamics described above is valid as long as the plan-
etesimal does not undergo any close encounter with the planet.
In the case of a close encounter, the orbit of the planetesimal is
suddenly changed, and it is often ejected. Many regions in Fig. 8
correspond to a planet crossing orbit. The probability of hav-
ing a close encounter with the planet within a given timespan is

higher if the planet is more massive. It scales as m
2/3
p , because

the Hill radius rH of the planet scales as m
1/3
p , and the encounter

cross-section is expected to scale as r2
H

. The mass ratio between
a 3 Jupiter mass planet and an Earth-sized planet is ∼1000. We
thus expect a planetesimal to undergo 100 times more encoun-
ters with the first planet than with the second. Finally, with mas-
sive planets, most of the planetesimals are subject to a close en-
counter with the planet within the timespan of the simulation
described in Fig. 6. This is why the disk appears so depleted at
the end. Conversely, for low-mass planets, the close encounter
probability is so low that many planetesimals keep following the
secular dynamics until the end of the run. Therefore, they have
enough time to generate a strong asymmetric clump.

We stress here that this clump is not due to any mean-motion
resonance. There is thus no need for planet migration in this case
and this may appear as an alternative scenario to mean-motion
resonance for generating transient clumps. Nevertheless, even
with an Earth mass planet, these clumps do not last as long as the
resonant clumps. Planetesimals are not protected against close
encounters with the planet, which finally deplete most of the disk
after 35 Myr, in our simulations.

5. Generalization

As explained in the previous sections, we have run many sim-
ulations in order to sample correctly the parameter space of
planetary eccentricity versus planetary mass. We can thus ad-
dress the question of the visibility of asymmetric structures in a
disk. As already mentioned, the shape of a disk is dominated
either by resonant or by non-resonant planetesimals. The re-
gion where MMRs dominate the disk shape corresponds to plan-
ets on low-eccentricity orbits. In this region, two situations can
occur: planets can generate clear resonant patterns with several

visible clumps in the disk (generally while on circular or very
low eccentric orbits) or produce smooth patterns, with only a
hole at the planet location as the visible structure (generally
while on an orbit with an eccentricity between 0.05 and 0.1).
Concerning the non-resonant planetesimals, Earth mass planets
on eccentric orbits can generate observable structures by secular
perturbations. Outside these regions, the disks do not show any
observable structures, when they are not totally depleted. The
results for all these simulations are summarized in Table 2 and
Fig. 10. Three main regions can be identified. In zones I and II,
observable structures in the disk are generated by MMRs while
in zone III, transient structures are generated by non-resonant
mechanisms. In the remaining region, the disk does not show any
structure. In zone I, MMRs create clumpy disks while in zone II
they generate a smooth disk with a hole at the planet location.
This figure also shows the fraction of planetesimals still bound
to the system after 40 Myr (background color). However, this
quantity is sensitive to several parameters (stellar mass, dura-
tion of the simulation, initial distribution of the planetesimals ...)
while the limits of the three zones are quite independent.

However, we have assumed for these simulations a constant
migration rate of 0.5 AU Myr−1 and a disk of planetesimals ini-
tially on circular orbits. With different assumptions the outcomes
of the simulations could be changed: we have thus investigated
these two parameters in order to discuss the robustness of our
conclusions. For a given planetary mass and eccentricity, we ex-
pect the structures to change, as the trapping probability depends
on the migration rate and on the planetesimal eccentricity. But,
again, our main focus is to determinate if the resonant structures
are visible or not. For instance, in the low-eccentricity orbit case,
Neptune mass and Jupiter mass planets do not produce the same
structures but they have the same sensitivity to the planet eccen-
tricity. Here, we investigate if the migration rate or the initial
planetesimal eccentricity change these conclusions. The results
of these additional simulations are summarized in Tables 3 and 4,
in the same manner as in Table 2 for the nominal case. Table 3
corresponds to simulations with different migration rates but un-
excited initial planetesimal disks. Table 4 describes simulations
with initially excited disks.

5.1. Migration rate

In our work, the migration rate parameter was chosen to match
the best fit obtained by Wyatt (2003) for the Vega debris disk
to allow direct comparison. In his paper, Wyatt discussed the
impact of the migration rate in the restrictive case of a planet on
a circular orbit, and has shown that the trapping probability in
an MMR increases with decreasing migration rates (or when the
star is less massive).

We have thus performed simulations with a lower
(0.05 AU Myr−1) and a higher (5 AU Myr−1) migration rate than
previously (Table 3). Overall, our results are in good agreement
with those of Wyatt (2003), even for eccentric orbits: the trap-
ping probability increases when the migration rate decreases.
For example, with a low migration rate, a Neptune mass planet
traps planetesimals in the 2:1 MMR, while a Saturn mass planet
populates the second libration center of the 2:1 resonance.

Although the disk resonant shape is modified because the
populated MMRs change with the migration rate, the depen-
dence on the mass and eccentricity of the planet remains un-
changed: non-resonant planetesimals always dominate at mod-
erate eccentricity and clear resonant patterns are only visible
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Fig. 10. Overview of the simulation outputs for
planetesimal disks, in a (planet mass, planet ec-
centricity) plane. All simulations shown in this
figure concern a planet with a constant migra-
tion rate of 0.5 AU Myr−1. Color scale indi-
cates the fraction of planetesimals still bound
after 40 Myr. The fraction of surviving plan-
etesimals is linearly interpolated between the
simulations of the Table 2. In zones I and II,
observable structures in the disk are generated
by MMRs while in zone III, transient structures
are generated by non-resonant mechanisms. In
the remaining region, the disk does not show
any structure. In zone I, MMRs create clumpy
disks while in zone II they generate a smooth
disk with a hole at the planet location. (See the
electronic edition of the Journal for a color ver-
sion of this figure.)

with a planet on a quasi circular orbit. We still note some subtle
changes between the different migration rates. With a higher mi-
gration rate, low mass planets have less time to increase the ec-
centricities of the non-resonant planetesimals which perturb less
the resonant structures. With a very low migration rate, planets
have more time, during close encounters, to eject non-resonant
planetesimals, and resonant planetesimals in the eccentric planet
orbit case. Nevertheless, as these changes are small, it is possible
to summarize our simulations in the (planet eccentricity; planet
mass) parameter space and to discuss the visibility of resonant
clumps using only these two parameters, as in Fig. 10.

5.2. Warm disks

We have assumed in our simulations that the planetesimal disk
was initially dynamically cold (edisk = 0.0), but Wyatt (2003),
while using the same hypothesis, pointed out that dynamically
warm disks are an interesting alternative to be studied. We
have thus extended our work in this direction, assuming disks
with planetesimal eccentricities uniformly distributed between 0
and elimit (Table 4).

It appears that an initially warm disk does not differ much
from a cold disk in the case of a planet on a moderate or high ec-
centricity orbit. The secular perturbations, or the close encoun-
ters, due to such a planet raise the planetesimal eccentricities on
a timescale shorter than the migration time. A cold disk therefore
becomes warm in the course of planetary migration. However,
with a planet migrating on a circular orbit, the disk structures
are different depending on the initial eccentricities of the plan-
etesimals. A warm disk (elimit = 0.1) with a planet on a circular
orbit is actually roughly equivalent to a cold disk with a planet
on a low-eccentricity orbit (0.05 or 0.1): the MMRs trap many
planetesimals but the clumps are smoothed by the large libration
amplitude (Fig. 11). From our simulations, it appears that, for a
Saturn mass or Jupiter mass planet on a circular orbit, an elimit

of 0.1 is already too high to keep the resonant clumps visible.
On the other hand, planets above 2 Jupiter masses have a large
enough depletion rate to keep the resonant clumps visible with
an elimit up to 0.2. These results show that the resonant structures
are as sensitive to the planet eccentricity as to the planetesimals
eccentricity.

6. Comparison with previous works

6.1. P – R drag scenario

For both circular and low-eccentricity orbits, Kuchner &
Holman (2003) obtain much larger differences in the structures
between low and high mass planets that those observed in our
simulations: the P − R drag scenario seems to have a stronger
dependence on the planetary mass than the migration scenario.
The particles migrating inward due to P − R drag encounter
first the most external resonances, but the capture probability
for these resonances is low and the dust is more likely trapped
in resonances that are closer to the planet. With massive planets,
however, the probability of capture in distant resonances is high
enough to trap a large number of dust particles in these outer
disk regions and stop them before they can populate closer reso-
nances. The MMRs populated by P−R drag, and thus the struc-
tures generated, are therefore not the same, depending on the
planetary mass. Conversely, in the case of planetary migration,
all the resonances can be populated at the same time, as plan-
etesimals are initially present in the whole disk: as explained in
Sect. 3, the MMRs actually populated are thus roughly the same,
whatever the planet mass.

In practice, the differences between our results and those of
Kuchner & Holman (2003) are more due to the initial planetesi-
mal distribution in the disk than to the physical process. In their
P − R drag scenario, the authors assume that the dust starts mi-
grating inwards far away from the planet, outside the 2:1 reso-
nance, while our planetary migration scenario assumes the plan-
etesimals to be initially closer to the planet. If we started with
planetesimals at a larger distance, we would have expected to
see, as in the P − R drag scenario, more differences in the reso-
nant structures for planets of different masses.

6.2. Planetary migration

Our results show that, with the forced planetary migration sce-
nario, it is easy to distinguish a planet on a circular orbit from
another on a low-eccentricity orbit, except for very low mass
planets or very massive planets, because the resonant structures
are drastically different. Constraining the planetary mass is more
difficult than in the P−R drag scenario and only an order of mag-
nitude can be expected.

Wyatt (2003) used this scenario to reproduce Vega disk ob-
servations at submillimetric wavelengths (Holland et al. 1998).
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Fig. 11. A Saturn mass planet on a circular orbit migrating outward a
dynamically warm disk. Initial eccentricities of planetesimals are uni-
formly distributed between 0 and 0.2. The plotting conventions are the
same as in Figs. 2 and 3. (See the electronic edition of the Journal for a
color version of this figure.)

We must take into account that, with the large SCUBA PSF, only
the two major clumps can be observed. However, this is enough
to distinguish between our three planet mass examples, at least
for a migration rate of 0.5 AU Myr−1:

– It is possible to distinguish between a Saturn mass planet and a
Neptune mass or Jupiter mass planet because it is the only one
out of the three that produces asymmetric clumps in density.

– We can also distinguish between a Neptune mass planet and
a Jupiter one because, in the first case, the two clumps are in
opposition with respect to the star, while, in the second case,
the two clumps are separated in longitude by less than 180◦.

It is thus possible to obtain an estimate of the planetary mass.
The situation is well summarized by Fig. 11 of Wyatt (2003).
It defines several regions in the (planetary mass, migration rate)
parameter space that can be observationally distinguished from
each other, but inside each region a wide range of planetary
masses is possible.

Contradictions however appear between our simulation re-
sults and this previous study. The asymmetry in the emission
of the two observed clumps was interpreted as the migration
of a Neptune mass planet by Wyatt (2003). In his model, a
Neptune can trap planetesimals in the 3:2 and 2:1 resonances and

generate two asymmetric clumps, like a Saturn mass planet in
our simulations. With our numerical model, we have found that
a Neptune mass planet cannot trap planetesimals in the 2:1 res-
onance, but only in the 3:2 resonance: the two clumps are thus
symmetric and cannot reproduce the Vega disk. A Neptune mass
planet at a migration rate of about 0.5 AU Myr−1 lies at the sharp
transition between a 0 and a 100% trapping probability (Wyatt
2003, Fig. 4a). A small change in the planetary mass or the mi-
gration rate in this configuration produces a large modification in
the population of this resonance. As Wyatt (2003) uses a scaling
law to predict the trapping probability, differences between our
results may be explained by the approximation of this scaling
law.

Nevertheless, the 2:1 resonance has an interesting behavior
in the Neptune mass planet case: it perturbs all the planetesi-
mals that cross it, but as soon as they reach an eccentricity of
about 0.02 (in 0.25 Myr), most of them escape. While a Saturn
mass planet (or a more massive one) cleans up the space between
the initial and final position of the 2:1 resonance during the mi-
gration by trapping all the planetesimals, a Neptune mass planet
only slightly rises the eccentricity of planetesimals entering the
2:1 resonance during the migration process (Fig. 12).

This phenomenon is better seen when the planetesimal tra-
jectories are drawn in a semi-major axis, eccentricity diagram
where the semi-major axis of the planetesimals are in units of
that of the planet, in order to hide the migration, as in Fig. 13.
All the planetesimals initially have roughly the same trajectory
(they move from right to left because they do not migrate), but
the small variations have a strong impact when the planetesimals
cross the resonance. Some planetesimals remain trapped in the
MMR, while others escape after being temporarily perturbed.
However, within each of these two subgroups, nearly all plan-
etesimals have similar behavior: the permanently trapped plan-
etesimals have the same libration amplitude and the temporar-
ily perturbed planetesimals escape the resonance roughly at the
same eccentricity.

The width (in semi-major axis) of an MMR is proportional
to the square root of the planetary mass (Beust & Morbidelli
1996). A Saturn mass planet therefore has wider resonances than
a Neptune mass planet: its trapping probability is thus larger be-
cause it is less sensitive to the orbital parameters of the planetes-
imals which cross the MMR.

7. Discussion and limitations

7.1. Dust content and collisional activity

In this paper, we have only discussed the spatial distribution of
the planetesimals. However, it is the dust produced by collisions
between these planetesimals, and not the planetesimals them-
selves, that contributes to the emitted flux and therefore to the
observed disk shape. One has to investigate the influence of the
collisions on the dust spatial distribution in order to reproduce
the observations. Collisions can have several consequences for
the dust particles:

– As collisional cascades produce dust particles of all sizes, ra-
diation pressure cannot be neglected any longer. This has a
strong incidence on the populations of the MMRs. As ex-
plained by Wyatt (2006); Krivov et al. (2007), depending on
their sizes, the dust particles can either stay in the resonance,
leave the resonance but still stay bound to the system, or be
blown out of the disk. Even in the case where the MMRs
dominate the dynamics of the planetesimals, the disk can look
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Fig. 12. Capture in the 2:1 resonance for a Neptune mass planet (top),
en Earth mass planet (middle) and a Saturn mass planet (bottom), all
on a circular orbit, after 5 Myr. Dashed lines show the position of the
resonance at the beginning and at the end of the simulations. In those
simulations, an Earth mass planet does not capture at all planetesimals
while a Saturn mass planet traps all of them. A Neptune mass planet
only traps a fraction of the planetesimals but gives a small kick in ec-
centricity for the others. The plotting conventions are the same as in
Fig. 3. (See the electronic edition of the Journal for a color version of
this figure.)

Fig. 13. Projection on the (semi-major axis, eccentricity) plane of the
trajectory of 40 planetesimals near the 2:1 resonance of a Neptune mass
planet, migrating on a circular orbit. The semi-major axis is in units
of the planet semi-major axis. Green lines are for permanently trapped
planetesimals while the red lines are for the temporarily perturbed plan-
etesimals. (See the electronic edition of the Journal for a color version
of this figure.)

rather smooth if the observations are sensitive to the smallest
of the produced dust particles.

– The collision rate is not the same in the whole disk: it is en-
hanced in the MMRs, as shown by Queck et al. (2007). These
authors have even calculated that the average collision rate in
an MMR is the highest for first-order resonances (by a factor
about 2 times the non-resonant collision rate). This implies
that at the wavelengths where the observed dust particles can
still appear trapped in the MMRs (typically at 850 µm), the
resonant clumps are more visible than in our simulations. This
also means that the 3:5 resonance, often populated in the sim-
ulations, is actually not so prominent because its clumps have
a lower average collision rate than the first order resonances.

– The destructive collisions produce fragments with different
velocities from the parents bodies. Since these velocities are
usually small compared to the orbital velocities, most of the
fragments cannot leave the resonances. However, analytic re-
sults from Krivov et al. (2007) show that small particles pro-
duced by the collisional cascade are fast enough to escape the
MMRs. Dust particles are mainly lost by this “velocity effect”
before they become small enough to escape the MMR by ra-
diation pressure.

In conclusion, predictions on the distribution of the smallest dust
particles, observable in the near or mid-infrared wavebands, is
difficult since it requires a proper description of the collisional
activity and of the dynamics of particles influenced by radia-
tion/wind forces. This is not the case for larger dust grains which
are observable at submillimeter wavelengths: according to the
previously quoted papers, these particles, created by mutual col-
lisions between the planetesimals, stay in the MMRs. However,
the most visible resonant clumps are not necessarily the most
populated, because the collision rate depends on the order of the
resonance.

7.2. Origin of planetary migration

The described simulations obtained with our model raise numer-
ous questions about the interaction between a planetesimal disk
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and a planet. The structures generated are very sensitive to the
eccentricity of the planet, and to a lesser extent to the migration
speed. Moreover, some of the generated structures (especially
those obtained for high eccentricity, low-mass planets) appear
only after a fairly long time. A key issue to address in this ques-
tion is the temporal evolution of the eccentricity (and the migra-
tion rate) and the combined evolution of the disk. A low mass,
high-eccentricity planet can only generate the features described
above (Fig. 9) if its eccentricity remains high for a sufficiently
long time. This may appear unrealistic, as the planet eccentricity
should decrease due to the interactions with the planetesimals.
Another important question is the transition between circular and
low-eccentricity orbits: we have shown in the previous section
that resonant patterns change significantly when the eccentric-
ity deviates from 0. What will be the resulting disk structures
if the planet eccentricity undergoes periodic secular modulation
between these two regions (like the giant planets of the Solar
System)? And how do the particles stay at an eccentricity lower
than 0.1 all the time?

These questions can be resolved by better modeling the
origin and the evolution of planetary migration. In any realis-
tic simulation, the orbit of the planet will be subject to secular
evolution. There is even no need for other planets for this. The
interaction with the disk particles themselves can be sufficient to
significantly affect the planetary orbit. Thus taking into account
the influence of the disk on the planets is necessary to derive
realistic simulations. Several studies have already discussed the
origin of planetary migration either by “planet-planetesimals”
(Ida et al. 2000; Gomes et al. 2004) interactions or by “planet-
planet” interactions (Morbidelli et al. 2006). Depending on the
scenario and on the initial conditions, one can observe migration
on low-eccentricity orbit or more chaotic migration after a short
time on an eccentric orbit.

8. Conclusion

We have studied the problem of the presence of observable struc-
tures in planetesimal disks due to mean motion resonance with
an unseen planet migrating outward in the disk. Using numer-
ical simulations, we have explored a large range of parameters
for the planet (mass and orbital eccentricity) and the disk (initial
distribution of planetesimal eccentricities). In the case of a planet
on a circular orbit migrating inside a dynamically cold disk, our
results are in agreement with previous analytical studies.

In the cases not already addressed, namely planets on
eccentric orbits or dynamically warm disks, we have found that
the observability of resonant structures demands very specific
orbital configurations. The clumps produced by MMRs with a
planet on a circular orbit are smoothed in the case of a planet
on an even moderately eccentric orbit. An eccentricity as low
as 0.05 is enough to smooth all the resonant structures, except
for the most massive planets. These results indicate that although
trapping planetesimals in MMRs is an efficient mechanism to
generate clumpy disks, stringent conditions must be fulfilled for
this scenario to occur. Theoretical modeling of the origin of the

planetary migration therefore will have to explain how planetary
systems can remain under these conditions. Moreover, we only
consider a planet migrating at a constant rate. A more realistic
model with a variable, stochastic migration rate can reduce the
population of resonances and thus their observability. A better
model of planet migration thus should be developed in future
studies.
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Fig. 4. Same as Fig. 2, for similar planets, but on a low-eccentricity orbit (ep = 0.05).
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Fig. 5. Same as Fig. 3, for similar planets, but on a low-eccentricity orbit (ep = 0.05).



R. Reche et al.: On the observability of resonant structures in planetesimal disks due to planetary migration, Online Material p 3

Fig. 6. Same as Fig. 2, for similar planets, but on a moderate eccentricity orbit (ep = 0.3).
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Fig. 7. Same as Fig. 3, for similar planets, but on a moderate eccentricity orbit (ep = 0.3).
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Table 2. Summary of results for all simulations done in the present study with an initially unexcited disk (initial planetesimal eccentricities are
equal to zero) and a standard migration rate of 0.5 AU Myr−1. For each simulation, we list the migration rate, the planet mass and eccentricity, the
fraction of surviving planetesimals at the end of the simulation (40 Myr) and the resulting disk shape, following the convention of Fig. 10.

Mig. ratea Massb Ecc. Surv. planetesimalsc Disk shaped Mig. ratea Massb Ecc. Surv. planetesimalsc Disk shaped

0.5 0.0035 0.0 100% None 0.5 0.05 0.0 100% I
0.01 100% None 0.01 100% I
0.05 100% None 0.05 100% II
0.1 100% None 0.1 100% None
0.2 100% None 0.2 50% None
0.3 100% None 0.3 10% None
0.4 35% III 0.4 5% None
0.5 10% III 0.5 10% None
0.6 5% III 0.6 5% None
0.7 5% III 0.7 5% None

0.5 0.33 0.0 75% I 0.5 1 0.0 70% I
0.01 70% I 0.01 70% I
0.05 85% II 0.05 55% II
0.1 75% None 0.1 25% II
0.2 25% None 0.2 10% None
0.3 10% None 0.3 10% None
0.4 10% None 0.4 10% None
0.5 10% None 0.5 5% None
0.6 5% None 0.6 5% None
0.7 5% None 0.7 0% None

0.5 2 0.0 65% I 0.5 3 0.0 55% I
0.01 60% I 0.01 50% I
0.05 30% I 0.05 20% I
0.1 15% II 0.1 10% I
0.2 5% None 0.2 0% None
0.3 5% None 0.3 0% None
0.4 5% None 0.4 0% None
0.5 5% None 0.5 0% None
0.6 0% None 0.6 0% None
0.7 0% None 0.7 0% None

a In AU Myr−1.
b In Jovian mass.
c Fraction of surviving planetesimals at the end of the simulation, i.e. 40 Myr.
d As in Fig. 10.
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Table 3. Same as Table 2, but for different migration rates.

Mig. ratea Massb Ecc. Surv. planetesimalsc Disk shaped Mig. ratea Massb Ecc. Surv. planetesimalsc Disk shaped

5 0.035 0.0 100% None 5 0.05 0.0 100% I
0.01 100% None 0.01 100% II
0.05 100% None 0.05 100% II
0.1 100% None 0.1 100% None
0.2 100% None 0.2 100% None

5 0.33 0.0 100% I 5 1 0.0 100% I
0.01 100% I 0.01 100% I
0.05 100% II 0.05 100% II
0.1 100% II 0.1 95% II
0.2 95% None 0.2 75% None

5 2 0.0 85% I 5 3 0.0 75% I
0.01 85% I 0.01 75% I
0.05 80% I 0.05 60% I
0.1 65% II 0.1 40% I
0.2 50% None 0.2 25% None

0.05 0.035 0.0 100% II 0.05 0.05 0.0 90% I
0.01 100% II 0.01 85% I
0.05 100% None 0.05 85% II
0.1 100% None 0.1 75% II
0.2 80% None 0.2 10% None

0.05 0.33 0.0 75% I 0.05 1 0.0 70% I
0.01 75% I 0.01 70% I
0.05 65% II 0.05 40% II
0.1 40% II 0.1 20% II
0.2 5% None 0.2 5% None

0.05 2 0.0 60% I 0.05 3 0.0 55% I
0.01 60% I 0.01 55% I
0.05 25% I 0.05 15% I
0.1 15% II 0.1 10% None
0.2 0% None 0.2 0% None

a In AU Myr−1.
b In Jovian mass.
c Fraction of surviving planetesimals at the end of the simulation, i.e. 4 Myr for 5 AU Myr−1 migration rate and 200 Myr for 0.05 AU Myr−1.
d As in Fig. 10.

Table 4. Same as Table 2 but for simulations with initially excited disks. The maximum initial eccentricity of the planetesimals is mentioned for
all simulations. The migration rate is 0.5 AU Myr−1 for all simulations.

Max. ecc.a Massb Ecc. Surv. planetesimalsc Disk shaped Max. ecc.a Massb Ecc. Surv. planetesimalsc Disk shaped

0.1 0.035 0.0 100% None 0.1 0.05 0.0 100% II
0.01 100% None 0.01 100% None
0.05 100% None 0.05 100% None
0.1 100% None 0.1 100% None
0.2 100% None 0.2 55% None

0.1 0.33 0.0 70% II 0.1 1 0.0 60% I
0.01 70% II 0.01 55% II
0.05 85% II 0.05 50% II
0.1 70% None 0.1 25% II
0.2 20% None 0.2 5% None

0.1 2 0.0 50% I 0.1 3 0.0 40% I
0.01 45% I 0.01 40% I
0.05 25% I 0.05 15% I
0.1 15% II 0.1 10% I
0.2 5% None 0.2 0% None

0.2 2 0.0 35% I 0.2 3 0.0 30% I
0.01 35% I 0.01 25% I
0.05 20% I 0.05 10% I
0.1 10% I 0.1 5% I
0.2 5% None 0.2 0% None

a For planetesimals.
b In Jovian mass.
c Fraction of surviving planetesimals at the end of the simulation, i.e. 40 Myr.
d As in Fig. 10.
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