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algorithm. This paper provides natural syntactic conditions that allow the occur-check to be 
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1. INTRODUCTION 

The occur-check is a special test used in the unification algorithm. In most 
PROLOG implementations, it is omitted for efficiency. This omission affects 
the unification algorithm and introduces a possibility of divergence, or may 
yield incorrect results. This is obviously an undesired situation. This problem 
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was studied in the literature under the name of the occur-check problem (see, 
e.g., Plaisted [1984] and Deransart and Maluszynski [1985]). 

The aim of this paper is to provide easy-to-check syntactic conditions that 
ensure that for PROLOG programs the occur-check can be safely omitted. We 
use here a result of Deransart et al. [ 1991] and build upon it within the 
context of moded programs. This allows us to extend the results of Deransart 
and Maluszynski [ 1985], to generalize the arguments of Chadha and Plaisted 
[1994], and to offer a uniform presentation. Additionally, the results of the 
former paper needed here are proved directly, without resorting to the 
techniques of the attribute grammars theory. We also consider general pro­
grams and show the usefulness of our approach for proving the absence of 
floundering. Finally, we show how the problem of inserting occur-checks in a 
program execution can be resolved by means of a program transformation 
that inserts calls of the built-in unification predicate into the program text. 
The obtained results apply to most well-known PROLOG programs. 

In this paper we need a slightly more liberal definition of an SLD-deriva­
tion, according to which the selection of the atom in the current goal is 
combined with the selection of the input clause used to resolve this atom. 
Then an SLD-derivation fails if the selected atom does not unify with the 
head of the input clause selected to resolve it. 

To see the difference with the customary definition, consider the program 
{p(O) +-- , p(x) +--}.According to our definition, the goal +-- p(s(O)) is not only 
the root of an SLD-refutation, but also a root of an immediately failing 
SLD-derivation (when the first clause is selected). 

In what follows we study logic programs executed by means of the LD-reso­

lution, which consists of the SLD-resolution combined with the leftmost 
selection rule. An SLD-derivation in which the leftmost selection rule is used 
is called an LD-derivation. We allow in programs various first-order built-ins, 
like = , :s; , > , etc., and assume that they are resolved in the way conform­
ing to their interpretation. 

Throughout the paper we use the standard notation of Lloyd [ 1987] and 
Apt [1990]. In particular, given a syntactic construct E (e.g., a term, an atom, 
or a set of equations) we denote by Var(E) the set of the variables appearing 
in E. Given a substitution 8 = {xift1, ... , xn/tn}, we denote by Dom(8) the 
set of variables {x1, ... , xn}, by Range(8) the set of terms {t 1 , •.. , tn}, and by 
Ran(8) the set of variables appearing in {t 1 , ... , tn}. Finally, we define Var(8) 
= Dom(8) U Ran(8). 

Recall that a substitution e is called a grounding if Ran( e) is empty and 
is called a renaming if it is a permutation of the variables in Dom( e ). Given 
a substitution () and a set of variables V, we denote by 8 I V the substitution 
obtained from () by restricting is domain to V. 

2. OCCUR-CHECK-FREE PROGRAMS 

We start by recalling a unification algorithm due to Martelli and Montanari 
[ 1982]. We use the notions of sets and of systems of equations interchange­
ably. Two atoms can unify only if they have the same relation symbol. With 
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two atoms p(s 1, ... , sn) and p(t1, ••• , tn) to be unified, we associate the set of 
equations 

In the applications we often refer to this set as p(s 1, ... , sn) = p(t1 , ••• , tn). 

The algorithm operates on such finite sets of equations. A substitution (} such 
that s1e = t 1 e, . .. , sn(J = tn(J is called a unifier of the set of equations {s1 = 
ti, ... , Sn = tn}. Thus, the set of equations E = {s1 = t 1, ... , sn = tn} has the 
same unifiers as the atoms p(s1, ... , sn) and p(tv ... , tn). 

A unifier e of a set of equations E is called a most general unifier (in short, 
mgu) of E if it is more general than all unifiers of E. An mgu () of a set of 
equations Eis called relevant if Var((J) ~ Var(E). 

Two sets of equations are called equivalent if they have the same set of 
unifiers, and a set of equations is called solved if it is of the form {x1 = 

ti, ... , xn = tn}, where the x/s are distinct variables and none of them occurs 
in a term t1. The interest in solved sets of equations is revealed by the 
following lemma: 

LEMMA 2.1. If E = {x1 = t 1 , ... , xn = tn} is solved, then (} = {xift1, •.. , 

xn/tn} is a relevant mgu of E. 

We call e the unifier determined by E. Thus, to find an mgu of two atoms it 
suffices to transform the associated set of equations into an equivalent one 
that is solved. The following algorithm does it, if this is possible, and 
otherwise halts with failure: 

Martelli-Montanari Algorithm. Nondeterministically choose from the set 
of equations an equation of a form below, and perform the associated action: 

(1) f(xl, ... , sn) = f(tp ... , tn) replace by the equations 

Si = ti, •••'Sn = tn' 
(2) f(s 1 , ... , sn) = g(t1 , •.• , tm) where f ¥;. g halt with failure, 

(3) x=x delete the equation, 

(4) t = x where t is not a variable replace by the equation x = t, 

(5) x = t where x ¥;. t, x does not occur in t, perform the substitution {x/t} 

and x occurs elsewhere in every other equation, 

(6) x = t where x ¥;. t and x occurs in t halt with failure. 

The algorithm terminates when no action can be performed or when failure 
arises. To keep the formulation of the algorithm concise, we identified con­
stants with 0-ary functions. Thus, action (2) includes the case of two different 
constants. The following theorem holds (see Martelli and Montanari [ 1982]): 

UNIFICATION THEOREM 2.2. The Martelli-Montanari algorithm always ter­

minates. If the original set of equations E has a unifier, then the algorithm 
successfully terminates and produces a solved set of equations determining a 

relevant mgu of E; otherwise, it terminates with failure. 
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The Martelli-Montanari algorithm does not generate all mgu's of a set of 
equations E, but the following lemma, proved in Lassez et al. [1988], will 
allow us to cope with this peculiarity. 

LEMMA 2.3. Let 81 and 82 be mgu's of a set of equations. Then for some 

renaming TJ, we have 82 = 8(TJ· 

Finally, the following lemma allows us to search for mgu's in an iterative 
fashion: 

LEMMA 2.4. Let E 1 and E 2 be two sets of equations. Suppose that 8 1 is a 
relevant mgu of E 1 and 82 is a relevant mgu of E 2 81. Then 81 82 is a relevant 
mgu of E 1 u E2 • Moreover, if E1 U E2 is unifiable then such a 81 exists, and 
for any such 81 , an appropriate 82 exists, as well. 

PROOF. If e is an equation of E 1, then it is unified by 81 and so a fortiori 
by 8182 • If e is an equation of E 2 , then e8 1 is an equation of E 2 81 . Thus, e8 1 

is unified by 82 , and consequently, e is unified by 81 82 . This proves that 81 82 

is a unifier of E 1 U E 2 . Moreover, Var(8 182 ) ~ Var(8 1) U Var(8 2 ) ~ Var(E 1 ) 

U Var(E2 81) ~ Var(E1) U Var(E2 ) U Var(8 1) ~ Var(E1 U E 2 ), so 81 82 is 
relevant. 

Now let T/ be a unifier of E 1 U E 2 • By the choice of 81 , there exists a 
substitution A1 such that T/ = 81A1. Thus, ,.\1 is a unifier of(E1 U E 2 )8 1 and a 
fortiori of E 2 81. By the choice of 82 for some A2 , we have A.1 = 8 2 A2 • Thus, 
T/ = 81 A1 = 8182 A2 . This proves that 81 82 is an mguof E 1 U E 2 . 

Finally, note that if E 1 U E2 is unifiable then a fortiori E 1 is unifiable, and 
Unification Theorem 2.2 tells us that a relevant mgu 81 for E 1 is produced by 
the Martelli-Montanari algorithm. The previously inferred existence of A1 

implies that, for such a 81, E 2 81 is unifiable, and again, the Martelli­
Montanari algorithm can be used to produce for this set a relevant mgu 82 • 

D 

Return now to the Martelli-Montanari algorithm. The test "x does not 
occur in t" in action (5) is called the occur-check. In most PROLOG imple­
mentations, the occur-check is omitted. Recall that this omission can in some 
cases bring the cost of unification from linear time down to constant time. An 
example is the concatenation of the lists by means of the difference-list 
representation. (For a thorough analysis of the time complexity of the unifica­
tion algorithm with and without the occur-check, see Albert et al. [ 1993]. By 
omitting the occur-check in (5) and deleting action (6) from the Martelli­
Montanari algorithm, we are still left with two options, depending on whether 
the substitution {x/t} is performed in t itself. If it is, the divergence can 
result, because if x occurs in t then x occurs in t{x/t}. If it is not (as in the 
case of the modified version of the algorithm just mentioned), then an 
incorrect result can be produced, as in the case of the single equation 
x = f(x), which yields the substitution {x/f(x)}. 

None of these alternatives is desirable. It is natural then to seek conditions 
that guarantee that, in absence of the occur-check, in all PROLOG evalua-
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tions of a given goal w.r.t. a given program, unification is correctly performed. 
This leads us to the following notion due to Deransart et al. [1991]. 

Definition 2.5. A set of equations E is not subject to occur-check (NSTO, 
in short) if action (6) cannot be performed in any execution of the Martelli­
Montanari algorithm started with E. 

We now introduce the key definition of the paper: 

Definition 2.6. 

-Let g be an LD-derivation. Let A be an atom selected in g, and let H be 
the head of the input clause selected j;o resolve A in g. Suppose that A and 
H have the same relation symbol. Then we say that the system A = H is 
considered in g. 

-Suppose that all systems of equations considered in the LD-derivations of 
PU {G} are NSTO. Then we say that PU {G} is occur-check free. 

This definition assumes a specific unification algorithm, but allows us to de­
rive precise results. Moreover, the nondeterminism built into the Martelli­
Montanari algorithm allows us to model executions of various other unifica­
tion algorithms, including Robinson's algorithm (see, e.g., Albert et al. [1993]). 
In contrast, no specific unification algorithm in the definition of the LD-reso­
lution is assumed. 

By Theorem 2.2, if a considered system of equations is unifiable, then it is 
NSTO as well. Thus, the property of being occur-check free rests exclusively 
upon those considered systems that are not unifiable. As in the definition of 
the occur-check freedom, all LD-derivations of Pu {G} are considered, it 
follows that all systems of equations that can be considered in a possibly 
backtracking PROLOG evaluation of a goal G w.r.t. the program Pare taken 
into account. 

In Deransart et al. [1991], a related concept of an NSTO program is studied 
that essentially states that, independently of the selection rule and the 
resolution strategy chosen, all considered systems are NSTO. The definition 
of the occur-check freedom refers to the leftmost selection rule, and the 
results we obtain usually cannot be extended to those dealing with NSTO 
programs. 

The aim of this paper is to offer simple syntactic conditions that imply that 
P u { G} is occur-check free. As expected, the property of being occur-check 
free is undecidable (see Deransart and Maluszynski [1985], and, for a 
strengthened version, the Appendix). On the other hand, the problem of 
determing whether a set of equations is NSTO is decidable. In fact, Apt et al. 
[1994] recently proved that this problem is CoNP-hard. 

For further analysis we need the following concepts: 

Definition 2.7. 

-We call a family of terms (resp., an atom) linear if every variable occurs at 
most once in it. 
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-We call a set of equations left linear (resp., right linear) if the family of 

terms formed by their left-hand (resp., right-hand) sides is linear. 

Thus, a family of terms is linear iff no variable has two distinct occurrences 

in any term and no two terms have a variable in common. 

Definition 2.8. Let E be a set of equations. We denote by -?E the 

following relation defined on the elements of E: e 1 -?E e2 iff the left-hand 

side of e1 and the right-hand side of e 2 have a variable in common. 

In particular, if a variable occurs both in the left-hand and right-hand sides 

of an equation e of E, then e -?E e. The following result, due to Deransart et 

al. [1991], will be helpful in the sequel. 

NSTO LEMMA 2.9. Suppose that the equations in E can be oriented in such 

a way that the resulting system F is left linear and the relation -7 F is cycle 

free. Then E is NSTO. 

Note that the converse of this lemma is not true-just take E = {f(x) = 

g( x )} . The original formulation of this lemma is slightly stronger, but for our 

purposes the above version is sufficient. 

3. MODED PROGRAMS 

For further analysis we introduce also modes, first considered in Mellish 

[1981] and more extensively studied in Reddy [1984] and in Dembinski and 

Maluszynski [1985]. 

Definition 3.1. Consider an n-ary relation symbol p. By a mode for p, we 

mean a function dP from {1, ... , n} to the set { +, - }. If dP(i) = +,we call i 

an input position of p, and if d/i) = - , we call i an output position of p 

(both w.r.t. dP). 

We write dP in the more suggestive form p(d/1), ... , d/n)). By moding 

we mean a collection of modes, each for a different relation symbol. 

Intuitively, the modes indicate how the arguments of a relation should be 

used, though the distinction between the input and output positions is not 

clear when all positions in an atom of a goal are filled in by compound terms. 

The definition of moding assumes one mode per relation in a program. 

Multiple modes may be obtained by simply renaming the relations. From now 

on we assume that every considered relation has a mode associated with it. 

This will allow us to discuss input positions and output positions of an atom. 

We now introduce the following concepts: 

Definition 3.2. 

-An atom is called input (resp., output) linear if the family of terms 

occurring in its input (resp., output) positions is linear. 

-An atom is called input-output disjoint if the family of terms occurring in 

its input positions has no variable in common with the family of terms 

occurring in its output positions. 
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The following lemma is crucial: 

NSTO VIA MODES LEMMA 3.3. Consider two atoms A and H with the same 
relation symbol. Suppose that 

-they have no variable in common, 

-one of them is input-output disjoint, and 

-one of them is input linear and the other is output linear. 

Then A = His NSTO. 

PROOF. Suppose first that A is input-output disjoint and input linear and 

that H is output linear. Let if, ... , i~ (resp., i~, ... , iH) be the terms filling 

in the input positions of A (resp., H), and let of, ... , o! (resp., o~, ... , o,;') be 

the terms filling in the output positions of A (resp., H). 
The system under consideration is 

E _ {·A _ ·H ·A _ ·H A H A H} 
- L1 -L1, ... ,im-im,01 =01, ... ,on =on. 

Reorient it as follows: 

F _ {·A _ ·H ·A _ ·H H _ A H _ A} 
- L1 - L1 ' .•. ' Lm - Lm' 01 - 01 ' ... 'On - On . 

By assumption, A and H have no variable in common. This implies that 

-F is left linear (because, additionally, A is input linear and H is output 
linear), and 

-the equations if = if have no successor in the ~ F relation and the 

equations or = of have no predecessor (because, additionally, A is input­

output disjoint). 

Thus by NSTO Lemma 2.9, A = H is NSTO. The proofs for the remaining 

three cases are analogous and, hence, omitted. D 

We now prove two results, allowing us to conclude that PU {G} is occur­

check free. The first uses the the following notion introduced in Dembinski 

and Maluszynski [1985]: 

Definition 3.4. We call an LD-derivation data driven if all atoms selected 

in it are ground in their input positions. 

THEOREM 3.5. Suppose that 

-the head of every clause of P is output linear, and 

-all LD-derivations of P U {G} are data driven. 

Then P U {G} is occur-check free. 

PROOF. Consider an LD-derivation of P U {G}. Let A be an atom selected 

in it, and suppose that H is the head of an input clause such that A and H 

have the same relation symbol. By assumption, A is ground in its input 

positions, so it is input-output disjoint and input linear. By assumption, H is 

output linear, and A and H have no variable in common. So, by NSTO via 

Modes Lemma 3.3, A= His NSTO. D 
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The second result uses the following notion: 

Definition 3.6. We call an LD-derivation output driven if all atoms se­

lected in it are output linear and input-output disjoint. 

THEOREM 3.7. Suppose that 

-the head of every clause of P is input linear, and 

-all LD-derivations of PU {G} are output driven. 

Then P U {G} is occur-check free. 

PROOF. Let A and H be as in the proof of Theorem 3.5. NSTO via Modes 

Lemma 3.3 applies and yields that A= His NSTO. D 

This theorem is implicit in Chadha and Plaisted [ 1994] (see the proof of 

their Theorem 2.2). Clearly, through different "distributions" of the conditions 

ofNSTO via Modes Lemma 3.3, other applications can be obtained. We found 

the above two least restrictive. 

Note that the theorems established above generalize the following well­

known result stated in Clark [1979, p. 15] and established in Deransart et al. 

[1991], as a direct consequence of the NSTO Lemma 2.9. 

COROLLARY 3.8. Suppose that the head of every clause of P is linear. Then 

PU {G} is occur-check free for every goal G. 

PROOF. By Theorem 3.5, by moding every relation completely output, or by 

Theorem 3. 7, by moding every relation completely input. D 

This corollary can be applied to some well-known PROLOG programs, for 

example, to the unification program (see Sterling and Shapiro [1986, p. 150]) 

and, paradoxically, to the unification with the occur-check program (see 

Sterling and Shapiro [1986, p. 152]). However, to most programs this corol­

lary does not apply. The subsequent sections provide some other options. 

So far we have isolated two properties of LD-derivations, each of which 

implies occur-check freedom. In both cases we have had to impose some 

restrictions on the heads of the clauses. When we combine these two proper­

ties, we get occur-check freedom directly. 

THEOREM 3.9. Suppose that all LD-derivations of PU {G} are both data 

and output driven. Then PU {G} is occur-check free. 

PROOF. Let A and H be as in the proof of Theorem 3.5. By assumption, 

the system A= H is left linear. Moreover, A and H have no variable in 

common, so the relation ~A~ H is empty and a fortiori cycle free. So, by the 

NSTO Lemma 2.9, A= His NSTO. D 

4. WELL-MOOED PROGRAMS 

The obvious problem with Theorems 3.5, 3.7, and 3.9 is that it is not easy to 

check their conditions. In fact, one can show that, in general, it is undecidable 

whether for a given program P and goal G the conditions of Theorem 3.5, 3.7, 

or 3.9 hold (see the Appendix). 

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994. 



On the Occur-Check-Free PROLOG Programs 695 

The aim of this section is to propose some simple syntactic restrictions that 

imply the conditions of Theorem 3.5. We then show that these restrictions are 

satisfied by a number of well-known programs. 

Her~ w~ use the notion of a well-moded program. The concept is due to 

Dembmsk1 and Maluszynski [ 1985]; we use an elegant formulation due to 

Rosenblueth [1991] (which is equivalent to that of Drabent [1987], where 

well-moded programs are called simple). The definition of a well-moded 

program constrains the "flow of data" through the clauses of the programs. To 

simplify the notation, when writing an atom as p(u, v), we now assume that 

u is a sequence of terms filling in the input positions of p and that v is a 

sequence of terms filling in the output positions of p. 

Definition 4.1. 

-A goal <--- p 1(s 1 , t 1), ... , Pn(sn, tn) is called well moded if for i E [l, n] 

-A clause 

i- 1 

Var(si) ~ LJ Var(tj). 

j= 1 

Po(to,Sn+l) <--- P1(S1,t1), ... ,p/sn,tn) 

is called well moded if for i E [l, n + 1] 

i- 1 

Var(si) ~ LJ Var(tj). 
j=O 

-A program is called well moded if every clause of it is. 

Thus, a goal is well moded if 

-every variable occurring in an input position of an atom (i E [1, n]) occurs 

in an output position of an earlier (j E [l, i - 1]) atom. 

And a clause is well moded if 

-(i E [l, n]) in every variable occurring in an input position of a body atom 

occurs either in an input position of the head (j = 0) or in an output 

position of an earlier (j E [1, i - 1]) body atom, and 

-(i = n + 1) every variable occurring in an output position of the head 

occurs in an input position of the head (j = 0) or in an output position of a 

body atom (j E [l, n]). 

A test of whether a goal or clause is well moded can be efficiently per­

formed by noting that a goal G is well moded iff every first from the left 

occurrence of a variable in G is within an output position. And a clause 

p(s, t) <--- B is well moded iff every first from the left occurrence of a variable 

in the sequence s, B, t is within the input position of p(s, t) or within an 

output position in B. (We assume in this description that in every atom the 

input positions occur first.) 
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Note that a goal with only one atom is well moded iff this atom is ground in 

its input positions. The definition of a well-moded program is designed in 

such a way that the following theorem due to Dembinski and Maluszynski 

[ 1985] holds: 

THEOREM 4.2. Let P and G be well moded. Then all LD-derivations of 

P u {G} are are data driven. 

In Dembinski and Maluszynski [ 1985], a different formulation of well 

modedness is given, and the above theorem is actually presented without a 

proof. So we allow ourselves to give a proof here. 

Note that the first atom of a well-moded goal is ground in its input 

positions and a variant of a well-moded clause is well moded. Thus, it suffices 

to prove the following lemma, which shows the "persistence" of the notion of 

well modedness: 

LEMMA 4.3. An LD-resolvent of a well-moded goal and a well-moded 

clause that is variable-disjoint with it is well moded. 

PROOF. An LD-resolvent of a goal and a clause is obtained by means of the 

following three operations: 

(1) instantiation of a goal; 

(2) instantiation of a clause; and 

(3) replacement of the first atom, say, H, of a goal by the body of a clause 

whose head is H. 

So we only need to prove the following two claims: 

CLAIM 1. An instance of a well-moded goal (resp., clause) is well moded. 

PROOF. It suffices to note that, for any sequences of terms s, t 1 , ... , t n and 

a substitution u, 

n 

Var(s) ~ LJ Var(tj) 
j= 1 

implies 

n 

Var(su) ~ LJ Var(tju ). D 

j=l 

CLAIM 2. Suppose that ~ H, A is a well-moded goal and H ~ B is a 

well-moded clause. Then ~ B, A is a well-moded goal. 

PROOF. Let H = p(s, t) and B = p 1(s1 , t 1 ), ... , Pn(sn, tn). We have Var(s) 

= 0 since His the first atom of a well-moded goal. Thus ~ Bis well moded. 

Moreover, Var(t) ~ U J~ 1Var(tj), since H ~ B is. a well-moded clause and 

Var(s) = 0. These two observations imply the claim. D 
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As a digression recall the following immediate and well-known conclusion 
of Theorem 4.2: 

COROLLARY 4.4. Let P and G be well moded. Then, for every computed 

answer substitution cr, Gu is ground. 

PROOF. Let x stand for the sequence of all variables that appear in G. Let 
p be a new relation of arity equal to the length of x and with all positions 
moded as input. Then +-- A, p(x) is a well-moded goal, where G = (- A 

Now, cr is a computed answer substitution for Pu {G} iff p(x)a is a 
selected atom in an LD-derivation of Pu { (-A, p(x)}. The conclusion now 
follows from Theorem 4.2. D 

We shall see in Section 7 that there are natural PROLOG programs for 
which data drivedness cannot be established using the concept of well moded­
ness. Still, the above theorem brings us to the following conclusion, which can 
be easily applied to a number of well-known PRO LOG programs: 

COROLLARY 4.5. Let P and G be well moded. Suppose that the head of every 
clause of P is output linear. Then PU {G} is occur-check free. 

PROOF. By Theorems 3.5 and 4.2 D 

Example 4.6. When presenting the programs, we adhere to the usual 
syntactic conventions of PROLOG, with the exception that PROLOG's :- is 
replaced by the logic programming (- . 

(1) Consider the program append; 

app([X I Xs], Ys, [X I ZsD ..- app(Xs, Ys, Zs). 
app([ ], Ys, Ys). 

with the mode app( +, +, - ). It is easy to check that append is well 
moded and that the head of every clause is output linear. By Corollary 
4.5, we conclude that, for s and t ground, append U { +-- app(s, t, uH is 
occur-check free. 

(2) Now examine the program append with the mode app(-, -, +).Again, 
by Corollary 4.5, we conclude that, for u ground, append U { +­

app(s, t, u)} is occur-check free. 

(3) Consider the program permutation, which consists of the clauses 

perm (Xs, [X I Y sD +­

app(Xls, [X I X2s], Xs), 
app(Xls, X2s, Zs), 
perm(Zs, Ys). 

perm([ ], [ D. 
augmented by the append program. 

Here we use the following moding: perm(+, - ), app( - , - , +) for the 
first call to append, and app( +, +, - ) for the second call to append. It 
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is easy to check that permutation is then well moded and that the heads 
of all clauses are output linear. By Corollary 4.5, we get that, for s 
ground, permutation u { <- perm(s, t)} is occur-check free. 

(4) Now examine the program quicksort, which consists of the clauses 

qs([X I Xs], Y s) <-
partition(X, Xs, Littles, Bigs), 
qs(Littles, Ls), 
qs<Bigs, Bs), 
app(Ls, [XIBs], Ys). 

qs([ ],[ ]). 

partition(X, [Y I Xs], [YI Ls], Bs) <­

X > Y, 
partition(X, Xs, Ls, Bs). 

partition(X, [Y I Xs], Ls, [Y I Bs]) <­

X :$ Y, 
partition(X, Xs, Ls, Bs). 

partition(X, [ ], [ ], [ ]). 
augmented by the append program. 

We mode it as follows; qs(+, -),partition(+,+,-, -),app(+, +, -). 
Again, it is easy to check that quicksort is then well moded and that the 
heads of all clauses are output linear. By Corollary 4.5, we conclude that, 
for s ground, quicksort U I<- qs(s, tH is occur-check free. 

(5) Finally, consider the program palindrome: 

palindrome(Xs) <- reverse(Xs, Xs). 
reverse(Xls, X2s) <- reverse(Xls, [ ], X2s). 
reverse ( [X I Xl s], X2s, Y s) <- reverse(Xls, [X I X2s], Y s). 
reverse ([ ],Xs,Xs). 

We mode it as follows: palindrome(+), reverse(+, - ), reverse(+, +, 
- ). Then palindrome is well moded, and the heads of all clauses are 
output linear. By Corollary 4.5, we conclude that, for s ground, palin­
drome U { <- palindrome(s)l is occur-check free. 

Note that Corollary 3.8 cannot be applied to any of these programs. 

5. NICELY MOOED PROGRAMS 

The above conclusions are still restrictive, because in each case we had to 
assume that the input positions of the one-atom goals are ground. To allevi­
ate this restriction, we now consider some syntactic restrictions that imply 
the conditions of Theorem 3.7. 

The following notion was introduced in Chadha and Plaisted [1994]. (We 
found essentially the same concept independently, though later; the name 
and formulation are ours.) 
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Definition 5.1 

-~goal ~ p1(s1,t1),. . .,pn(sn,tn) is called nicely moded ift1, .. .,tn is a 
lmear family of terms and if for i E [ 1, n] 

Var(si) n C0; Var(tj)) = 0. (1) 

-A clause 

Pa(so,to) ~ P1Cs1,t1), .. .,pn(sn,tn) 

is called nicely moded if ~ p 1(s1, t 1), ... , Pn(sn, tn) is nicely moded and if 

Var(s 0 ) n C.0
1 

Var(tj)) = 0. (2) 

In particular, every unit clause is nicely moded. 

-A program is called nicely moded if every clause of it is. 

Thus, assuming that in every atom the input positions occur first, a goal is 

nicely moded if 

-every variable occurring in an output position of an atom does not occur 

earlier in the goal. 

And a clause is nicely moded if 

-every variable occurring in an output position of a body atom occurs 

neither earlier in the body nor in an input position of the head. 

So, intuitively, the concept of being nicely moded prevents a "speculative 

binding" of the variables that occur in output positions; these variables are 

required to be "fresh." Note that a goal with only one atom is nicely moded iff 

it is output linear and input-output disjoint. The following theorem clarifies 

our interest in nicely moded programs: 

THEOREM 5.2. Let P and G be nicely moded. Then all LD-derivations of 

P U {G} are output driven. 

Note that the first atom of a nicely moded goal is output linear and 

input-output disjoint, and a variant of a nicely moded clause is nicely moded. 

Thus, to prove Theorem 5.2 it suffices to prove the following lemma, which 

shows the "persistence" of the notion of being nicely moded: 

LEMMA 5.3. An LD-resolvent of a nicely moded goal and a nicely moded 

clause that is variable-disjoint with it is nicely moded. 

PROOF. The proof is quite long and can be found in the Appendix. D 

This lemma leads us to the following conclusion: 

COROLLARY 5.4. Let P and G be nicely moded. Suppose that the head of 

every clause of P is input linear. Then PU {G} is occur-check free. 

PROOF. By Theorems 3. 7 and 5.2. D 
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This corollary is independently established in Chadha and Plaisted [ 1994]. 

Pierre Deransart (private communication) pointed out to us that this corol­

lary is a consequence of Theorem 4.1 in Deransart et al. [1991], whose 

conditions are satisfied for a nicely moded program P and a nicely moded 

goal G. This suggests a stronger result, namely, that then P u {G} is NSTO. 

On the other hand, our proof establishes Lemma 5.3, which will allow us to 

deal in Section 7 with programs that use difference lists and in Section 10 

with programs that do require the use of unification with the occur-check. 

Note that to prove Corollary 5.4 it is actually sufficient to prove Lemma 5.3, 

under the assumption that the head of every clause of P is input linear. The 

proof is considerably simpler than that of Lemma 5.3. 

To apply Corollary 4.5, it is natural to start by moding the relations used in 

the goal so that this goal becomes well moded. Then one should try to mode 

other relations used in the program, so that the remaining conditions of this 

corollary are satisfied. The important clue comes from the fact that the input 

positions of the first atom of a well-moded goal are filled in by ground terms. 

This is not the case for the nicely moded goals, so, for example, it is not clear 

how to mode the relation app when considering the goal +- app([X, 2], 

[Y, U], [3, Z, O, Z]) (which succeeds with the c.a.s. IX/ 3, Z / 2, Y / 0, U / 2D. 

We shall see later that in the presence of difference lists there is no clear 

intuition either about the modes of certain positions in the relations. 

Consequently, as noted by Chadha and Plaisted [ 1994], to apply Corollary 

5.4 it is probably more natural to investigate, first, all of the modings for 

which the program is nicely moded and for which the heads of all clauses are 

input linear. Then one should check for which modings the given goal is 

nicely moded. To this end Chadha and Plaisted [ 1994) proposed two efficient 

algorithms for generating modings with the minimal number of input posi­

tions, for which the program is nicely moded. These algorithms were imple­

mented and applied to a number of well-known PRO LOG programs. 

In the case of the append program, the conditions of Corollary 5.4 are 

satisfied for only five of the eight modes. Out of the five, only the mode 

app(-, -, +) can be used to deal with the goal +- app([X,2],[Y, U], 
[3, Z, 0, Z]). 

Let us see now how this corollary can be applied to the previously studied 
programs. 

Example 5.5. 

(1) Again consider the program append with the moding app(+, +, -). 

Clearly, append is nicely moded, and the head of every clause is input 

linear. By Corollary 5.4, we conclude that, when u is linear and when 

Var(s, t) n Var(u) = 0, append U { <--- app(s, t, u)l is occur-check free. 

(2) With the moding app( - , - , +), the program append is nicely moded as 

well, and the head of every clause is input linear. Again, by Corollary 5.4, 

we conclude that, when s, t is a linear family of terms and when Var(s, t) 

n Var(u) = 0, append U { +- app(s, t, u)} is occur-check free. 
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(3) Now reconsider the program permutation with the modings as before. 
Again, it is easy to check that permutation is nicely moded and that the 
heads of all clauses are input linear. By Corollary 5.4, when t is linear 
and when Var(s) n Var(t) = 0, permutation u { +- perm(s, t)} is 
occur-check free. 

(4) Examine the program quicksort with the modings as before. Again, by 
Corollary 5.4, when t is linear and when Var(s) n Var(t) = 0, quicksort 
U { +- qs(s, t)} is occur check free. 

(5) So far it seems that Corollary 5.4 allows us to draw more useful conclu­
sions than Corollary 4.5. However, reconsider the program palindrome. 
In Chadha and Plaisted [ 1994], it is shown that no moding exists in which 
palindrome is nicely moded with the heads of all clauses being input 
linear. Thus, Corollary 5.4 cannot be applied to this program. 

6. STRICTLY MOOED PROGRAMS 

Next, consider syntactic restrictions that imply the condition of Theorem 3.9. 
To this end it is sufficient to combine the properties of being well moded and 
nicely moded. Indeed, we observe the following: 

COROLLARY 6.1. Let P and G be well moded and nicely moded. Then 

P U { G} is occur-check free. 

PROOF. By Theorems 4.2, 5.2, and 3.9. 0 

In the remainder of this section, we show that the conditions of this 
corollary can be weakened. First, note that, when a goal +- p 1(s1 , t 1), ••. , 

p/sn, tn) is well moded and the family t 1 , ... , tn is linear, condition (1) of 
Definition 5.1 is satisfied and, thus, the goal is nicely moded. A similar 
observation can be made about a clause p 0(s 0 , t 0 ) +- p 1(s1 , t 1 ), ... , Pn<sn, tn). 

Thus, the assumptions of the above corollary can be simplified. We now 
show that a further simplification is possible; namely, condition (2) of Defini­
tion 5.1 can be omitted as well. 

Definition 6.2. 

-A goal +- p 1(s1 , t 1 ), ... , Pn<sn, tn) is called strict if t 1 , ... , tn is a linear 

family of terms. 

-A clause H +- B is called strict if +- B is strict. 

-A program is called strict if every clause of it is. 

-A goal (clause, program) is called strictly moded ifit is both strict and well 

moded. 

THEOREM 6.3. Let P and G be strictly moded. Then all LD-derivations of 

P U {G} are both data and output driven. 

Note that the first atom of a strictly moded goal is ground in its input 
positions, output linear, and input-output disjoint, and a variant of a strictly 
moded clause is strictly moded. Thus, to prove this theorem it suffices to 
show, as in the case of well-modedness and being nicely moded, that the 

notion of strict modedness is "persistent." 
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LEMMA 6.4. An LD-resoluent of a strictly moded goal and a strictly moded 

clause that is variable-disjoint with it is strictly moded. 

PROOF. Consider a strictly moded goal +---- A, A and a strictly moded clause 

H +---- B that is variable-disjoint with it. We start by proving three claims that 

appropriately refine those of Lemma 4.3. 

Suppose A=p(sA,tA) and H=p(sH,tH). Assume that A =His unifi­

able. Take as E 1 the system of equations sA = sH and as E 2 the system of 

equations tA = tH. Let 81 be a relevant mgu of E 1 and let 82 be a relevant 

mgu of E2 81. The existence of these substitutions is assured by Lemma 2.4, 

which also gives that 81 82 is a relevant mgu of A = H. 

Let p - be a new relation symbol of arity equal to the cardinality oft A (and 

oft H) with all positions moded as output. Note that 81 is grounding, so, by 

the definition of a nicely moded goal and clause, +---- (p-(tA),A)81 and 

p-(tHfJ1) - B81 are both nicely moded and have no variables in common. By 

Lemma 5.3, their resolvent - (B81,A8 1)82 is nicely moded, as well. 

This and Lemma 4.3 allow us to conclude that the LD-resolvent +---­

(B,A)fJ1 fJ2 of the goal +----A,A and the clause H +----Bis both well moded and 

nicely moded, and is, thus, strictly moded. 

8 = fJ 1 82 is just one specific mgu of A = H. By Lemma 2.3, every other mgu 

of A = H is of the form 87) for a renaming 7). But a renaming of a strictly 

moded goal is strictly moded, so we conclude that every LD-resolvent of +----A, 

A and H - B is strictly moded. D 

The following result improves upon Corollary 6.1: 

COROLLARY 6.5. Let P and G be strictly moded. Then P U {G} is occur-check 

free. 

PROOF. By Theorems 6.3 and 3.9. D 

Example 6.6. In contrast to the case of well-moded and nicely moded 

programs, it is difficult to come up with a natural example to which the 

notion of a strictly moded program could be applied. Still, consider the 

program derivative from Sterling and Shapiro [ 1986, p. 63], which computes 

a derivative of an expression w.r.t. a variable. To save space, here we only 

reproduce a couple of crucial clauses. The used function symbols are written 

in an infix form, and for simplicity, unary notation for natural numbers is 

used. 

der(:X, :X, s(O) ). 

der{X i s(N),:X, s(N) *Xf N). 

der(F + G,:X,DF + DG) - der(F,:X,DF),der(G,X,DG). 

der{F*G,:X,F*DG + DF*G) - der(F,:X,DF),der(G,:X,DG). 

To compute the derivative of an expression e, say, xj s(O) + X*Y + 
Yi s(s(s(O))), w.r.t a variable, say, x, one uses the goal +---- der{e, x, Y). In the 

mode der( + , +, - ) , this program is both well moded and nicely moded, and 

consequently, it is also strictly moded. By Corollary 6.5, we conclude that, 
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when e and t are ground and u is linear, derivative u { +--- der(e, t, u)} is 

occur-check free. 

Note that the head of the first clause is not input linear, and the head of 

the second clause is not output linear. Consequently, neither Corollary 4.5 

nor Corollary 5.4 can be applied here. 

7. DIFFERENCE LISTS 

It is well known that programs with difference lists easily lead to complica­

tions in absence of the occur-check. For example, the program empty, 

empty(L\L). 

when executed with the goal <---- empty([a IX1\X) leads to the consideration 

of the system {[a IXl = L, X = L}, which is subject to the occur-check. It is 

worthwhile to note that programs that use difference lists can be handled by 

the methods proposed. For example, Corollary 5.4 immediately implies that, 

for s and t linear and variable-disjoint, empty U { +--- empty(s, tH is occur­

check free. 

However, we did find two programs in Sterling and Shapiro [1986] that use 

difference lists and to which we could not apply the results so far established. 

These are flatten_dl [Sterling and Shapiro 1986, program 15.2, p. 241]; 

flatten(Xs, Ys) +--- flatten_dl(Xs, Ys\[ D. 

flatten_dl([X IXs], Ys\Zs) +--

flatten_dl(X, Ys\Ysl), 

flatten_dl(Xs, Ysl \Zs). 

flatten_dHX, [X I Xs]\Xs) <-­

constant(X), X i= [ ]. 

flatten_ di([ ], Xs\Xs). 

and quicksort_dl [Sterling and Shapiro 1986, program 15.4, p. 244], 

qs(Xs, Ys) +--- qs_dHXs, Ys\[ ]). 

qs_dHCXIXs1, Ys\Zs) +--

partition(X, Xs, Littles, Bigs), 

qs_dHLittles, Ys\[X IYsl]), 

qs_dl(Bigs, Ysl \Zs). 

qs_dl([ ],Xs\Xs). 

augmented by the partition program. 

These programs are customarily used in the modes flatten(+, - ) and 

qs( +, - ) . It is easy to check that for both programs no completion of the 

moding exists for which the program is well moded, or nicely moded and with 

the heads of all clauses being input linear. 

For example, for flatten_dl the attempt to get it well moded fails as 

follows: Assume the mode flatten( +, - ) . For the first clause, we have to use 

a mode of the form flatten_dH?, -, ?). Now, due to the last clause, we 

actually have to use a mode of the form flatten_dl(?,-, +).But, then, in the 
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recursive clause for flatten_dl we cannot satisfy the requirement of well 

modedness concerning the variable Yls. 

However, it is possible to modify the results on well moded and nicely 

moded programs in such a way that the occur-check freedom of the above two 

programs used in the discussed modes still can be established. The idea is 

quite simple, though some work is needed to make it precise. Suppose that we 

know that some program atoms when selected in a derivation are ground in 

specific input positions. Then these input positions do not need to be consid­

ered when proving that the program is occur-check free. 

To formalize this idea, we consider a program and goal in two different 

modings. First we prove that, when an atom is selected in a derivation, its 

input positions, which are "shared" in both modes, are ground. Then we 

consider a derived program obtained by removing from each atom these 

shared input positions and apply to it the previous results on the nicely 

moded programs. 

To avoid confusion we write m-well moded (resp., m-nicely moded, etc.) 

when a given goal (clause, program) is well moded (resp., nicely moded, etc.) 

with respect to the moding m. Now assume two modings m 1 , and m 2 . Fix a 

relation symbol p. Some positions in p are both m 1-input and m 2-input. We 

now associate with p a new relation symbol p - in which these shared input 

positions are removed and the remaining positions are moded as in m 2 . The 

moding so obtained for the relation symbols of the form p- is denoted by 

m2 - m1. 

For example, if m 2 is flatten_dl(+, +, -) and m 1 is flatten_dl 

(+, -, -), then m 2 -m 1 is flatten_dl-(+, -). These new relation sym­

bols allow us to associate with any atom A written in the mode m 2 as 

p(u, v), an atom A - written in the mode m 2 - m 1 as p ··(u - , v), where u - is 

obtained by removing from u the terms that are in m 1-input positions. 

For example, for the above two modes m 1 and m 2 and A = flatten_ 

dl([X IXs], Ys, Zs) we get A - =flatten_ di -(Ys, Zs). 

Now given a sequence of atoms A, we associate with it a sequence A -

obtained by replacing in A every atom A by A-. 

Definition 7.1. 

-A goal <--A is called m 2-nicely moded w.r.t. m 1 (m 2 I m 1-nice, in short) if 

the goal <--A- is (m 2 - m1)-nicely moded. 

-A clause H <-- B is called m 2 I m 1-nice if the clause s-- <-- B -- is m 2 I m 1-

nice. 

-A program is called m 2 I m 1-nice if every clause of it is. 

Thus, a goal (clause, program) is m 2 I mi-nice if its"-" version is (m 2 - m 1 )­

nicely moded. Note that the notion of m 2 I m 1-nice goal (clause, program) 

extends that of nice goal (clause, program). Indeed, if a goal (clause, program) 

is m 2-nice then it is m 2 lm 1-nice for every m 1. Also, a goal (clause, program) is 

m1 I m 1-nice and m1-well moded iff it is m 1-strictly moded. 
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The following theorem explains the usefulness of this concept: 

THEOREM 7.2. Suppose that 

-all LD-derivations of PU {G} are m 1-data driven, and 

-P and G are m 2 I m 1-nice. 

Then all LD-derivations of P U {G} are mz-output driven. 

PROOF. First, we prove that all goals appearing in an LD-derivation of 

PU {G} are m 2 I m 1-nice. To this end, due to the assumption of m 1-data 

drivedness, it suffices to prove that, for A m 1 -input ground, an LD-resolvent 

of an m 2 I m 1 -nice goal ~ A, A and a disjoint with it variant H ,,___ B of an 

m 2 I m 1-nice clause is m 2 I m 1 -nice as well. 

Assume that A and H are unifiable. A = H equals E U (A - = H- ), where 

the left-hand sides of the equations from E are ground. Let 81 be a relevant 

mgu of E and let 82 be a relevant mgu of(A - = H-)e 1• The existence of these 

substitutions is assured by Lemma 2.4, which also gives that 81 82 is a 

relevant mgu of A = H. 

81 is grounding, so by the definition of a nicely moded goal and clause, both 

~ (A-,A-)8 1 and (H- ~ B-)81 are (m 2 - m 1)-nicely moded. By Lemma 5.3, 

their LD-resolvent ~ rn-,A-)6 182 is (m 2 - m 1)-nicely moded; that is, ~ 

(B, A) 61 82 , the resolvent of ~ A, A and H ~ B, is m 2 I m 1-nice. To draw the 

same conclusion for an arbitrary LD-resolvent of ~ A,A and H +- B, it 

suffices now to use Lemma 2.3. 

Now consider a goal appearing in an LD-derivation of P U {G}. We just 

established that it is m 2 I m 1-nice, so its first atom A is such that A - is 

(m 2 - m 1)-output linear and (m 2 - m 1)-input-output disjoint. By assump­

tion, A is also mi-input ground, so A is actually m 2-output linear and 

m 2-input-output disjoint. This proves the claim. D 

This brings us to the following conclusion: 

COROLLARY 7.3. Suppose that 

-all LD-derivations of PU {G} are m 1-data driven, 

-P and G are m 2 I m 1-nice, and 

-for a head H, of a clause of P, H- is (m 2 - m 1 )-input linear. 

Then PU {G} is occur-check free. 

Note that the last assumption is weaker than the statement that the head of 

every clause of P is m 2-input linear. 

PROOF. Let A be an atom selected in an LD-derivation of P U {G}, and 

suppose that H is a head of an input clause such that A and H have the 

same relation symbol. By Theorem 7.2, A is m 2-output linear, and m 2 is 

input-output disjoint. Let m 3 be the mode obtained from m 2 by reversing the 

m1-input positions to output positions. By assumption, the m 1-input positions 

of A are ground, so A is m 3-output linear and m 3-input-output disjoint. 

Moreover, by assumption, H is mrinput linear. Now NSTO via Modes 

Lemma 3.3 applies and yields that A = H is NSTO. D 
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We have already noticed that neither flatten_dl nor quicksort_dl is 

well moded with the relation flatten (resp., qs) is moded, ( +, - ). Thus, to be 

able to apply this corollary we need another method for establishing data­

drivedness than proving well modedness. Our idea is to weaken the latter 

notion by assuming that only part of the program is well moded and by 

requiring that the previous inclusions referring to the output variables refer 

now to the output variables of the atoms defined in this well-moded part. We 

begin with some definitions. 

Definition 7.4. Let P be a program, and let p, q be relations. 

-We say that prefers to q iffthere is a clause in P that uses pin its head 

and q in its body. 

-We say that p depends on q iff(p, q) is in the reflexive, transitive closure 

of the relation refers to. 

-We say that a clause of P defines the relation p if p is used in its head. 

Definition 7.5. Consider a program P and an atom A in a given moding. 

-We denote by PA the set of clauses of P that define the relation p of A and 

the relations on which p depends. 

-We say that A is well moded in P if PA is. 

For example, in the moding qs( +, -), qs_dl( +, +,-),partition(+,+,-, 

- ) , for A = partitionCX, Xs, Littles, Bigs) we have quicksort _ dl A = 

partition, so A is well moded in quicksort_dl. 

We now introduce the following modification of the notion of a well-moded 

program and goal: 

Definition 7.6. Let P be a program. 

-A goal +--- p 1(s1, t 1 ), •.• , p/sn, tn) is called weakly moded w.r.t. P if for 

i E [1, n] 
k 

Var(s) ~ U Var(tij), 
j=l 

where P;lsi1, t;1), ... , P;k(sik' tik) are all of the atoms among p 1(s 1 , 

t 1 ), .. .,p;_ 1(si_ 1,ti_ 1 ) that are well moded in P. (Here and below, k 

depends on i.) 

-A clause 

PoCso, to)+--- P1Cs1, t1), ·· ·, Pn(sn, tn) 

is called weakly moded w.r.t. P if for i E [1, n] 

k 

Var(s) ~ Var(s 0 ) U U Var(t;J, 
;= 1 

where P;1(si1, t;1), ... , P;k(sik' tik) are all of the atoms among p 1 

(s1,t1), ... ,p;_ 1(si-I•ti-I) that are well moded in P. In particular, every 

unit clause is weakly moded w.r.t. P 
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-A program is called weakly moded if every clause of it is weakly moded 

w.r.t. it. 

Thus, a goal is weakly moded w.r.t. P if 

-every variable occurring in an input position of an atom occurs in an 

output position of an earlier, well-moded in P atom. 

And a clause is weakly moded w.r.t. P if 

-(i E [1,n]) every variable occurring in an input position of a body atom 

occurs either in an input position of the head or in an output position of an 

earlier body atom, which is well moded in P. 

Observe that a goal with only one atom is weakly moded w.r.t. a program P 

iff its atom is ground in its input position. The notion of being weakly moded 

is obviously related to that of being well moded. In fact, if a program P is 

well moded, then it is weakly moded. Next, assuming that P is well moded, if 

a goal is well moded, then it is weakly moded w.r.t. P. Thus, the following 

theorem generalizes Theorem 4.2: 

THEOREM 7.7. Let P be weakly moded, and let G be weakly moded w.r.t. P. 

Then all LD-derivations of P U {G} are data driven. 

Note that the first atom of a weakly moded goal is ground in its input 

positions and that a variant of a weakly moded clause is weakly moded (all 

w.r.t. a program P). Thus, as in the case of Theorem 4.2, it suffices to prove 

the following lemma, showing the persistence of the notion of being weakly 

moded: 

LEMMA 7.8. An LD-resolvent of a weakly moded goal and a weakly moded 

clause that is variable-disjoint with it is weakly moded, all w.r.t. a program 

P. 

PROOF. The proof is analogous to that of Lemma 4.3. We prove two claims: 

CLAJM 1. An instance of a weakly moded goal (resp., clause) is weakly 

moded, w.r.t. a program P. 

PROOF. As the proof of Claim 1 of Lemma 4.3. D 

CLAJM 2. Suppose <-- H,A is a weakly moded goal and H <--Bis a weakly 

moded clause. Then <-- B,A is a weakly moded goal, all w.r.t. a program P. 

PROOF. Let H = p(s, t) and B = p 1(s1 , t 1 ), ... , p/sn, tn). We have Var(s) 

= 0, since H is the first atom of a weakly moded goal. Thus, <-- B is weakly 

moded. Now, if H is well moded in P, then H <-Bis a well-moded clause, 

and consequently, Var(t) ~ U ]= 1 Var(t), since Var(s) = 0. Moreover, all 

atoms in B are then well moded. So <-- B, A is weakly moded. 

If H is not well moded in P, then, by assumption, <-- A is weakly moded, 

and so <-- B, A is as well. D 

In contrast, Corollary 4.4 does not generalize to the case of weak moded­

ness. Indeed, consider P = {p(x) <--} and G = <-- p(y ), where the relation p is 

moded p(-). 
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Now, combining Theorem 7.7 with Corollary 7.3 we obtain the generaliza­

tion of Corollaries 5.4 and 6.5 we aimed at: 

COROLLARY 7.9. Suppose that 

-P is m 1-weakly moded and G is m 1-weakly moded w.r.t. P; 

-P and G are m 2 ! m 1-nice, and 

-for a head H ofa clause of P, H- is (m 2 - m 1 )-input linear. 

Then P u {G} is occur-check free. 

The conditions of this corollary look quite elaborate, but it is easy to check 

them for specific programs. 

Example 7.10. 

(1) Consider the fl.atten_dl program with "\" replaced by ",". Choose 

m 2 =flatten(+, -),fl.atten_dl(+, +,-),constant(+), =I=(+,+). It is 

easy to see that in this moding flatten_ di is nicely moded, so it is m 2 I m 1 -nice 

for any moding m1. However, in the moding m 2 the head of the third clause 

is not input linear, so here we cannot apply Corollary 5.4. 

On the other hand, by choosing m 1 with flatten_ di(+, - , - ) and all 

other modes as in m2 , we get for a head H of a clause of flatten_ di that H­

is (m 2 - m1)-input linear. Additionally, flatten_dl is m 1-weakly moded. We 

can now apply Corollary 7.9 and conclude that, when xs is ground and ys is 

linear, flatten_dl u { <- flatten(xs,ys)} is occur-check free. 

(2) Now examine the program quicksort_dl, again with "\" replaced by 

",".Choose m 2 = qs( +, -), qs_dl( +, +, -), partition(+, +, - , - , ). In this 

mode quicksort_dl is not nicely moded, since in the second clause the 

variable X occurs both in an input position of the head and in an output 

position of a body atom. 

However, by choosing m1 with qs_dl( +, -, -, ) and all other modes as in 

m 2 , we get that quicksort_dl is m 2 I m1-nice. Additionally, quicksort_dl 

is m1-weakly moded, since, as we already noted, partition(X, Xs, Littles, 

Bigs) is well moded in quicksort_dl. Also, for a head H of a clause of 

quicksort_dl, H- is (m 2 - m1)-input linear. By Corollary 7.9 we get that, 

when xs is ground and ys is linear, quicksort_dl U { <- qs(xs,ys)} is occur­

check free. 

(3) Finally, consider the following program normalize from Sterling and 

Shapiro [ 1986, p. 248], in which we replace the binary infix symbol "+ +" 

(symbolizing the sum still to be performed) by",": 

normalize(Exp, Norm) <- normalize_ ds(Exp, Norm, O). 

normalize_ds(A + B, Norm, Space) <-

normalize_ds(A, Norm, NormB) 

normalize_ds(B, NormB, Space). 

normalize_ds(A, (A+ Space), Space)<- constant (A). 
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normalize converts a sum Exp into a normalized form Norm that is 

bracketed to the right. For example, (a + b) + (c + d) is normalized to 

(a + (b + (c + d))). 

Assume the mode normalize ( +,-).We leave to the reader the task of 

checking that Corollaries 4.5, 5.4, or 6.5 cannot be applied here. Now consider 

m 2 =normalize(+, -),normalize_ds(+, +, -), constant (+), and let 

m 1 consist ofnormalize_ds(+, -, -) and all other modes, as in m 2 . The 

same reasoning as in the case of flatten_ di applies and yields that, for exp 

ground and norm linear, normalize U { +-- normalize(exp, norm)} is occur­

check free. 

8. GENERAL PROGRAMS 

We now consider an extension of these results to the case of general pro­

grams, that is, programs in which negative literals in the clause bodies are 

allowed. We also show that the concept of well modedness can be used to 

prove the absence of floundering, that is, selection of a negative, nonground 

literal in a derivation. 

First, we need to extend the basic definitions. By the LDNF-resolution we 

mean the SLDNF-resolution of Clark [1979] with the leftmost selection rule. 

When studying the occur-check problem, we need to use a definition of 

SLDNF-resolution that guarantees that for every general program P and a 

general goal G the SLDNF-tree, which comprises all SLDNF-derivations, 

exists. (The definition provided in Lloyd [1987] is too restrictive for this 

purpose; e.g., for the program P = {p +-- p} and the general goal G = +-- , p, 

no SLDNF-derivation or tree exists.) Such a definition was recently given in 

Apt and Doets [ 1994]. 

Here we only need to know the general goals that can appear in an 

LDNF-derivation of PU {G}. This leads us to the following definition, where, 

for a general goal H and a literal L, H - {L} stands for the result of 

removing L from H: 

Definition 8.1. Consider an LDNF-derivation of PU {G}. Let Jlp a be the 

least set of general goals such that · 

(1) GE ;f;'P,G; 

(2) if HE Jlp 0 , the first literal of H is positive, and H' is an LDNF-re­

solvent or' H and a general clause of P that is variable-disjoint with it, 

then H' E .'2JJ,, 0 ; 

(3) if HE JYP,G and the first literal, L, of H is negative and ground, then 

H - {L} E Jlp,c; and 

(4) if His ground, then HE .'9'P,G· 

Using the definition of SLDNF-resolution provided in Apt and Doets [ 1994], 

it is straightforward to prove the following lemma, whose proof we omit: 

LEMMA 8.2. Consider an LDNF-derivation ~ of PU {G). Every general 

goal that appears in g belongs to JJ?.c· 
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When computing with general programs, one of the complications is so­

called floundering. We study it here for the case of the LDNF-resolution. 

Definition 8.3. Let P be a general program and G a general goal. We say 

that P u {G} /founders ifin the LDNF-tree of PU {G} a general goal appears 

with the first literal negative and nonground. 

Next, when considering the notion of the occur-check freedom for general 

programs and general goals, we simply reuse the original Definition 2.6. In 

this way, we ignore the selection of negative literals, but this does not matter, 

as the choice of a negative literal -, A leads either to floundering or to the 

consideration of the goal ~ A whose selected literal is positive. In both cases 

no unification is performed. 

The concepts of data- and output-driven derivations extend to LDNF-de­

rivations in a straightforward way by considering selected literals instead of 

selected atoms. 
Now, we generalize the notion of well modedness to general programs and 

general goals by simply allowing in Definition 4.1 the negation symbol to 

occur in front of any atom pi(s;, t;), where i E [1, n]. Theorem 4.2 easily 

generalizes to general programs and general goals. More precisely, we have 

the following result: 

THEOREM 8.4. Consider a general program Panda general goal G. Let P 

and G be well moded. Then all LDNF-derivations of P U {G} are data driven. 

PROOF. First, we prove that every general goal in :9'P,G is well moded. 

Lemma 4.3 generalizes to LDNF-resolvants, so clause (2) of Definition 8.1 

preserves well modedness. Obviously, so does clause (3) and clauses ( 1) and 

(4) admit only well-moded general goals in JlP,c· The desired conclusion now 

follows from Lemma 8.2 and from the fact that the first literal of a well-moded 

general goal is ground in its input positions. D 

Consequently, Corollary 4.5 holds for general programs and general goals, 

this time by virtue of Theorems 3.5 and 8.4. 

The following simple result shows that the concept of well modedness is 

also very helpful for the study of floundering. It was independently discovered 

by Stroetman [1993]: 

THEOREM 8.5. Consider a general program P and a general goal G. Sup­

pose that P and G are well moded and that all relations that appear in 

negative literals of P and G are moded completely input. Then P u {G} does 

not flounder. 

PROOF. Using the inductive definition of Jlp 0 , it is straightforward to 

show that every negative literal L occurring in a general goal HE ?Yp 0 is an 

instance of a negative literal occurring in P or G. So, by assumption, the 

relation appearing in such L is moded completely input. The claim now 

follows by Lemma 8.2 and by Theorem 8.4. D 

Note also that Theorem 7.7 easily generalizes to general goals and general 

programs. Consequently, Theorem 8.5 can be strengthened to the case of 
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(appropriately defined) weakly moded general goals and general programs. 
Theorem 8.5 and the above generalization of Corollary 4.5 are easily applica­
ble. 

Example 8.6. All general programs below are understood to be augmented 
by the program member: 

member(X, [YI Xs]) +---- member(X, Xs). 
member(X, [X I Xs]). 

(1) Consider the general program disjoint: 

disjoint(X, Y) +---- -, overlap(X, Y). 

overlap(X, Y) +---- member(Z, X), member(Z, Y). 

w~t~ ~he moding disjoint(+, +),overlap(+, +),member(-, +).Of course, 
d1sJomt checks whether two lists are disjoint. disjoint is clearly well moded, 
and the heads of all general clauses are output linear; so for s and t ground, 
disjoint U { +---- disjoint(s, t)} is occur-check free, and by virtue of Theorem 
8.5, it does not flounder. 

(2) The following well-known general program trans computes the transi­

tive closure of a binary relation: 

trans(X, Y, E, V) +---- member(CX, Y], E). 

trans(X, Z, E, V) +-

member( [X, Y], E), 

-,member(Y, V), 

trans(Y, Z, E, [Y IV]). 

In a typical use of this program, in order to check that [x, y] is in the 
transitive closure of the binary relation e, one evaluates the goal +­

trans(x, y, e, [x]). 
With the moding trans(-, -, +, +),member(+,+) for the occurrence of 

member in the negative literal-, member(Y, V) and member( - , +) for the 
other occurrences of member, the program trans is well moded, and the 
heads of all general clauses are output linear. So we conclude that, for e, v 

ground, trans U { +---- trans(s, t, e, v)} is occur-check free, and by Theorem 8.5, 
it does not flounder. The mode member(+,+) is needed here only to draw 

the latter conclusion. 

(3) Finally consider the general program sink: 

sink(X, E) +---- -, interior(X, E). 
interior(X, E) +---- member([X, Y], E). 

with the moding sink(+, +),interior(+, +),member(-,+). For a binary 
relation e, the goal +---- sink(a, e) succeeds if a is a sink point in e. sink is 
well moded, and the heads of all general clauses are output linear, so for a, e 
ground, sink u { +---- sink(a, e)} is occur-check free and does not flounder. 

The usual approach to prove the absence of floundering by syntactic means 
concentrates on SLDNF-resolution and is based on various generalizations of 
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the concept of allowedness (see Decker [1991] for the strongest results in this 

direction). However, these techniques, in general, cannot be applied to 

LDNF-resolution, which employs a more specific notion of floundering. 

Using Lemma 8.2 it is also possible to generalize the results on nicely and 

strictly moded programs ( viz, Corollaries 5.4 and 6.5) to the case of general 

programs. However, the concept of a strictly moded general program is rarely 

needed, and that of a nicely moded general program does not prevent the use 

of nonground input positions in the goals. As a result, general programs to 

which the results on nicely moded general programs can be applied usually 

flounder. So, in the framework of LDNF-resolution, these generalizations are 

of limited interest and, consequently, are omitted. 

9. DISCUSSION 

To apply the established results to a (general) program and a (general) goal, 

one needs to find appropriate modings for the considered relations such that 

the conditions of one of the established corollaries are satisfied. In Table I 

several programs taken from Sterling and Shapiro [1986] are listed. (A 

similar analysis of the notion of a well-moded program was carried out in 

Drabent [1987]). Corollary 3.8 can be applied to none of them. For each 

program it is indicated which of the relevant conditions for a given moding 

are satisfied. All built-ins are moded completely input. 

In programs that use difference lists, we replaced"\" by",", thus splitting 

a position filled in by a difference list into two positions. Because of this 

change, in some relations additional arguments are introduced, and so cer­

tain clauses have to be modified in an obvious way. For example, in the 

parsing program in Sterling and Shapiro [1986], each clause of the form 

p(X) <- r(X) has to be replaced by p(X, Y) <- r(X, Y). Such changes are 

purely syntactic and allow us to draw conclusions about the occur-check 

freedom of the original program. The modings considered are usually intu­

itive, and at least one of the Corollaries 4.5, 5.4, or 6.5 applies. 

The appropriate entry in Table I indicates that, after replacing"\" by"," in 

the mode flatten(+, +) and flatten_ di(+, +, - ), flatten_ di is well moded 

and the heads of the clauses are output linear. Thus, by virtue of Corollary 

4.5 for s and t ground, all LD-derivations of flatten_dl u { <- flatten(s, t)} 

are occur-check free. Similar conclusions can be drawn about quicksort_dl 

moded qs(+, +),qs_dl(+, +,-),partition(+,+,-,-). Thus, for a re­

stricted class of goals, the occur-check freedom of these two programs can be 

established by means of the elementary techniques presented in Section 4. 

10. WHEN OCCUR-CHECK IS NEEDED 

Still, the results of this paper should be interpreted with caution. When 

Corollary 5.4 cannot be applied to a given program, the only alternatives are 

Corollaries 4.5, 6.5, or 7.9. In such cases, well- or weak-modedness is re­

quired, and thus, groundness of the inputs of the one-atom goal has to be 

assumed. Thus, no conclusion about the occur-check freedom for one-atom 

goals with nonground inputs can be drawn. For example, for the member 
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Table I 

Well Heads Nicely Heads Strictly 
Program Page Mo ding moded output linear moded input linear moded 

member 45 (-, +) Yes Yes Yes Yes Yes 
member 45 (+, +) Yes Yes Yes No Yes 

prefix 45 (-, +) Yes Yes Yes Yes Yes 
prefix 45 (+, +) Yes Yes Yes No Yes 

suffix 45 (-, +) Yes Yes Yes Yes Yes 
suffix 45 (+, +) Yes Yes Yes No Yes 

naive reverse 48 r(+, -) Yes Yes Yes Yes Yes 
a(+,+,-) 

reverse-ace. 48 r(+, -) 
r(+, +, -) 

Yes Yes Yes Yes Yes 

delete 53 (+,+,-) Yes Yes Yes No Yes 

select 53 (+,+,-) Yes Yes Yes No Yes 

insertion sort 55 s(+, -) Yes Yes Yes Yes Yes 
H+, +, -) 

tree-member 58 (-, +) Yes Yes Yes Yes Yes 
tree-member 58 (+, +) Yes Yes Yes No Yes 

isotree 58 (+, +) Yes Yes Yes No Yes 

substitute 60 (+,+,+,-) Yes Yes Yes No Yes 

pre-order 60 p(+, -) Yes Yes Yes Yes Yes 
a(+,+,-) 

in-order 60 i( +, - ) 
a(+,+,-) 

Yes Yes Yes Yes Yes 

post-order 60 p(+, -) Yes Yes Yes Yes Yes 
a(+,+,-) 

polynomial 62 (+, +) Yes Yes Yes No Yes 

derivative 63 (+, +, -) Yes No Yes No Yes 

hanoi 64 h(+, +, +l -) Yes Yes Yes Yes Yes 
a(+,+,-

appemL.dl 241 (+,-,+,+,-,-) Yes Yes Yes Yes Yes 
append_dl 241 (+,-,+,-,-,-) No No Yes Yes No 

fl.atten_dl 241 f(+, +,) Yes Yes Yes No Yes 
LdH+, +, -) 

flatten 243 f( +, - ) Yes Yes Yes Yes Yes 
f(+, +, -) 

reverse_dl 244 r(+, -) Yes Yes Yes Yes Yes 
r_dH+, -, +> 

quicksorLdl 244 q(+, +) Yes Yes No Yes Yes 
q_d.H +, +, -) 
p(+, +, -, -) 

dutch 246 dutcb(+, -) Yes Yes Yes Yes Yes 
di(+,-,-,-) 

dutclL..dl 246 dutcb(+, -) Yes Yes Yes Yes Yes 
dH+,-,+,-,+,-,+) 

parsing 258 all(+,-) Yes Yes Yes Yes Yes 
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program of Example 8.6 no conclusion can be drawn for the goal <­

member(Yl s, Y2s) when Yls and Y2s are not ground. And, indeed, when 

Y2s = [f(Yls)] one of the considered systems is {Yls = X, f(Yls) = X, 

[ ] = Xs}, which is subject to occur-check. Thus, after all, even for simple 

programs, the occur-check problem can very easily creep in. 

In view of this discussion, it is easy to interpret the obtained results as a 

statement that the occur-check problem can arise only when considering 

some "ill-designed programs" or "ill-posed goals." The following delightful 

example offered to us by Dino Pedreschi (private communication) shows that 

it is not so. 
Consider the typed lambda calculus and Curry's system of type assignment 

(see Curry and Feys [1958]). It involves statements of the form x: t, which 

should be read as "term x has type t." Finite sequences of such statements 

are denoted by R. The following three rules allow us to assign types to 

lambda terms: 

x:t ER 

Rr-x:t 

R 'r- m:s ~ t,R 'r- n:s 

R 'r- (mn): t 

R,x:s'r-m:t 

R 'r- (Ax,m):s ~ t 

These rules translate directly into the following PROLOG program, called 

curry, which can be used to compute a type assignment to a lambda term, if 

such an assignment exists (see, e.g., Reddy [ 1986]): 

curry(R, var(X), T) <-- in([X, T], R). 

curry(R, apply(M, N), T) <-- curry(R, M, S ~ T), curry(R, N, S). 

curry(R,lambda(X,M), S ~ T) <-- curry([[X,S]IRl,M,T). 

in(X, [Y IXsD .___ X i= Y, in(X,Xs). 

in(X, [X IXsD. 

In the first clause, the function symbol var is used to enforce the interpreta­

tion of X as a variable and, consequently, to prevent the instantiations of the 

clause to statements about the application and lambda abstraction. -> is a 

binary function symbol written in an infix form. 

Now consider the lambda term Ax. (x x), to which no type can be assigned, 

and its PROLOG representation m = lambda(x, apply(var(x), var(x))). 

Then it is easy to prove that the goal <-- curry([ ], m, T) finitely fails. 

However, when the unification without the occur-check is used, then, if in 

step (5) of the Martelli-Montanari algorithm the substitution {x/t} is per­

formed in t, the goal <-- curry([ ], m, T) diverges; ~therwise, it succeeds! 

Thus, for the above program it is essential that a unification algorithm with 

the occur-check be used. 

To deal with such programs, we propose the use of a program transforma­

tion. The following strengthening of Corollary 5.4 is essential: 
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THEOREM 10.1. Let P and G be nicely moded. All systems of equations that 

are considered in the LD-derivations of P U { G} and that are obtained using a 

clause whose head is input linear are NSTO. 

PROOF. By Lemma 5.3, all goals that appear in the LD-derivations of 

P U { G} are nicely moded. But the first atom of a nicely moded goal is output 

linear and input-output disjoint. So, when the head of the input clause used is 

input linear, by NSTO via Modes Lemma 3.3, the corresponding system of 

equations is NSTO. D 

To use this result, we transform a program and a goal into a nicely moded 

program and a nicely moded goal using the relation" = 0 c ", which is defined 

by the single clause X =0 c X moded completely input. In the transformed 

program, only this relation is evaluated by the unification algorithm with the 

occur-check. The subscript "0 c" is added to distinguish it from the PROLOG 

built-in"= ",which performs unification without the occur-check. 

The idea is to replace the variables that "contradict nice modedness" by 

"fresh" variables. Consider a clause H ~ B. Assume for simplicity that in 

every atom input positions occur first. We say that a given occurrence of a 

variable x in B contradicts nicety of H ~ B if x occurs in an output position 

of an atom in B and, x occurs earlier in B or in an input position of H. 

Now consider an occurrence of x in B that contradicts nicety. Let A be the 

atom in B in which this occurrence of x takes place, and let z be a fresh 

variable. Replace this occurrence of x in A by z, and denote the resulting 

atom as A'. Replace A in B by A', z =0 c x. 

Scan B and perform this replacement repeatedly for all occurrences of 

variables that contradict the nicety of the original clause H ~ B. Call the 

resulting sequence of atoms B'. It is easy to see that H ~ B' is nicely moded. 

Note that, by unfolding (in the sense ofTamaki and Sato [1984]) the inserted 

calls of" =0 c " in H ~ B', we obtain the original clause H ~ B. 

The same transformation applied to an arbitrary goal transforms it into a 

nicely moded goal. Finally, a similar transformation ensures that the head H 

of H ~ Bis input linear. It suffices to replace repeatedly every occurrence of 

a variable x that contradicts input linearity of H by a fresh variable z and, 

to replace B by z = 0 c x, B. Clearly, the head of the resulting clause H' ~ B' 

is input linear, and this transformation does not destroy the nicety of the 

clause. Again, the original clause H ~ B can be obtained by unfolding the 

inserted calls of" =0 c ". 

The following result summarizes the effect of these transformations: 

THEOREM 10.2. For every program P and goal G, there exists a program P' 

and a goal G' such that 

-P' and G' are nicely moded; 

-the head of every clause of P' different from X =0 c X is input linear; 

-P is the result of unfolding some calls of" =0 c " in P'; 

-G is the result of evaluating some calls of" = 0 c " in G'; and 
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-all systems of equations considered in the LD-derivations of P' u {G'}, but 

not associated with the calls of" = 0 c ", are NSTO. 

Note that the clause X = 0 c X is not input linear, so Corollary 5.4 cannot be 

applied to P' and G'. 

PROOF. By construction and Theorem 10.1. D 

As behavior of an unfolded program is closely related to the original 

program (see, e.g., Bossi and Cocco [ 1990]), it is justifiable to summarize this 

result by saying that every program and goal are equivalent to a nicely 

moded program and nicely moded goal, respectively, such that the heads of 

all clauses, except X = oc X, are input linear. In the PRO LOG execution of the 

latter program and goal, only the inserted calls of" = 0 c " need to be evaluated 

by means of a unification algorithm with the occur-check. Note that this 

transformation trades some "fragments" of the unification with the call of the 

relation "=0 c ". These inserted calls of" = 0 c " can be viewed as the overhead 

needed to implement the original program correctly without the occur-check. 

Alternatively, the part of the transformation that ensures that the head of 

each clause is input linear could be dropped, and Theorem 10.1 could be 

applied. 

To conclude, let us see how this transformation can be applied to the 

program curry. Consider the moding curry(+, +, - ), in(+, + ). The second 

clause of curry is not nicely moded, because the second occurrence of S 

contradicts its nicety. The corresponding transformed clause is nicely moded: 

curry(R, apply(M, N), T) <- curry(R, M, S ~ T), curry(R, N, Z), Z = 0 ,.S. 

Another problem is that the head of the second clause of in is not input 

linear. The transformed version is 

in(X, [Z IXsD <- Z = 0 c X. 

Call the transformed program curry'. It is nicely moded, and the head of 

every clause is input linear. By Corollary 5.4, we conclude that when t is 

linear and Var(r,m) n Var(t) = 0, curry' U { <- curry(r, m, t)} is occur­

check free. This allows us to draw the desired conclusion for the previously 

considered goal <- curry([ ], m, T) with m = lambda(x, apply 

(var(x), var(x))). 

The proposed transformation can be easily used "manually" and also can be 

efficiently implemented using two passes through the goal and the program, 

one to ensure nice modedness and the other to ensure the input linearity of 

the heads of the program clauses. This approach deals with the problem of 

inserting occur-checks at the source level and is orthogonal to that of Beer 

[ 1988], who proposed a revised implementation in which a new tag in the 

Warren Abstract Machine is used. This tag maintains information about the 

context in which a variable is used. This makes it possible to optimize the 

generated code by avoiding calls to the occur-check routine at the cost a small 

overhead at run time. It should be pointed out that in Beer's approach 
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unnecessary calls to the occur-check routine can be generated. For example, 

Beer [1988] reports that 49 occur-checks were invoked for the quicksort 
program. 

11. CONCLUDING REMARKS 

We have provided a systematic account of an approach for proving occur-check 

freedom of PRO LOG programs based on syntactic analysis. In this approach, 

also advocated by Chadha and Plaisted (1994], it is shown that the existence 

of specific relationships between the variables of the goal and the variables of 

the program implies occur-check freedom. As a side effect, we have also 

explained how this approach can be used to prove the absence of floundering. 

Finally, we have shown how these results can be used to deal with the 

problem of insertion of occur-check tests in the program text by means of a 

program transformation. 

The results on the occur-check freedom were established following a similar 

approach. First, systems of equations that are free from the occur-check were 

identified. Then, a property of a moded goal and a moded program was 

defined and proved to be "persistent" throughout the executions of the 

programs. This property ensured that in all executions the selected atoms 

lead to desired systems of equations. To deal with programs that use differ­

ence lists, a modification of these results, which involved two different modes, 

was needed. 

Two other approaches to proving occur-check freedom were proposed in the 

literature. One is based on the abstract interpretations, and the other uses 

the attribute grammars. The first approach originated with Plaisted [ 1984] 

and was further developed by Sondergaard (1986]. Sondergaard used an 

abstract interpretation in which the information on the possibility of creating 

a sharing of a variable or forming multiple occurrences of the same variable 

(called spawning) is maintained. Then using abstract unification this sharing 

and spawn information is propagated among the program representation, in 

order to discover whether the abstract unification may lead to circularity. The 

absence of circularity guarantees occur-check freedom. 

The abstract interpretations were also used to prove the absence of floun­

dering. The strongest results were obtained by Marriott et al. [1990]. To this 

end they expressed a data-flow analysis of a general program by means of a 

finitely computable approximation of the denotational semantics. Such an 

approximation is determined by suitable functions that approximate the 

groundness information and the unification algorithm. 

The approach based on attribute grammars was originated by Deransart 

and Maluszynski [1985] and was further developed in Deransart et al. [1991]. 

This approach exploits a close relationship between the abstract skeletons 

associated with the executions of a goal and a program and the derivation 

trees of the grammar associated with the goal and the program. The at­

tributes are used to model relations between equations (like variable sharing). 

It is shown that the occur-check freedom is implied by a combination of 
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syntactic conditions and ofnoncircularity of the attribute dependency scheme. 
This approach was applied recently by Dumant [ 1992] to deal with the 
problem of inserting occur-checks in arbitrary resolution strategies. 

The syntactic approach advocated in this paper is much more straightfor­
ward and has, in our opinion, two important advantages: First, it can be 
trivially implemented; and second, it can be easily used "manually." In fact, 
we have shown that it can be readily applied to several well-known PROLOG 
programs. Consequently, it seems to be sufficient to deal satisfactorily with 
most common PROLOG programs. It would be interesting to clarify the 
precise relationship between this approach and the other two. 

APPENDIX 

We prove here the promised undecidability results and Lemma 5.3. The 
following theorem summarizes the undecidability issues: 

THEOREM A.l. For some moded program P, the following properties are 
undecidable: 

-G is such that P U { G} is occur-check free, 

-G is such that all LD-derivatives of P U {G} are data driven, and 
-G is such that all LD-derivations of PU {G} are output driven. 

PROOF. Below, Mp denotes the least Herbrand model of a program P and 
Lp denotes the language determined by P. Let P0 be a strictly moded 
program; let p be a new binary relation, moded p( +, - ); and let P 1 = P0 U 
{p(y, f(y)) ~ }. 

The system E = {x = y, x = f(y )} is not NSTO, and by Corollary 6.5, for 
every ground atom A, P 1 U {~A} is occur-check free. Thus, for a ground 
atom A in Lp0 , P 1 U {~A,p(x,x)} is not occur-check free iff Eis consid­
ered in an LD-derivation of P 1 U {~A, p(x, x)} iff there exists an LD-refuta­
tion of P 1 U {~A} iff (by the completeness of LD-resolution) A E Mp 1 iff 
A E Mp 0 . 

So we have shown that, for every ground atom A in L 1, , A rf; Mp iff . 0 0 P 1 U {~A, p(x, x)} is occur-check free. An analogous argument using Theo-
rem 4.2 (resp., Theorem 5.2) shows that, for every ground atom A in Lp , 
A rf: Mp 0 iff all LD-derivations of P U { r- A, p(x, x)} are data driven (res;., 
iff all LD-derivations of P U {~A, p(x, x)} are output driven). 

Thus, to prove the theorem it suffices to show that there exists a strictly 
rnoded program P0 for which the set Mp 0 is undecidable. Now, Corollary 4.7 
in Apt [1990) gave this result for some program P0 , so it suffices to check 
that this corollary can be appropriately sharpened. 

To this end it is enough to show that every recursive function can be 
computed by a strictly moded program. The proof of computability of recur­
sive functions by logic programs given in Shepherdson [1991} and based on a 
straightforward encoding of register machines yields the needed result. In-
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deed, the obvious moding p( +, +, ... , - ) for all relations p turns the 

generated logic programs into strictly moded ones. This completes the proof. 

0 

We now turn to Lemma 5.3. We start by establishing a number of auxiliary 

lemmas. The notation used below was defined in Section 1. 

LEMMA A.2. Let e be a substitution, and let s and t be sequences of terms 

such that 

-Var(s) n Var(t) = 0, 

-Ran(e I Var(s)) n Ran(e I Var(t)) = 0, 

-Var(s) n Ran(e I Var(t)) = 0, and 

-Var(t) n Ran(e I Var(s)) = 0. 

Then Var(se) n Var(te) = 0. 

PROOF. This is an immediate consequence of the fact that for any se­

quence of terms u and substitution a we have Var(ua-) ~ Var(u) U Ran 

(a- I Var(u)). D 

The next two lemmas use the following notion: 

DefinitionA.3. A substitution {x 1/t 1 , ... , xn/tn} is called linear if t 1 , ... , tn 

is a linear family of terms. 

LEMMA A.4. Let e be a substitution, and let t be a family of terms. 

Suppose that 

- (} is linear, 

-t is linear, and 

-Ran(&) n Var(t) = 0. 

Then t e is a linear family of terms as well. 

PROOF. Suppose a variable x has two distinct occurrences in te. Then one 

of the following statements holds in regard to these occurrences: 

-they are both occurrences in Range( e ); 

-they are both occurrences in t; or 

-one is an occurrence in Range( e ), and the other is an occurrence in t. 

But each assumption of the lemma excludes the corresponding statement 

above, so the claim follows. D 

The following lemma is stated in Deransart and Maluszynski [1985]: 

LEMMA A.5. Consider two atoms A and H with the same relation symbol. 

Suppose that 

-they have no variable in common, and 

-A is linear. 
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Assume that A and Hare unifiable. Then there exists a relevant mgu e of A 

and H such that 

-e I Var(H) is linear, and 

-Ran (8 I Var(H)) i;:;: Var(A). 

PROOF. Given a set of equations E, let 

RVar(E) = U Var(t), 
s=IEE 

EH = { s = t E E I Var ( s ) n Var ( H) -=!= 0} . 

Also, call a term t singular if each variable of it occurs in E only once. Call 
an equation s = t singular if either s is a variable and singular or t is 
singular. Finally call E singular if every equation in it is singular. 

Consider the set of equations H = A (note the reverse ordering). We claim 
that the conjunction of the following three statements is initially true for E 
equal to H =A and is preserved by the action (1), (2), (3), (5), and (6) of the 
Martelli-Montanari algorithm: 

(1) EH is right linear, 

(2) RVar(E) <;;; Var(A), and 

(3) E is singular. 

The checking of this claim is simple. The only subtle point arises when action 
(5) applies. Let x = t be the chosen equation; x occurs elsewhere, so it is not 
singular. Thus t is singular, and by Lemma A.4, after performing action (5) 
EH remains right linear. Moreover, x then becomes singular, so the equation 
x = t remains singular, though now on account of x. The other equations 
clearly remain singular. The remaining cases are straightforward. 

This shows that, when applying to the set H =A, the Martelli-Montanari 
algorithm with action (4) omitted, eventually a set of equations E is pro­
duced, which satisfies statements (1-3) and to which only action (4) can be 
applied. Now let 

E 1 = {s = t EE Is is not a variable}, 

E 2 =E-E1 • 

None of the actions (1), (2), (3), (5), or (6) can be applied to E 1. Thus, each of 
its equations is of the form s = x, where x is a variable. Moreover, by virtue 
of statement (3), 

where x 1, ..• , xn are different variables, each of which occurs in E only once. 
Thus, 

F = {x = s Is= x E E1} 

is in solved form and determines a relevant mgu e 1 of E 1 such that 
E2e1 = Ez. 
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Next, none of the actions of the Martelli-Montanari algorithm can be 

applied to E 2 • Thus, E 2 is in solved form and determines a relevant mgu 82 

of E 2 and so of E 2 81. By statement (1), 82 I Var(H) is linear, and by 

statement (2), Ran(82 I Var(H)) i;;;; Var(A). 

By Lemma 2.4, 11 1 e2 is a relevant mgu of E. Moreover, by statement (2), 

Dom(8 1 ) i;;;; Var(A), so by the disjointness of A and H, we get Dom(81 ) n 

Var(H) = 0. Thus, 81 82 I Var(H) = 82 I Var(H). This shows that 8 = 81 82 is 

the desired mgu. D 

In Deransart and Maluszynski [ 1985, proposition 3, p. 143], this claim was 

actually stated (without prooD for an arbitrary mgu 11. However, for A = 

p(z, u), H = p(x, y), and 8 = {x/y, y/u, z/y}, we get a counterexample. 

Below, given an atom A, we denote by Varln(A) (resp., VarOut(A)) the set 

of variables occurring in the input (resp., output) positions of A. Similar 

notation is used for sequences of atoms. 

Finally, we need the following technical lemma: 

LEMMA A.6. Consider two atoms A and H with the same relation symbol. 

Suppose that 

-they have no variable in common, and 

-A is input-output disjoint and output linear. 

Assume that A and Hare unifiable. Then there exists a relevant mgu 11 of A 

and H such that for V = VarOut(H) - Varln(H), YJ 1 = 8 IV, and YJ 2 = 

8 I Varln(H) 

(i) 1) 1 is linear. 

(ii) Ran(171 ) i;;;; Var(A), and 

(iii) Ran(172 ) n (Ran(17 1) UV)= 0. 

PROOF. Let it, ... , i~ (resp., if, ... , i~) be the therms filling in the input 

positions of A (resp., H) and let a:, ... ,o; (resp., of1, ... ,o~) be the terms 

filling in the output positions of A (resp., H). Let 81 be the relevant mgu of 

{of = off, ... , ot- = ot-} constructed in the proof of Lemma A.5. By the dis­

jointness of A and H, we have 81 I Var(H) = 81 I VarOut(H), so by Lemma 

A.5, 

81 I Var(H) is linear (3) 

and 

Ran(8 1 I Var(H)) i;;;; VarOut(A). (4) 

Let 82 be a relevant mgu of {if =if, ... , i~ = i~}fJ 1 . By Lemma 2.4, 112 

exists and 8 = 11 1 82 is a relevant mgu of A =H. 

By the relevance of 81, we have Dom(e) ~ VarOut(A) U VarOut(H), so by 

the input-output disjointness of A and the disjointness of A and H, we get 

{if= if, ... ,i~ = i~}e 1 ={if= if8 1 , ... ,i~ = i~8 1 }. By the relevance of 82 , 
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we have Var(02 ) ~ Var({if = ifle1 , •.• , i~ = i;;;81}) ~ Varln(A) U Varln(H) 
u Ran(01 I Varln(H)). Thus, by the disjointness of A and Hand (4), 

Var(0 2 ) n V = 0. (5) 

For the same reasons and, additionally, by the input-output disjointness of A 

and (3), 

Var(0 2 ) n Ran(e IV) = 0. (6) 

Now, (5) and (6) imply that 

(7) 

Thus, 111 ~ 61 I Var(H); so by (3) we conclude (i), and by (4) we conclude (ii). 
Now consider 112 • Note that 112 ~ (81 I Varln(H))(J2 , so 

Ran(112 ) ~ Ran(0 1 I Varln(H)) U Var(8 2 ). (8) 

But, by (3), (6), (4), disjointness of A and H, and (5), 

(Ran(61 I Varln(H)) u Var(0 2 )) n (Ran(8 1 IV) u V) = 0; 

so by (8) and (7) we conclude (iii). D 

We can now return to Lemma 5.3. 

PROOF OF LEMMA 5.3. First, we prove three claims that appropriately 
refine those of Lemma 4.3: 

CLAIM 1. Suppose that A and H satisfy the assumptions of Lemma A.6, 

and assume that e is a relevant mgu of A = H that satisfies conditions 
(i)-(iii) of Lemma A.6. Let H -E- B be a nicely moded clause with no variables 

in common with A. Then oE- Be is nicely moded. 

PROOF. Below, by standardization apart we mean the assumption that 
H -E- Band A have no variables in common. Let V, 171, and 'Y/2 be as in the 
formulation of Lemma A.6. 

Let 01 = e I VarOut(B) and 82 = e l(Varln(B) - VarOut(B)). We first es­
tablish some claims about 81 and () 2 • By standardization apart and the 
definition of a nicely moded clause, 

VarOut(B) n (Var(A) u Var(H)) ~ V, 

so by the fact that 8 is relevant, 

81 ~ 'Y/1· 

Thus, by the linearity of 711 (condition (i) of Lemma A.6), 

81 is linear. 

Moreover by (10), (ii) of Lemma A.6, and standardization apart, 

Ran(81 ) n Var(B) = 0. 
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Now, let 82 = 82 IV and 82 = 82 I Varln(H). We have 

and 

82 = e; u 02 , 

02 i;;; 7J1, 

(13) 

(14) 

02 i;;; 712. (15) 

Now consider e;. We have Dom(0 1 ) n Dom(82 ) = 0, so Dom(81 ) n 
Dom(82) = 0. Thus, by (10), (14), and the linearity of 711 , 

Ran(82) n Ran(81 ) = 0. (16) 

Moreover, by (14), (ii) of Lemma A.6, and standardization apart 

Ran( 82) n VarOut(B) = 0. 

Now consider e;;. By (10), (15), and (iii) of Lemma A.6, 

Ran(82) n Ran(8 1 ) = 0. 

(17) 

(18) 

Also, by the fact that 8 is relevant, Ran(82) i;;; Var(A) u Var(H), so by (9), 

Ran( 8'2) n VarOut(B) i;;; V. Thus, by (15) and (iii) of Lemma A.6, 

Ran(82) n VarOut(B) = 0. (19) 

Combining (16) with (18) and (17) with (19), we get, by virtue of (13), 

Ran(82 ) n (Ran(0 1 ) u VarOut(B)) = 0. (20) 

Now consider Bin more detail. Suppose B =p 1(s 1,t 1 ), ... ,pn(sn,tn). By 

assumption, t 1 , ... , tn is a linear family of terms, and for i E [ 1, n], tie = t 1 81. 

So, by (11), (12), and Lemma A.4, t 1 e, ... , tn 0 is a linear family of terms as 

well. 

Now fix i E (1, n] and j E [i, n]. We have 

Ran(tJ IVar(si)) i;;;Ran(8 1 IVar(si)) U Ran(82 IVar(s)) (21) 

and 

(22) 

+-- B is nicely moded, so 

Var(s) n Var(t;) = 0. (23) 

Thus, by the linearity of 81, Ran(l3 1 I Var(si)) n Ran(81 I Var(t;)) = 0 and 

consequently, by (21), (22), and (20), 

Ran(e I Var(s)) n Ran( e I Var(t;)) = 0. (24) 

Next, by (22) and (12), 

Var(s) n Ran( e I Var(tj)) = 0. (25) 
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Finally, by (21), (12), and (20), 

Var(t) n Ran(e I Var(s;)) = 0. (26) 

Now, by (23), (24), (25), (26), and Lemma A.2, we conclude that Var(si e) n 
Var(tje) = 0. 

This proves that <- Be is nicely moded. D 

CLAIM 2. Let e be a substitution, and let <-- A be a nicely moded goal 
such that Var(8) n VarOut(A) = 0. Then <- Ae is nicely moded as well. 

PROOF. For any terms and a substitution er, we have Var(scr) ~ Var(s) 
u Var(cr ). Moreover, for any term t occurring at an output position of A by 
the assumption about e we have t8 = t. The claim now follows by the 
definition of a nicely moded goal. O 

CLAIM 3. Suppose <- A and <- B are nicely moded goals such that 
VarOut (A) n Var(B) = 0. Then <-- B,A is a nicely moded goal as well. 

PROOF. Immediate by the definition of a nicely moded goal. O 

Now consider a nicely moded goal <--A, A and a nicely moded clause 
H <-- B that is variable disjoint with it, such that A and H unify. Observe 
that A and H satisfy the assumptions of Lemma A.6. Assume that e is a 
relevant mgu of A = H that satisfies conditions (i)-(iii) of Lemma A.6. By 
Claim 1, <-- Be is nicely moded. 

e is relevant, and Var(A) n VarOut(A) = 0; so by standardization apart, 

Var( e) n VarOut(A) = 0. (27) 

By Claim 2, <--AO is nicely moded. 
But (27) implies that Var0ut(A8) = VarOut(A). Moreover, Var(B8) ~ 

Var(B) u Var(8), and by standardization apart, VarOut(A) n Var(B) = 0; 
so, again by (27), 

VarOut(Ae) n Var(Be) = 0. (28) 

Now (28) establishes the last assumption of Claim 3 with <-A replaced by 
<-- Ae and <-- B replaced by <--Be. We conclude by Claim 3 that the 
LD-resolvent <- (B, A)B of the goal <-A, A and the clause H <-- B is nicely 
moded. To draw the same conclusion for an arbitrary LD-resolvent of <--A, A 
and H <-- B, it suffices to use Lemma 2.3. D 
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