
On the Occur-Check-Free
PROLOG Programs

KRlYSZTOF R. APT

CWI and University of Amsterdam

and

ALESSANDRO PELLEGRINI

Universita di Padova

In most PROLOG implementations, for efficiency occur-check is omitted from the unification
algorithm. This paper provides natural syntactic conditions that allow the occur-check to be
safely omitted. The established results apply to most well-known PROLOG programs, including
those that use difference lists, and seem to explain why this omission does not lead in practice to
any complications. When applying these results to general programs, we show their usefulness
for proving absence of floundering. Finally, we propose a program transformation that trans
forms every program into a program for which only the calls to the built-in unification predicate
need to be resolved by a unification algorithm with the occur-check.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification-cor
rectness proof9; D.3.4 [Programming Languages]: Processors-preprocessors; I.2.3 [Artificial
Intelligence]: Deduction and Theorem Proving-logic programming

General Terms: Languages

Additional Key Words and Phrases: Moded programs, occur-check problem, PROLOG programs,
unification algorithm

1. INTRODUCTION

The occur-check is a special test used in the unification algorithm. In most
PROLOG implementations, it is omitted for efficiency. This omission affects
the unification algorithm and introduces a possibility of divergence, or may
yield incorrect results. This is obviously an undesired situation. This problem

The work of K. R. Apt was partly supported by ESPRIT Basic Research Action 6810 (Compulog
2). This research was partly carried out during A. Pellegrini's stay at the Centre for Mathematics
and Computer Science, Amsterdam. His stay was supported by the 2060th District of the Rotary
Foundation, Italy. A shorter version of this paper appeared as Apt and Pellegrini [1992].
Authors' addresses: K. R. Apt, CWI, P.O. Box 94079, 1090 GB Amsterdam, and Faculty of
Mathematics and Computer Science, University of Amsterdam, 1018 TV Amsterdam, The
Netherlands; A. Pellegrini, Dipartimento di Matematica Pura ed Applicata, Universita di Padova,
35131 Padova, Italy.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
© 1994 ACM 0164-0925/94/0500-0687$03.50

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994, Pages 687-726.

688 K. R. Apt and A. Pellegrini

was studied in the literature under the name of the occur-check problem (see,
e.g., Plaisted [1984] and Deransart and Maluszynski [1985]).

The aim of this paper is to provide easy-to-check syntactic conditions that
ensure that for PROLOG programs the occur-check can be safely omitted. We
use here a result of Deransart et al. [1991] and build upon it within the
context of moded programs. This allows us to extend the results of Deransart
and Maluszynski [1985], to generalize the arguments of Chadha and Plaisted
[1994], and to offer a uniform presentation. Additionally, the results of the
former paper needed here are proved directly, without resorting to the
techniques of the attribute grammars theory. We also consider general pro
grams and show the usefulness of our approach for proving the absence of
floundering. Finally, we show how the problem of inserting occur-checks in a
program execution can be resolved by means of a program transformation
that inserts calls of the built-in unification predicate into the program text.
The obtained results apply to most well-known PROLOG programs.

In this paper we need a slightly more liberal definition of an SLD-deriva
tion, according to which the selection of the atom in the current goal is
combined with the selection of the input clause used to resolve this atom.
Then an SLD-derivation fails if the selected atom does not unify with the
head of the input clause selected to resolve it.

To see the difference with the customary definition, consider the program
{p(O) +-- , p(x) +--}.According to our definition, the goal +-- p(s(O)) is not only
the root of an SLD-refutation, but also a root of an immediately failing
SLD-derivation (when the first clause is selected).

In what follows we study logic programs executed by means of the LD-reso

lution, which consists of the SLD-resolution combined with the leftmost
selection rule. An SLD-derivation in which the leftmost selection rule is used
is called an LD-derivation. We allow in programs various first-order built-ins,
like = , :s; , > , etc., and assume that they are resolved in the way conform
ing to their interpretation.

Throughout the paper we use the standard notation of Lloyd [1987] and
Apt [1990]. In particular, given a syntactic construct E (e.g., a term, an atom,
or a set of equations) we denote by Var(E) the set of the variables appearing
in E. Given a substitution 8 = {xift1, ... , xn/tn}, we denote by Dom(8) the
set of variables {x1, ... , xn}, by Range(8) the set of terms {t 1 , •.. , tn}, and by
Ran(8) the set of variables appearing in {t 1 , ... , tn}. Finally, we define Var(8)
= Dom(8) U Ran(8).

Recall that a substitution e is called a grounding if Ran(e) is empty and
is called a renaming if it is a permutation of the variables in Dom(e). Given
a substitution () and a set of variables V, we denote by 8 I V the substitution
obtained from () by restricting is domain to V.

2. OCCUR-CHECK-FREE PROGRAMS

We start by recalling a unification algorithm due to Martelli and Montanari
[1982]. We use the notions of sets and of systems of equations interchange
ably. Two atoms can unify only if they have the same relation symbol. With

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 689

two atoms p(s 1, ... , sn) and p(t1, ••• , tn) to be unified, we associate the set of
equations

In the applications we often refer to this set as p(s 1, ... , sn) = p(t1 , ••• , tn).

The algorithm operates on such finite sets of equations. A substitution (} such
that s1e = t 1 e, . .. , sn(J = tn(J is called a unifier of the set of equations {s1 =
ti, ... , Sn = tn}. Thus, the set of equations E = {s1 = t 1, ... , sn = tn} has the
same unifiers as the atoms p(s1, ... , sn) and p(tv ... , tn).

A unifier e of a set of equations E is called a most general unifier (in short,
mgu) of E if it is more general than all unifiers of E. An mgu () of a set of
equations Eis called relevant if Var((J) ~ Var(E).

Two sets of equations are called equivalent if they have the same set of
unifiers, and a set of equations is called solved if it is of the form {x1 =

ti, ... , xn = tn}, where the x/s are distinct variables and none of them occurs
in a term t1. The interest in solved sets of equations is revealed by the
following lemma:

LEMMA 2.1. If E = {x1 = t 1 , ... , xn = tn} is solved, then (} = {xift1, •.. ,

xn/tn} is a relevant mgu of E.

We call e the unifier determined by E. Thus, to find an mgu of two atoms it
suffices to transform the associated set of equations into an equivalent one
that is solved. The following algorithm does it, if this is possible, and
otherwise halts with failure:

Martelli-Montanari Algorithm. Nondeterministically choose from the set
of equations an equation of a form below, and perform the associated action:

(1) f(xl, ... , sn) = f(tp ... , tn) replace by the equations

Si = ti, •••'Sn = tn'
(2) f(s 1 , ... , sn) = g(t1 , •.• , tm) where f ¥;. g halt with failure,

(3) x=x delete the equation,

(4) t = x where t is not a variable replace by the equation x = t,

(5) x = t where x ¥;. t, x does not occur in t, perform the substitution {x/t}

and x occurs elsewhere in every other equation,

(6) x = t where x ¥;. t and x occurs in t halt with failure.

The algorithm terminates when no action can be performed or when failure
arises. To keep the formulation of the algorithm concise, we identified con
stants with 0-ary functions. Thus, action (2) includes the case of two different
constants. The following theorem holds (see Martelli and Montanari [1982]):

UNIFICATION THEOREM 2.2. The Martelli-Montanari algorithm always ter

minates. If the original set of equations E has a unifier, then the algorithm
successfully terminates and produces a solved set of equations determining a

relevant mgu of E; otherwise, it terminates with failure.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

690 K. R. Apt and A. Pellegrini

The Martelli-Montanari algorithm does not generate all mgu's of a set of
equations E, but the following lemma, proved in Lassez et al. [1988], will
allow us to cope with this peculiarity.

LEMMA 2.3. Let 81 and 82 be mgu's of a set of equations. Then for some

renaming TJ, we have 82 = 8(TJ·

Finally, the following lemma allows us to search for mgu's in an iterative
fashion:

LEMMA 2.4. Let E 1 and E 2 be two sets of equations. Suppose that 8 1 is a
relevant mgu of E 1 and 82 is a relevant mgu of E 2 81. Then 81 82 is a relevant
mgu of E 1 u E2 • Moreover, if E1 U E2 is unifiable then such a 81 exists, and
for any such 81 , an appropriate 82 exists, as well.

PROOF. If e is an equation of E 1, then it is unified by 81 and so a fortiori
by 8182 • If e is an equation of E 2 , then e8 1 is an equation of E 2 81 . Thus, e8 1

is unified by 82 , and consequently, e is unified by 81 82 . This proves that 81 82

is a unifier of E 1 U E 2 . Moreover, Var(8 182) ~ Var(8 1) U Var(8 2) ~ Var(E 1)

U Var(E2 81) ~ Var(E1) U Var(E2) U Var(8 1) ~ Var(E1 U E 2), so 81 82 is
relevant.

Now let T/ be a unifier of E 1 U E 2 • By the choice of 81 , there exists a
substitution A1 such that T/ = 81A1. Thus, ,.\1 is a unifier of(E1 U E 2)8 1 and a
fortiori of E 2 81. By the choice of 82 for some A2 , we have A.1 = 8 2 A2 • Thus,
T/ = 81 A1 = 8182 A2 . This proves that 81 82 is an mguof E 1 U E 2 .

Finally, note that if E 1 U E2 is unifiable then a fortiori E 1 is unifiable, and
Unification Theorem 2.2 tells us that a relevant mgu 81 for E 1 is produced by
the Martelli-Montanari algorithm. The previously inferred existence of A1

implies that, for such a 81, E 2 81 is unifiable, and again, the Martelli
Montanari algorithm can be used to produce for this set a relevant mgu 82 •

D

Return now to the Martelli-Montanari algorithm. The test "x does not
occur in t" in action (5) is called the occur-check. In most PROLOG imple
mentations, the occur-check is omitted. Recall that this omission can in some
cases bring the cost of unification from linear time down to constant time. An
example is the concatenation of the lists by means of the difference-list
representation. (For a thorough analysis of the time complexity of the unifica
tion algorithm with and without the occur-check, see Albert et al. [1993]. By
omitting the occur-check in (5) and deleting action (6) from the Martelli
Montanari algorithm, we are still left with two options, depending on whether
the substitution {x/t} is performed in t itself. If it is, the divergence can
result, because if x occurs in t then x occurs in t{x/t}. If it is not (as in the
case of the modified version of the algorithm just mentioned), then an
incorrect result can be produced, as in the case of the single equation
x = f(x), which yields the substitution {x/f(x)}.

None of these alternatives is desirable. It is natural then to seek conditions
that guarantee that, in absence of the occur-check, in all PROLOG evalua-

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 691

tions of a given goal w.r.t. a given program, unification is correctly performed.
This leads us to the following notion due to Deransart et al. [1991].

Definition 2.5. A set of equations E is not subject to occur-check (NSTO,
in short) if action (6) cannot be performed in any execution of the Martelli
Montanari algorithm started with E.

We now introduce the key definition of the paper:

Definition 2.6.

-Let g be an LD-derivation. Let A be an atom selected in g, and let H be
the head of the input clause selected j;o resolve A in g. Suppose that A and
H have the same relation symbol. Then we say that the system A = H is
considered in g.

-Suppose that all systems of equations considered in the LD-derivations of
PU {G} are NSTO. Then we say that PU {G} is occur-check free.

This definition assumes a specific unification algorithm, but allows us to de
rive precise results. Moreover, the nondeterminism built into the Martelli
Montanari algorithm allows us to model executions of various other unifica
tion algorithms, including Robinson's algorithm (see, e.g., Albert et al. [1993]).
In contrast, no specific unification algorithm in the definition of the LD-reso
lution is assumed.

By Theorem 2.2, if a considered system of equations is unifiable, then it is
NSTO as well. Thus, the property of being occur-check free rests exclusively
upon those considered systems that are not unifiable. As in the definition of
the occur-check freedom, all LD-derivations of Pu {G} are considered, it
follows that all systems of equations that can be considered in a possibly
backtracking PROLOG evaluation of a goal G w.r.t. the program Pare taken
into account.

In Deransart et al. [1991], a related concept of an NSTO program is studied
that essentially states that, independently of the selection rule and the
resolution strategy chosen, all considered systems are NSTO. The definition
of the occur-check freedom refers to the leftmost selection rule, and the
results we obtain usually cannot be extended to those dealing with NSTO
programs.

The aim of this paper is to offer simple syntactic conditions that imply that
P u { G} is occur-check free. As expected, the property of being occur-check
free is undecidable (see Deransart and Maluszynski [1985], and, for a
strengthened version, the Appendix). On the other hand, the problem of
determing whether a set of equations is NSTO is decidable. In fact, Apt et al.
[1994] recently proved that this problem is CoNP-hard.

For further analysis we need the following concepts:

Definition 2.7.

-We call a family of terms (resp., an atom) linear if every variable occurs at
most once in it.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

692 K. R. Apt and A. Pellegrini

-We call a set of equations left linear (resp., right linear) if the family of

terms formed by their left-hand (resp., right-hand) sides is linear.

Thus, a family of terms is linear iff no variable has two distinct occurrences

in any term and no two terms have a variable in common.

Definition 2.8. Let E be a set of equations. We denote by -?E the

following relation defined on the elements of E: e 1 -?E e2 iff the left-hand

side of e1 and the right-hand side of e 2 have a variable in common.

In particular, if a variable occurs both in the left-hand and right-hand sides

of an equation e of E, then e -?E e. The following result, due to Deransart et

al. [1991], will be helpful in the sequel.

NSTO LEMMA 2.9. Suppose that the equations in E can be oriented in such

a way that the resulting system F is left linear and the relation -7 F is cycle

free. Then E is NSTO.

Note that the converse of this lemma is not true-just take E = {f(x) =

g(x)} . The original formulation of this lemma is slightly stronger, but for our

purposes the above version is sufficient.

3. MODED PROGRAMS

For further analysis we introduce also modes, first considered in Mellish

[1981] and more extensively studied in Reddy [1984] and in Dembinski and

Maluszynski [1985].

Definition 3.1. Consider an n-ary relation symbol p. By a mode for p, we

mean a function dP from {1, ... , n} to the set { +, - }. If dP(i) = +,we call i

an input position of p, and if d/i) = - , we call i an output position of p

(both w.r.t. dP).

We write dP in the more suggestive form p(d/1), ... , d/n)). By moding

we mean a collection of modes, each for a different relation symbol.

Intuitively, the modes indicate how the arguments of a relation should be

used, though the distinction between the input and output positions is not

clear when all positions in an atom of a goal are filled in by compound terms.

The definition of moding assumes one mode per relation in a program.

Multiple modes may be obtained by simply renaming the relations. From now

on we assume that every considered relation has a mode associated with it.

This will allow us to discuss input positions and output positions of an atom.

We now introduce the following concepts:

Definition 3.2.

-An atom is called input (resp., output) linear if the family of terms

occurring in its input (resp., output) positions is linear.

-An atom is called input-output disjoint if the family of terms occurring in

its input positions has no variable in common with the family of terms

occurring in its output positions.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 693

The following lemma is crucial:

NSTO VIA MODES LEMMA 3.3. Consider two atoms A and H with the same
relation symbol. Suppose that

-they have no variable in common,

-one of them is input-output disjoint, and

-one of them is input linear and the other is output linear.

Then A = His NSTO.

PROOF. Suppose first that A is input-output disjoint and input linear and

that H is output linear. Let if, ... , i~ (resp., i~, ... , iH) be the terms filling

in the input positions of A (resp., H), and let of, ... , o! (resp., o~, ... , o,;') be

the terms filling in the output positions of A (resp., H).
The system under consideration is

E _ {·A _ ·H ·A _ ·H A H A H}
- L1 -L1, ... ,im-im,01 =01, ... ,on =on.

Reorient it as follows:

F _ {·A _ ·H ·A _ ·H H _ A H _ A}
- L1 - L1 ' .•. ' Lm - Lm' 01 - 01 ' ... 'On - On .

By assumption, A and H have no variable in common. This implies that

-F is left linear (because, additionally, A is input linear and H is output
linear), and

-the equations if = if have no successor in the ~ F relation and the

equations or = of have no predecessor (because, additionally, A is input

output disjoint).

Thus by NSTO Lemma 2.9, A = H is NSTO. The proofs for the remaining

three cases are analogous and, hence, omitted. D

We now prove two results, allowing us to conclude that PU {G} is occur

check free. The first uses the the following notion introduced in Dembinski

and Maluszynski [1985]:

Definition 3.4. We call an LD-derivation data driven if all atoms selected

in it are ground in their input positions.

THEOREM 3.5. Suppose that

-the head of every clause of P is output linear, and

-all LD-derivations of P U {G} are data driven.

Then P U {G} is occur-check free.

PROOF. Consider an LD-derivation of P U {G}. Let A be an atom selected

in it, and suppose that H is the head of an input clause such that A and H

have the same relation symbol. By assumption, A is ground in its input

positions, so it is input-output disjoint and input linear. By assumption, H is

output linear, and A and H have no variable in common. So, by NSTO via

Modes Lemma 3.3, A= His NSTO. D

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

694 K. R. Apt and A. Pellegrini

The second result uses the following notion:

Definition 3.6. We call an LD-derivation output driven if all atoms se

lected in it are output linear and input-output disjoint.

THEOREM 3.7. Suppose that

-the head of every clause of P is input linear, and

-all LD-derivations of PU {G} are output driven.

Then P U {G} is occur-check free.

PROOF. Let A and H be as in the proof of Theorem 3.5. NSTO via Modes

Lemma 3.3 applies and yields that A= His NSTO. D

This theorem is implicit in Chadha and Plaisted [1994] (see the proof of

their Theorem 2.2). Clearly, through different "distributions" of the conditions

ofNSTO via Modes Lemma 3.3, other applications can be obtained. We found

the above two least restrictive.

Note that the theorems established above generalize the following well

known result stated in Clark [1979, p. 15] and established in Deransart et al.

[1991], as a direct consequence of the NSTO Lemma 2.9.

COROLLARY 3.8. Suppose that the head of every clause of P is linear. Then

PU {G} is occur-check free for every goal G.

PROOF. By Theorem 3.5, by moding every relation completely output, or by

Theorem 3. 7, by moding every relation completely input. D

This corollary can be applied to some well-known PROLOG programs, for

example, to the unification program (see Sterling and Shapiro [1986, p. 150])

and, paradoxically, to the unification with the occur-check program (see

Sterling and Shapiro [1986, p. 152]). However, to most programs this corol

lary does not apply. The subsequent sections provide some other options.

So far we have isolated two properties of LD-derivations, each of which

implies occur-check freedom. In both cases we have had to impose some

restrictions on the heads of the clauses. When we combine these two proper

ties, we get occur-check freedom directly.

THEOREM 3.9. Suppose that all LD-derivations of PU {G} are both data

and output driven. Then PU {G} is occur-check free.

PROOF. Let A and H be as in the proof of Theorem 3.5. By assumption,

the system A= H is left linear. Moreover, A and H have no variable in

common, so the relation ~A~ H is empty and a fortiori cycle free. So, by the

NSTO Lemma 2.9, A= His NSTO. D

4. WELL-MOOED PROGRAMS

The obvious problem with Theorems 3.5, 3.7, and 3.9 is that it is not easy to

check their conditions. In fact, one can show that, in general, it is undecidable

whether for a given program P and goal G the conditions of Theorem 3.5, 3.7,

or 3.9 hold (see the Appendix).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 695

The aim of this section is to propose some simple syntactic restrictions that

imply the conditions of Theorem 3.5. We then show that these restrictions are

satisfied by a number of well-known programs.

Her~ w~ use the notion of a well-moded program. The concept is due to

Dembmsk1 and Maluszynski [1985]; we use an elegant formulation due to

Rosenblueth [1991] (which is equivalent to that of Drabent [1987], where

well-moded programs are called simple). The definition of a well-moded

program constrains the "flow of data" through the clauses of the programs. To

simplify the notation, when writing an atom as p(u, v), we now assume that

u is a sequence of terms filling in the input positions of p and that v is a

sequence of terms filling in the output positions of p.

Definition 4.1.

-A goal <--- p 1(s 1 , t 1), ... , Pn(sn, tn) is called well moded if for i E [l, n]

-A clause

i- 1

Var(si) ~ LJ Var(tj).

j= 1

Po(to,Sn+l) <--- P1(S1,t1), ... ,p/sn,tn)

is called well moded if for i E [l, n + 1]

i- 1

Var(si) ~ LJ Var(tj).
j=O

-A program is called well moded if every clause of it is.

Thus, a goal is well moded if

-every variable occurring in an input position of an atom (i E [1, n]) occurs

in an output position of an earlier (j E [l, i - 1]) atom.

And a clause is well moded if

-(i E [l, n]) in every variable occurring in an input position of a body atom

occurs either in an input position of the head (j = 0) or in an output

position of an earlier (j E [1, i - 1]) body atom, and

-(i = n + 1) every variable occurring in an output position of the head

occurs in an input position of the head (j = 0) or in an output position of a

body atom (j E [l, n]).

A test of whether a goal or clause is well moded can be efficiently per

formed by noting that a goal G is well moded iff every first from the left

occurrence of a variable in G is within an output position. And a clause

p(s, t) <--- B is well moded iff every first from the left occurrence of a variable

in the sequence s, B, t is within the input position of p(s, t) or within an

output position in B. (We assume in this description that in every atom the

input positions occur first.)

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

696 K. R. Apt and A. Pellegrini

Note that a goal with only one atom is well moded iff this atom is ground in

its input positions. The definition of a well-moded program is designed in

such a way that the following theorem due to Dembinski and Maluszynski

[1985] holds:

THEOREM 4.2. Let P and G be well moded. Then all LD-derivations of

P u {G} are are data driven.

In Dembinski and Maluszynski [1985], a different formulation of well

modedness is given, and the above theorem is actually presented without a

proof. So we allow ourselves to give a proof here.

Note that the first atom of a well-moded goal is ground in its input

positions and a variant of a well-moded clause is well moded. Thus, it suffices

to prove the following lemma, which shows the "persistence" of the notion of

well modedness:

LEMMA 4.3. An LD-resolvent of a well-moded goal and a well-moded

clause that is variable-disjoint with it is well moded.

PROOF. An LD-resolvent of a goal and a clause is obtained by means of the

following three operations:

(1) instantiation of a goal;

(2) instantiation of a clause; and

(3) replacement of the first atom, say, H, of a goal by the body of a clause

whose head is H.

So we only need to prove the following two claims:

CLAIM 1. An instance of a well-moded goal (resp., clause) is well moded.

PROOF. It suffices to note that, for any sequences of terms s, t 1 , ... , t n and

a substitution u,

n

Var(s) ~ LJ Var(tj)
j= 1

implies

n

Var(su) ~ LJ Var(tju). D

j=l

CLAIM 2. Suppose that ~ H, A is a well-moded goal and H ~ B is a

well-moded clause. Then ~ B, A is a well-moded goal.

PROOF. Let H = p(s, t) and B = p 1(s1 , t 1), ... , Pn(sn, tn). We have Var(s)

= 0 since His the first atom of a well-moded goal. Thus ~ Bis well moded.

Moreover, Var(t) ~ U J~ 1Var(tj), since H ~ B is. a well-moded clause and

Var(s) = 0. These two observations imply the claim. D

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 697

As a digression recall the following immediate and well-known conclusion
of Theorem 4.2:

COROLLARY 4.4. Let P and G be well moded. Then, for every computed

answer substitution cr, Gu is ground.

PROOF. Let x stand for the sequence of all variables that appear in G. Let
p be a new relation of arity equal to the length of x and with all positions
moded as input. Then +-- A, p(x) is a well-moded goal, where G = (- A

Now, cr is a computed answer substitution for Pu {G} iff p(x)a is a
selected atom in an LD-derivation of Pu { (-A, p(x)}. The conclusion now
follows from Theorem 4.2. D

We shall see in Section 7 that there are natural PROLOG programs for
which data drivedness cannot be established using the concept of well moded
ness. Still, the above theorem brings us to the following conclusion, which can
be easily applied to a number of well-known PRO LOG programs:

COROLLARY 4.5. Let P and G be well moded. Suppose that the head of every
clause of P is output linear. Then PU {G} is occur-check free.

PROOF. By Theorems 3.5 and 4.2 D

Example 4.6. When presenting the programs, we adhere to the usual
syntactic conventions of PROLOG, with the exception that PROLOG's :- is
replaced by the logic programming (- .

(1) Consider the program append;

app([X I Xs], Ys, [X I ZsD ..- app(Xs, Ys, Zs).
app([], Ys, Ys).

with the mode app(+, +, -). It is easy to check that append is well
moded and that the head of every clause is output linear. By Corollary
4.5, we conclude that, for s and t ground, append U { +-- app(s, t, uH is
occur-check free.

(2) Now examine the program append with the mode app(-, -, +).Again,
by Corollary 4.5, we conclude that, for u ground, append U { +

app(s, t, u)} is occur-check free.

(3) Consider the program permutation, which consists of the clauses

perm (Xs, [X I Y sD +

app(Xls, [X I X2s], Xs),
app(Xls, X2s, Zs),
perm(Zs, Ys).

perm([], [D.
augmented by the append program.

Here we use the following moding: perm(+, -), app(- , - , +) for the
first call to append, and app(+, +, -) for the second call to append. It

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

698 K. R. Apt and A. Pellegrini

is easy to check that permutation is then well moded and that the heads
of all clauses are output linear. By Corollary 4.5, we get that, for s
ground, permutation u { <- perm(s, t)} is occur-check free.

(4) Now examine the program quicksort, which consists of the clauses

qs([X I Xs], Y s) <-
partition(X, Xs, Littles, Bigs),
qs(Littles, Ls),
qs<Bigs, Bs),
app(Ls, [XIBs], Ys).

qs([],[]).

partition(X, [Y I Xs], [YI Ls], Bs) <

X > Y,
partition(X, Xs, Ls, Bs).

partition(X, [Y I Xs], Ls, [Y I Bs]) <

X :$ Y,
partition(X, Xs, Ls, Bs).

partition(X, [], [], []).
augmented by the append program.

We mode it as follows; qs(+, -),partition(+,+,-, -),app(+, +, -).
Again, it is easy to check that quicksort is then well moded and that the
heads of all clauses are output linear. By Corollary 4.5, we conclude that,
for s ground, quicksort U I<- qs(s, tH is occur-check free.

(5) Finally, consider the program palindrome:

palindrome(Xs) <- reverse(Xs, Xs).
reverse(Xls, X2s) <- reverse(Xls, [], X2s).
reverse ([X I Xl s], X2s, Y s) <- reverse(Xls, [X I X2s], Y s).
reverse ([],Xs,Xs).

We mode it as follows: palindrome(+), reverse(+, -), reverse(+, +,
-). Then palindrome is well moded, and the heads of all clauses are
output linear. By Corollary 4.5, we conclude that, for s ground, palin
drome U { <- palindrome(s)l is occur-check free.

Note that Corollary 3.8 cannot be applied to any of these programs.

5. NICELY MOOED PROGRAMS

The above conclusions are still restrictive, because in each case we had to
assume that the input positions of the one-atom goals are ground. To allevi
ate this restriction, we now consider some syntactic restrictions that imply
the conditions of Theorem 3.7.

The following notion was introduced in Chadha and Plaisted [1994]. (We
found essentially the same concept independently, though later; the name
and formulation are ours.)

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 699

Definition 5.1

-~goal ~ p1(s1,t1),. . .,pn(sn,tn) is called nicely moded ift1, .. .,tn is a
lmear family of terms and if for i E [1, n]

Var(si) n C0; Var(tj)) = 0. (1)

-A clause

Pa(so,to) ~ P1Cs1,t1), .. .,pn(sn,tn)

is called nicely moded if ~ p 1(s1, t 1), ... , Pn(sn, tn) is nicely moded and if

Var(s 0) n C.0
1

Var(tj)) = 0. (2)

In particular, every unit clause is nicely moded.

-A program is called nicely moded if every clause of it is.

Thus, assuming that in every atom the input positions occur first, a goal is

nicely moded if

-every variable occurring in an output position of an atom does not occur

earlier in the goal.

And a clause is nicely moded if

-every variable occurring in an output position of a body atom occurs

neither earlier in the body nor in an input position of the head.

So, intuitively, the concept of being nicely moded prevents a "speculative

binding" of the variables that occur in output positions; these variables are

required to be "fresh." Note that a goal with only one atom is nicely moded iff

it is output linear and input-output disjoint. The following theorem clarifies

our interest in nicely moded programs:

THEOREM 5.2. Let P and G be nicely moded. Then all LD-derivations of

P U {G} are output driven.

Note that the first atom of a nicely moded goal is output linear and

input-output disjoint, and a variant of a nicely moded clause is nicely moded.

Thus, to prove Theorem 5.2 it suffices to prove the following lemma, which

shows the "persistence" of the notion of being nicely moded:

LEMMA 5.3. An LD-resolvent of a nicely moded goal and a nicely moded

clause that is variable-disjoint with it is nicely moded.

PROOF. The proof is quite long and can be found in the Appendix. D

This lemma leads us to the following conclusion:

COROLLARY 5.4. Let P and G be nicely moded. Suppose that the head of

every clause of P is input linear. Then PU {G} is occur-check free.

PROOF. By Theorems 3. 7 and 5.2. D

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

700 K. R. Apt and A. Pellegrini

This corollary is independently established in Chadha and Plaisted [1994].

Pierre Deransart (private communication) pointed out to us that this corol

lary is a consequence of Theorem 4.1 in Deransart et al. [1991], whose

conditions are satisfied for a nicely moded program P and a nicely moded

goal G. This suggests a stronger result, namely, that then P u {G} is NSTO.

On the other hand, our proof establishes Lemma 5.3, which will allow us to

deal in Section 7 with programs that use difference lists and in Section 10

with programs that do require the use of unification with the occur-check.

Note that to prove Corollary 5.4 it is actually sufficient to prove Lemma 5.3,

under the assumption that the head of every clause of P is input linear. The

proof is considerably simpler than that of Lemma 5.3.

To apply Corollary 4.5, it is natural to start by moding the relations used in

the goal so that this goal becomes well moded. Then one should try to mode

other relations used in the program, so that the remaining conditions of this

corollary are satisfied. The important clue comes from the fact that the input

positions of the first atom of a well-moded goal are filled in by ground terms.

This is not the case for the nicely moded goals, so, for example, it is not clear

how to mode the relation app when considering the goal +- app([X, 2],

[Y, U], [3, Z, O, Z]) (which succeeds with the c.a.s. IX/ 3, Z / 2, Y / 0, U / 2D.

We shall see later that in the presence of difference lists there is no clear

intuition either about the modes of certain positions in the relations.

Consequently, as noted by Chadha and Plaisted [1994], to apply Corollary

5.4 it is probably more natural to investigate, first, all of the modings for

which the program is nicely moded and for which the heads of all clauses are

input linear. Then one should check for which modings the given goal is

nicely moded. To this end Chadha and Plaisted [1994) proposed two efficient

algorithms for generating modings with the minimal number of input posi

tions, for which the program is nicely moded. These algorithms were imple

mented and applied to a number of well-known PRO LOG programs.

In the case of the append program, the conditions of Corollary 5.4 are

satisfied for only five of the eight modes. Out of the five, only the mode

app(-, -, +) can be used to deal with the goal +- app([X,2],[Y, U],
[3, Z, 0, Z]).

Let us see now how this corollary can be applied to the previously studied
programs.

Example 5.5.

(1) Again consider the program append with the moding app(+, +, -).

Clearly, append is nicely moded, and the head of every clause is input

linear. By Corollary 5.4, we conclude that, when u is linear and when

Var(s, t) n Var(u) = 0, append U { <--- app(s, t, u)l is occur-check free.

(2) With the moding app(- , - , +), the program append is nicely moded as

well, and the head of every clause is input linear. Again, by Corollary 5.4,

we conclude that, when s, t is a linear family of terms and when Var(s, t)

n Var(u) = 0, append U { +- app(s, t, u)} is occur-check free.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 701

(3) Now reconsider the program permutation with the modings as before.
Again, it is easy to check that permutation is nicely moded and that the
heads of all clauses are input linear. By Corollary 5.4, when t is linear
and when Var(s) n Var(t) = 0, permutation u { +- perm(s, t)} is
occur-check free.

(4) Examine the program quicksort with the modings as before. Again, by
Corollary 5.4, when t is linear and when Var(s) n Var(t) = 0, quicksort
U { +- qs(s, t)} is occur check free.

(5) So far it seems that Corollary 5.4 allows us to draw more useful conclu
sions than Corollary 4.5. However, reconsider the program palindrome.
In Chadha and Plaisted [1994], it is shown that no moding exists in which
palindrome is nicely moded with the heads of all clauses being input
linear. Thus, Corollary 5.4 cannot be applied to this program.

6. STRICTLY MOOED PROGRAMS

Next, consider syntactic restrictions that imply the condition of Theorem 3.9.
To this end it is sufficient to combine the properties of being well moded and
nicely moded. Indeed, we observe the following:

COROLLARY 6.1. Let P and G be well moded and nicely moded. Then

P U { G} is occur-check free.

PROOF. By Theorems 4.2, 5.2, and 3.9. 0

In the remainder of this section, we show that the conditions of this
corollary can be weakened. First, note that, when a goal +- p 1(s1 , t 1), ••. ,

p/sn, tn) is well moded and the family t 1 , ... , tn is linear, condition (1) of
Definition 5.1 is satisfied and, thus, the goal is nicely moded. A similar
observation can be made about a clause p 0(s 0 , t 0) +- p 1(s1 , t 1), ... , Pn<sn, tn).

Thus, the assumptions of the above corollary can be simplified. We now
show that a further simplification is possible; namely, condition (2) of Defini
tion 5.1 can be omitted as well.

Definition 6.2.

-A goal +- p 1(s1 , t 1), ... , Pn<sn, tn) is called strict if t 1 , ... , tn is a linear

family of terms.

-A clause H +- B is called strict if +- B is strict.

-A program is called strict if every clause of it is.

-A goal (clause, program) is called strictly moded ifit is both strict and well

moded.

THEOREM 6.3. Let P and G be strictly moded. Then all LD-derivations of

P U {G} are both data and output driven.

Note that the first atom of a strictly moded goal is ground in its input
positions, output linear, and input-output disjoint, and a variant of a strictly
moded clause is strictly moded. Thus, to prove this theorem it suffices to
show, as in the case of well-modedness and being nicely moded, that the

notion of strict modedness is "persistent."

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

I; b Ii o,!Lh ~;_ k \menn•='
Qll.Cllff~ V90f w~111t\81 en

\.,: /&Jll s 1erdom

702 K. R. Apt and A. Pellegrini

LEMMA 6.4. An LD-resoluent of a strictly moded goal and a strictly moded

clause that is variable-disjoint with it is strictly moded.

PROOF. Consider a strictly moded goal +---- A, A and a strictly moded clause

H +---- B that is variable-disjoint with it. We start by proving three claims that

appropriately refine those of Lemma 4.3.

Suppose A=p(sA,tA) and H=p(sH,tH). Assume that A =His unifi

able. Take as E 1 the system of equations sA = sH and as E 2 the system of

equations tA = tH. Let 81 be a relevant mgu of E 1 and let 82 be a relevant

mgu of E2 81. The existence of these substitutions is assured by Lemma 2.4,

which also gives that 81 82 is a relevant mgu of A = H.

Let p - be a new relation symbol of arity equal to the cardinality oft A (and

oft H) with all positions moded as output. Note that 81 is grounding, so, by

the definition of a nicely moded goal and clause, +---- (p-(tA),A)81 and

p-(tHfJ1) - B81 are both nicely moded and have no variables in common. By

Lemma 5.3, their resolvent - (B81,A8 1)82 is nicely moded, as well.

This and Lemma 4.3 allow us to conclude that the LD-resolvent +---

(B,A)fJ1 fJ2 of the goal +----A,A and the clause H +----Bis both well moded and

nicely moded, and is, thus, strictly moded.

8 = fJ 1 82 is just one specific mgu of A = H. By Lemma 2.3, every other mgu

of A = H is of the form 87) for a renaming 7). But a renaming of a strictly

moded goal is strictly moded, so we conclude that every LD-resolvent of +----A,

A and H - B is strictly moded. D

The following result improves upon Corollary 6.1:

COROLLARY 6.5. Let P and G be strictly moded. Then P U {G} is occur-check

free.

PROOF. By Theorems 6.3 and 3.9. D

Example 6.6. In contrast to the case of well-moded and nicely moded

programs, it is difficult to come up with a natural example to which the

notion of a strictly moded program could be applied. Still, consider the

program derivative from Sterling and Shapiro [1986, p. 63], which computes

a derivative of an expression w.r.t. a variable. To save space, here we only

reproduce a couple of crucial clauses. The used function symbols are written

in an infix form, and for simplicity, unary notation for natural numbers is

used.

der(:X, :X, s(O)).

der{X i s(N),:X, s(N) *Xf N).

der(F + G,:X,DF + DG) - der(F,:X,DF),der(G,X,DG).

der{F*G,:X,F*DG + DF*G) - der(F,:X,DF),der(G,:X,DG).

To compute the derivative of an expression e, say, xj s(O) + X*Y +
Yi s(s(s(O))), w.r.t a variable, say, x, one uses the goal +---- der{e, x, Y). In the

mode der(+ , +, -) , this program is both well moded and nicely moded, and

consequently, it is also strictly moded. By Corollary 6.5, we conclude that,

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 703

when e and t are ground and u is linear, derivative u { +--- der(e, t, u)} is

occur-check free.

Note that the head of the first clause is not input linear, and the head of

the second clause is not output linear. Consequently, neither Corollary 4.5

nor Corollary 5.4 can be applied here.

7. DIFFERENCE LISTS

It is well known that programs with difference lists easily lead to complica

tions in absence of the occur-check. For example, the program empty,

empty(L\L).

when executed with the goal <---- empty([a IX1\X) leads to the consideration

of the system {[a IXl = L, X = L}, which is subject to the occur-check. It is

worthwhile to note that programs that use difference lists can be handled by

the methods proposed. For example, Corollary 5.4 immediately implies that,

for s and t linear and variable-disjoint, empty U { +--- empty(s, tH is occur

check free.

However, we did find two programs in Sterling and Shapiro [1986] that use

difference lists and to which we could not apply the results so far established.

These are flatten_dl [Sterling and Shapiro 1986, program 15.2, p. 241];

flatten(Xs, Ys) +--- flatten_dl(Xs, Ys\[D.

flatten_dl([X IXs], Ys\Zs) +--

flatten_dl(X, Ys\Ysl),

flatten_dl(Xs, Ysl \Zs).

flatten_dHX, [X I Xs]\Xs) <-

constant(X), X i= [].

flatten_ di([], Xs\Xs).

and quicksort_dl [Sterling and Shapiro 1986, program 15.4, p. 244],

qs(Xs, Ys) +--- qs_dHXs, Ys\[]).

qs_dHCXIXs1, Ys\Zs) +--

partition(X, Xs, Littles, Bigs),

qs_dHLittles, Ys\[X IYsl]),

qs_dl(Bigs, Ysl \Zs).

qs_dl([],Xs\Xs).

augmented by the partition program.

These programs are customarily used in the modes flatten(+, -) and

qs(+, -) . It is easy to check that for both programs no completion of the

moding exists for which the program is well moded, or nicely moded and with

the heads of all clauses being input linear.

For example, for flatten_dl the attempt to get it well moded fails as

follows: Assume the mode flatten(+, -) . For the first clause, we have to use

a mode of the form flatten_dH?, -, ?). Now, due to the last clause, we

actually have to use a mode of the form flatten_dl(?,-, +).But, then, in the

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

704 K. R. Apt and A. Pellegrini

recursive clause for flatten_dl we cannot satisfy the requirement of well

modedness concerning the variable Yls.

However, it is possible to modify the results on well moded and nicely

moded programs in such a way that the occur-check freedom of the above two

programs used in the discussed modes still can be established. The idea is

quite simple, though some work is needed to make it precise. Suppose that we

know that some program atoms when selected in a derivation are ground in

specific input positions. Then these input positions do not need to be consid

ered when proving that the program is occur-check free.

To formalize this idea, we consider a program and goal in two different

modings. First we prove that, when an atom is selected in a derivation, its

input positions, which are "shared" in both modes, are ground. Then we

consider a derived program obtained by removing from each atom these

shared input positions and apply to it the previous results on the nicely

moded programs.

To avoid confusion we write m-well moded (resp., m-nicely moded, etc.)

when a given goal (clause, program) is well moded (resp., nicely moded, etc.)

with respect to the moding m. Now assume two modings m 1 , and m 2 . Fix a

relation symbol p. Some positions in p are both m 1-input and m 2-input. We

now associate with p a new relation symbol p - in which these shared input

positions are removed and the remaining positions are moded as in m 2 . The

moding so obtained for the relation symbols of the form p- is denoted by

m2 - m1.

For example, if m 2 is flatten_dl(+, +, -) and m 1 is flatten_dl

(+, -, -), then m 2 -m 1 is flatten_dl-(+, -). These new relation sym

bols allow us to associate with any atom A written in the mode m 2 as

p(u, v), an atom A - written in the mode m 2 - m 1 as p ··(u - , v), where u - is

obtained by removing from u the terms that are in m 1-input positions.

For example, for the above two modes m 1 and m 2 and A = flatten_

dl([X IXs], Ys, Zs) we get A - =flatten_ di -(Ys, Zs).

Now given a sequence of atoms A, we associate with it a sequence A -

obtained by replacing in A every atom A by A-.

Definition 7.1.

-A goal <--A is called m 2-nicely moded w.r.t. m 1 (m 2 I m 1-nice, in short) if

the goal <--A- is (m 2 - m1)-nicely moded.

-A clause H <-- B is called m 2 I m 1-nice if the clause s-- <-- B -- is m 2 I m 1-

nice.

-A program is called m 2 I m 1-nice if every clause of it is.

Thus, a goal (clause, program) is m 2 I mi-nice if its"-" version is (m 2 - m 1)

nicely moded. Note that the notion of m 2 I m 1-nice goal (clause, program)

extends that of nice goal (clause, program). Indeed, if a goal (clause, program)

is m 2-nice then it is m 2 lm 1-nice for every m 1. Also, a goal (clause, program) is

m1 I m 1-nice and m1-well moded iff it is m 1-strictly moded.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 705

The following theorem explains the usefulness of this concept:

THEOREM 7.2. Suppose that

-all LD-derivations of PU {G} are m 1-data driven, and

-P and G are m 2 I m 1-nice.

Then all LD-derivations of P U {G} are mz-output driven.

PROOF. First, we prove that all goals appearing in an LD-derivation of

PU {G} are m 2 I m 1-nice. To this end, due to the assumption of m 1-data

drivedness, it suffices to prove that, for A m 1 -input ground, an LD-resolvent

of an m 2 I m 1 -nice goal ~ A, A and a disjoint with it variant H ,,___ B of an

m 2 I m 1-nice clause is m 2 I m 1 -nice as well.

Assume that A and H are unifiable. A = H equals E U (A - = H-), where

the left-hand sides of the equations from E are ground. Let 81 be a relevant

mgu of E and let 82 be a relevant mgu of(A - = H-)e 1• The existence of these

substitutions is assured by Lemma 2.4, which also gives that 81 82 is a

relevant mgu of A = H.

81 is grounding, so by the definition of a nicely moded goal and clause, both

~ (A-,A-)8 1 and (H- ~ B-)81 are (m 2 - m 1)-nicely moded. By Lemma 5.3,

their LD-resolvent ~ rn-,A-)6 182 is (m 2 - m 1)-nicely moded; that is, ~

(B, A) 61 82 , the resolvent of ~ A, A and H ~ B, is m 2 I m 1-nice. To draw the

same conclusion for an arbitrary LD-resolvent of ~ A,A and H +- B, it

suffices now to use Lemma 2.3.

Now consider a goal appearing in an LD-derivation of P U {G}. We just

established that it is m 2 I m 1-nice, so its first atom A is such that A - is

(m 2 - m 1)-output linear and (m 2 - m 1)-input-output disjoint. By assump

tion, A is also mi-input ground, so A is actually m 2-output linear and

m 2-input-output disjoint. This proves the claim. D

This brings us to the following conclusion:

COROLLARY 7.3. Suppose that

-all LD-derivations of PU {G} are m 1-data driven,

-P and G are m 2 I m 1-nice, and

-for a head H, of a clause of P, H- is (m 2 - m 1)-input linear.

Then PU {G} is occur-check free.

Note that the last assumption is weaker than the statement that the head of

every clause of P is m 2-input linear.

PROOF. Let A be an atom selected in an LD-derivation of P U {G}, and

suppose that H is a head of an input clause such that A and H have the

same relation symbol. By Theorem 7.2, A is m 2-output linear, and m 2 is

input-output disjoint. Let m 3 be the mode obtained from m 2 by reversing the

m1-input positions to output positions. By assumption, the m 1-input positions

of A are ground, so A is m 3-output linear and m 3-input-output disjoint.

Moreover, by assumption, H is mrinput linear. Now NSTO via Modes

Lemma 3.3 applies and yields that A = H is NSTO. D

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

706 K. R. Apt and A. Pellegrini

We have already noticed that neither flatten_dl nor quicksort_dl is

well moded with the relation flatten (resp., qs) is moded, (+, -). Thus, to be

able to apply this corollary we need another method for establishing data

drivedness than proving well modedness. Our idea is to weaken the latter

notion by assuming that only part of the program is well moded and by

requiring that the previous inclusions referring to the output variables refer

now to the output variables of the atoms defined in this well-moded part. We

begin with some definitions.

Definition 7.4. Let P be a program, and let p, q be relations.

-We say that prefers to q iffthere is a clause in P that uses pin its head

and q in its body.

-We say that p depends on q iff(p, q) is in the reflexive, transitive closure

of the relation refers to.

-We say that a clause of P defines the relation p if p is used in its head.

Definition 7.5. Consider a program P and an atom A in a given moding.

-We denote by PA the set of clauses of P that define the relation p of A and

the relations on which p depends.

-We say that A is well moded in P if PA is.

For example, in the moding qs(+, -), qs_dl(+, +,-),partition(+,+,-,

-) , for A = partitionCX, Xs, Littles, Bigs) we have quicksort _ dl A =

partition, so A is well moded in quicksort_dl.

We now introduce the following modification of the notion of a well-moded

program and goal:

Definition 7.6. Let P be a program.

-A goal +--- p 1(s1, t 1), •.• , p/sn, tn) is called weakly moded w.r.t. P if for

i E [1, n]
k

Var(s) ~ U Var(tij),
j=l

where P;lsi1, t;1), ... , P;k(sik' tik) are all of the atoms among p 1(s 1 ,

t 1), .. .,p;_ 1(si_ 1,ti_ 1) that are well moded in P. (Here and below, k

depends on i.)

-A clause

PoCso, to)+--- P1Cs1, t1), ·· ·, Pn(sn, tn)

is called weakly moded w.r.t. P if for i E [1, n]

k

Var(s) ~ Var(s 0) U U Var(t;J,
;= 1

where P;1(si1, t;1), ... , P;k(sik' tik) are all of the atoms among p 1

(s1,t1), ... ,p;_ 1(si-I•ti-I) that are well moded in P. In particular, every

unit clause is weakly moded w.r.t. P

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 707

-A program is called weakly moded if every clause of it is weakly moded

w.r.t. it.

Thus, a goal is weakly moded w.r.t. P if

-every variable occurring in an input position of an atom occurs in an

output position of an earlier, well-moded in P atom.

And a clause is weakly moded w.r.t. P if

-(i E [1,n]) every variable occurring in an input position of a body atom

occurs either in an input position of the head or in an output position of an

earlier body atom, which is well moded in P.

Observe that a goal with only one atom is weakly moded w.r.t. a program P

iff its atom is ground in its input position. The notion of being weakly moded

is obviously related to that of being well moded. In fact, if a program P is

well moded, then it is weakly moded. Next, assuming that P is well moded, if

a goal is well moded, then it is weakly moded w.r.t. P. Thus, the following

theorem generalizes Theorem 4.2:

THEOREM 7.7. Let P be weakly moded, and let G be weakly moded w.r.t. P.

Then all LD-derivations of P U {G} are data driven.

Note that the first atom of a weakly moded goal is ground in its input

positions and that a variant of a weakly moded clause is weakly moded (all

w.r.t. a program P). Thus, as in the case of Theorem 4.2, it suffices to prove

the following lemma, showing the persistence of the notion of being weakly

moded:

LEMMA 7.8. An LD-resolvent of a weakly moded goal and a weakly moded

clause that is variable-disjoint with it is weakly moded, all w.r.t. a program

P.

PROOF. The proof is analogous to that of Lemma 4.3. We prove two claims:

CLAJM 1. An instance of a weakly moded goal (resp., clause) is weakly

moded, w.r.t. a program P.

PROOF. As the proof of Claim 1 of Lemma 4.3. D

CLAJM 2. Suppose <-- H,A is a weakly moded goal and H <--Bis a weakly

moded clause. Then <-- B,A is a weakly moded goal, all w.r.t. a program P.

PROOF. Let H = p(s, t) and B = p 1(s1 , t 1), ... , p/sn, tn). We have Var(s)

= 0, since H is the first atom of a weakly moded goal. Thus, <-- B is weakly

moded. Now, if H is well moded in P, then H <-Bis a well-moded clause,

and consequently, Var(t) ~ U]= 1 Var(t), since Var(s) = 0. Moreover, all

atoms in B are then well moded. So <-- B, A is weakly moded.

If H is not well moded in P, then, by assumption, <-- A is weakly moded,

and so <-- B, A is as well. D

In contrast, Corollary 4.4 does not generalize to the case of weak moded

ness. Indeed, consider P = {p(x) <--} and G = <-- p(y), where the relation p is

moded p(-).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

708 K. R. Apt and A. Pellegrini

Now, combining Theorem 7.7 with Corollary 7.3 we obtain the generaliza

tion of Corollaries 5.4 and 6.5 we aimed at:

COROLLARY 7.9. Suppose that

-P is m 1-weakly moded and G is m 1-weakly moded w.r.t. P;

-P and G are m 2 ! m 1-nice, and

-for a head H ofa clause of P, H- is (m 2 - m 1)-input linear.

Then P u {G} is occur-check free.

The conditions of this corollary look quite elaborate, but it is easy to check

them for specific programs.

Example 7.10.

(1) Consider the fl.atten_dl program with "\" replaced by ",". Choose

m 2 =flatten(+, -),fl.atten_dl(+, +,-),constant(+), =I=(+,+). It is

easy to see that in this moding flatten_ di is nicely moded, so it is m 2 I m 1 -nice

for any moding m1. However, in the moding m 2 the head of the third clause

is not input linear, so here we cannot apply Corollary 5.4.

On the other hand, by choosing m 1 with flatten_ di(+, - , -) and all

other modes as in m2 , we get for a head H of a clause of flatten_ di that H

is (m 2 - m1)-input linear. Additionally, flatten_dl is m 1-weakly moded. We

can now apply Corollary 7.9 and conclude that, when xs is ground and ys is

linear, flatten_dl u { <- flatten(xs,ys)} is occur-check free.

(2) Now examine the program quicksort_dl, again with "\" replaced by

",".Choose m 2 = qs(+, -), qs_dl(+, +, -), partition(+, +, - , - ,). In this

mode quicksort_dl is not nicely moded, since in the second clause the

variable X occurs both in an input position of the head and in an output

position of a body atom.

However, by choosing m1 with qs_dl(+, -, -,) and all other modes as in

m 2 , we get that quicksort_dl is m 2 I m1-nice. Additionally, quicksort_dl

is m1-weakly moded, since, as we already noted, partition(X, Xs, Littles,

Bigs) is well moded in quicksort_dl. Also, for a head H of a clause of

quicksort_dl, H- is (m 2 - m1)-input linear. By Corollary 7.9 we get that,

when xs is ground and ys is linear, quicksort_dl U { <- qs(xs,ys)} is occur

check free.

(3) Finally, consider the following program normalize from Sterling and

Shapiro [1986, p. 248], in which we replace the binary infix symbol "+ +"

(symbolizing the sum still to be performed) by",":

normalize(Exp, Norm) <- normalize_ ds(Exp, Norm, O).

normalize_ds(A + B, Norm, Space) <-

normalize_ds(A, Norm, NormB)

normalize_ds(B, NormB, Space).

normalize_ds(A, (A+ Space), Space)<- constant (A).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. a, May 1994.

On the Occur-Check-Free PROLOG Programs 709

normalize converts a sum Exp into a normalized form Norm that is

bracketed to the right. For example, (a + b) + (c + d) is normalized to

(a + (b + (c + d))).

Assume the mode normalize (+,-).We leave to the reader the task of

checking that Corollaries 4.5, 5.4, or 6.5 cannot be applied here. Now consider

m 2 =normalize(+, -),normalize_ds(+, +, -), constant (+), and let

m 1 consist ofnormalize_ds(+, -, -) and all other modes, as in m 2 . The

same reasoning as in the case of flatten_ di applies and yields that, for exp

ground and norm linear, normalize U { +-- normalize(exp, norm)} is occur

check free.

8. GENERAL PROGRAMS

We now consider an extension of these results to the case of general pro

grams, that is, programs in which negative literals in the clause bodies are

allowed. We also show that the concept of well modedness can be used to

prove the absence of floundering, that is, selection of a negative, nonground

literal in a derivation.

First, we need to extend the basic definitions. By the LDNF-resolution we

mean the SLDNF-resolution of Clark [1979] with the leftmost selection rule.

When studying the occur-check problem, we need to use a definition of

SLDNF-resolution that guarantees that for every general program P and a

general goal G the SLDNF-tree, which comprises all SLDNF-derivations,

exists. (The definition provided in Lloyd [1987] is too restrictive for this

purpose; e.g., for the program P = {p +-- p} and the general goal G = +-- , p,

no SLDNF-derivation or tree exists.) Such a definition was recently given in

Apt and Doets [1994].

Here we only need to know the general goals that can appear in an

LDNF-derivation of PU {G}. This leads us to the following definition, where,

for a general goal H and a literal L, H - {L} stands for the result of

removing L from H:

Definition 8.1. Consider an LDNF-derivation of PU {G}. Let Jlp a be the

least set of general goals such that ·

(1) GE ;f;'P,G;

(2) if HE Jlp 0 , the first literal of H is positive, and H' is an LDNF-re

solvent or' H and a general clause of P that is variable-disjoint with it,

then H' E .'2JJ,, 0 ;

(3) if HE JYP,G and the first literal, L, of H is negative and ground, then

H - {L} E Jlp,c; and

(4) if His ground, then HE .'9'P,G·

Using the definition of SLDNF-resolution provided in Apt and Doets [1994],

it is straightforward to prove the following lemma, whose proof we omit:

LEMMA 8.2. Consider an LDNF-derivation ~ of PU {G). Every general

goal that appears in g belongs to JJ?.c·

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

71 O K. R. Apt and A. Pellegrini

When computing with general programs, one of the complications is so

called floundering. We study it here for the case of the LDNF-resolution.

Definition 8.3. Let P be a general program and G a general goal. We say

that P u {G} /founders ifin the LDNF-tree of PU {G} a general goal appears

with the first literal negative and nonground.

Next, when considering the notion of the occur-check freedom for general

programs and general goals, we simply reuse the original Definition 2.6. In

this way, we ignore the selection of negative literals, but this does not matter,

as the choice of a negative literal -, A leads either to floundering or to the

consideration of the goal ~ A whose selected literal is positive. In both cases

no unification is performed.

The concepts of data- and output-driven derivations extend to LDNF-de

rivations in a straightforward way by considering selected literals instead of

selected atoms.
Now, we generalize the notion of well modedness to general programs and

general goals by simply allowing in Definition 4.1 the negation symbol to

occur in front of any atom pi(s;, t;), where i E [1, n]. Theorem 4.2 easily

generalizes to general programs and general goals. More precisely, we have

the following result:

THEOREM 8.4. Consider a general program Panda general goal G. Let P

and G be well moded. Then all LDNF-derivations of P U {G} are data driven.

PROOF. First, we prove that every general goal in :9'P,G is well moded.

Lemma 4.3 generalizes to LDNF-resolvants, so clause (2) of Definition 8.1

preserves well modedness. Obviously, so does clause (3) and clauses (1) and

(4) admit only well-moded general goals in JlP,c· The desired conclusion now

follows from Lemma 8.2 and from the fact that the first literal of a well-moded

general goal is ground in its input positions. D

Consequently, Corollary 4.5 holds for general programs and general goals,

this time by virtue of Theorems 3.5 and 8.4.

The following simple result shows that the concept of well modedness is

also very helpful for the study of floundering. It was independently discovered

by Stroetman [1993]:

THEOREM 8.5. Consider a general program P and a general goal G. Sup

pose that P and G are well moded and that all relations that appear in

negative literals of P and G are moded completely input. Then P u {G} does

not flounder.

PROOF. Using the inductive definition of Jlp 0 , it is straightforward to

show that every negative literal L occurring in a general goal HE ?Yp 0 is an

instance of a negative literal occurring in P or G. So, by assumption, the

relation appearing in such L is moded completely input. The claim now

follows by Lemma 8.2 and by Theorem 8.4. D

Note also that Theorem 7.7 easily generalizes to general goals and general

programs. Consequently, Theorem 8.5 can be strengthened to the case of

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 711

(appropriately defined) weakly moded general goals and general programs.
Theorem 8.5 and the above generalization of Corollary 4.5 are easily applica
ble.

Example 8.6. All general programs below are understood to be augmented
by the program member:

member(X, [YI Xs]) +---- member(X, Xs).
member(X, [X I Xs]).

(1) Consider the general program disjoint:

disjoint(X, Y) +---- -, overlap(X, Y).

overlap(X, Y) +---- member(Z, X), member(Z, Y).

w~t~ ~he moding disjoint(+, +),overlap(+, +),member(-, +).Of course,
d1sJomt checks whether two lists are disjoint. disjoint is clearly well moded,
and the heads of all general clauses are output linear; so for s and t ground,
disjoint U { +---- disjoint(s, t)} is occur-check free, and by virtue of Theorem
8.5, it does not flounder.

(2) The following well-known general program trans computes the transi

tive closure of a binary relation:

trans(X, Y, E, V) +---- member(CX, Y], E).

trans(X, Z, E, V) +-

member([X, Y], E),

-,member(Y, V),

trans(Y, Z, E, [Y IV]).

In a typical use of this program, in order to check that [x, y] is in the
transitive closure of the binary relation e, one evaluates the goal +

trans(x, y, e, [x]).
With the moding trans(-, -, +, +),member(+,+) for the occurrence of

member in the negative literal-, member(Y, V) and member(- , +) for the
other occurrences of member, the program trans is well moded, and the
heads of all general clauses are output linear. So we conclude that, for e, v

ground, trans U { +---- trans(s, t, e, v)} is occur-check free, and by Theorem 8.5,
it does not flounder. The mode member(+,+) is needed here only to draw

the latter conclusion.

(3) Finally consider the general program sink:

sink(X, E) +---- -, interior(X, E).
interior(X, E) +---- member([X, Y], E).

with the moding sink(+, +),interior(+, +),member(-,+). For a binary
relation e, the goal +---- sink(a, e) succeeds if a is a sink point in e. sink is
well moded, and the heads of all general clauses are output linear, so for a, e
ground, sink u { +---- sink(a, e)} is occur-check free and does not flounder.

The usual approach to prove the absence of floundering by syntactic means
concentrates on SLDNF-resolution and is based on various generalizations of

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

712 K. R. Apt and A. Pellegrini

the concept of allowedness (see Decker [1991] for the strongest results in this

direction). However, these techniques, in general, cannot be applied to

LDNF-resolution, which employs a more specific notion of floundering.

Using Lemma 8.2 it is also possible to generalize the results on nicely and

strictly moded programs (viz, Corollaries 5.4 and 6.5) to the case of general

programs. However, the concept of a strictly moded general program is rarely

needed, and that of a nicely moded general program does not prevent the use

of nonground input positions in the goals. As a result, general programs to

which the results on nicely moded general programs can be applied usually

flounder. So, in the framework of LDNF-resolution, these generalizations are

of limited interest and, consequently, are omitted.

9. DISCUSSION

To apply the established results to a (general) program and a (general) goal,

one needs to find appropriate modings for the considered relations such that

the conditions of one of the established corollaries are satisfied. In Table I

several programs taken from Sterling and Shapiro [1986] are listed. (A

similar analysis of the notion of a well-moded program was carried out in

Drabent [1987]). Corollary 3.8 can be applied to none of them. For each

program it is indicated which of the relevant conditions for a given moding

are satisfied. All built-ins are moded completely input.

In programs that use difference lists, we replaced"\" by",", thus splitting

a position filled in by a difference list into two positions. Because of this

change, in some relations additional arguments are introduced, and so cer

tain clauses have to be modified in an obvious way. For example, in the

parsing program in Sterling and Shapiro [1986], each clause of the form

p(X) <- r(X) has to be replaced by p(X, Y) <- r(X, Y). Such changes are

purely syntactic and allow us to draw conclusions about the occur-check

freedom of the original program. The modings considered are usually intu

itive, and at least one of the Corollaries 4.5, 5.4, or 6.5 applies.

The appropriate entry in Table I indicates that, after replacing"\" by"," in

the mode flatten(+, +) and flatten_ di(+, +, -), flatten_ di is well moded

and the heads of the clauses are output linear. Thus, by virtue of Corollary

4.5 for s and t ground, all LD-derivations of flatten_dl u { <- flatten(s, t)}

are occur-check free. Similar conclusions can be drawn about quicksort_dl

moded qs(+, +),qs_dl(+, +,-),partition(+,+,-,-). Thus, for a re

stricted class of goals, the occur-check freedom of these two programs can be

established by means of the elementary techniques presented in Section 4.

10. WHEN OCCUR-CHECK IS NEEDED

Still, the results of this paper should be interpreted with caution. When

Corollary 5.4 cannot be applied to a given program, the only alternatives are

Corollaries 4.5, 6.5, or 7.9. In such cases, well- or weak-modedness is re

quired, and thus, groundness of the inputs of the one-atom goal has to be

assumed. Thus, no conclusion about the occur-check freedom for one-atom

goals with nonground inputs can be drawn. For example, for the member

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 713

Table I

Well Heads Nicely Heads Strictly
Program Page Mo ding moded output linear moded input linear moded

member 45 (-, +) Yes Yes Yes Yes Yes
member 45 (+, +) Yes Yes Yes No Yes

prefix 45 (-, +) Yes Yes Yes Yes Yes
prefix 45 (+, +) Yes Yes Yes No Yes

suffix 45 (-, +) Yes Yes Yes Yes Yes
suffix 45 (+, +) Yes Yes Yes No Yes

naive reverse 48 r(+, -) Yes Yes Yes Yes Yes
a(+,+,-)

reverse-ace. 48 r(+, -)
r(+, +, -)

Yes Yes Yes Yes Yes

delete 53 (+,+,-) Yes Yes Yes No Yes

select 53 (+,+,-) Yes Yes Yes No Yes

insertion sort 55 s(+, -) Yes Yes Yes Yes Yes
H+, +, -)

tree-member 58 (-, +) Yes Yes Yes Yes Yes
tree-member 58 (+, +) Yes Yes Yes No Yes

isotree 58 (+, +) Yes Yes Yes No Yes

substitute 60 (+,+,+,-) Yes Yes Yes No Yes

pre-order 60 p(+, -) Yes Yes Yes Yes Yes
a(+,+,-)

in-order 60 i(+, -)
a(+,+,-)

Yes Yes Yes Yes Yes

post-order 60 p(+, -) Yes Yes Yes Yes Yes
a(+,+,-)

polynomial 62 (+, +) Yes Yes Yes No Yes

derivative 63 (+, +, -) Yes No Yes No Yes

hanoi 64 h(+, +, +l -) Yes Yes Yes Yes Yes
a(+,+,-

appemL.dl 241 (+,-,+,+,-,-) Yes Yes Yes Yes Yes
append_dl 241 (+,-,+,-,-,-) No No Yes Yes No

fl.atten_dl 241 f(+, +,) Yes Yes Yes No Yes
LdH+, +, -)

flatten 243 f(+, -) Yes Yes Yes Yes Yes
f(+, +, -)

reverse_dl 244 r(+, -) Yes Yes Yes Yes Yes
r_dH+, -, +>

quicksorLdl 244 q(+, +) Yes Yes No Yes Yes
q_d.H +, +, -)
p(+, +, -, -)

dutch 246 dutcb(+, -) Yes Yes Yes Yes Yes
di(+,-,-,-)

dutclL..dl 246 dutcb(+, -) Yes Yes Yes Yes Yes
dH+,-,+,-,+,-,+)

parsing 258 all(+,-) Yes Yes Yes Yes Yes

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

714 K. R. Apt and A. Pellegrini

program of Example 8.6 no conclusion can be drawn for the goal <

member(Yl s, Y2s) when Yls and Y2s are not ground. And, indeed, when

Y2s = [f(Yls)] one of the considered systems is {Yls = X, f(Yls) = X,

[] = Xs}, which is subject to occur-check. Thus, after all, even for simple

programs, the occur-check problem can very easily creep in.

In view of this discussion, it is easy to interpret the obtained results as a

statement that the occur-check problem can arise only when considering

some "ill-designed programs" or "ill-posed goals." The following delightful

example offered to us by Dino Pedreschi (private communication) shows that

it is not so.
Consider the typed lambda calculus and Curry's system of type assignment

(see Curry and Feys [1958]). It involves statements of the form x: t, which

should be read as "term x has type t." Finite sequences of such statements

are denoted by R. The following three rules allow us to assign types to

lambda terms:

x:t ER

Rr-x:t

R 'r- m:s ~ t,R 'r- n:s

R 'r- (mn): t

R,x:s'r-m:t

R 'r- (Ax,m):s ~ t

These rules translate directly into the following PROLOG program, called

curry, which can be used to compute a type assignment to a lambda term, if

such an assignment exists (see, e.g., Reddy [1986]):

curry(R, var(X), T) <-- in([X, T], R).

curry(R, apply(M, N), T) <-- curry(R, M, S ~ T), curry(R, N, S).

curry(R,lambda(X,M), S ~ T) <-- curry([[X,S]IRl,M,T).

in(X, [Y IXsD .___ X i= Y, in(X,Xs).

in(X, [X IXsD.

In the first clause, the function symbol var is used to enforce the interpreta

tion of X as a variable and, consequently, to prevent the instantiations of the

clause to statements about the application and lambda abstraction. -> is a

binary function symbol written in an infix form.

Now consider the lambda term Ax. (x x), to which no type can be assigned,

and its PROLOG representation m = lambda(x, apply(var(x), var(x))).

Then it is easy to prove that the goal <-- curry([], m, T) finitely fails.

However, when the unification without the occur-check is used, then, if in

step (5) of the Martelli-Montanari algorithm the substitution {x/t} is per

formed in t, the goal <-- curry([], m, T) diverges; ~therwise, it succeeds!

Thus, for the above program it is essential that a unification algorithm with

the occur-check be used.

To deal with such programs, we propose the use of a program transforma

tion. The following strengthening of Corollary 5.4 is essential:

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 715

THEOREM 10.1. Let P and G be nicely moded. All systems of equations that

are considered in the LD-derivations of P U { G} and that are obtained using a

clause whose head is input linear are NSTO.

PROOF. By Lemma 5.3, all goals that appear in the LD-derivations of

P U { G} are nicely moded. But the first atom of a nicely moded goal is output

linear and input-output disjoint. So, when the head of the input clause used is

input linear, by NSTO via Modes Lemma 3.3, the corresponding system of

equations is NSTO. D

To use this result, we transform a program and a goal into a nicely moded

program and a nicely moded goal using the relation" = 0 c ", which is defined

by the single clause X =0 c X moded completely input. In the transformed

program, only this relation is evaluated by the unification algorithm with the

occur-check. The subscript "0 c" is added to distinguish it from the PROLOG

built-in"= ",which performs unification without the occur-check.

The idea is to replace the variables that "contradict nice modedness" by

"fresh" variables. Consider a clause H ~ B. Assume for simplicity that in

every atom input positions occur first. We say that a given occurrence of a

variable x in B contradicts nicety of H ~ B if x occurs in an output position

of an atom in B and, x occurs earlier in B or in an input position of H.

Now consider an occurrence of x in B that contradicts nicety. Let A be the

atom in B in which this occurrence of x takes place, and let z be a fresh

variable. Replace this occurrence of x in A by z, and denote the resulting

atom as A'. Replace A in B by A', z =0 c x.

Scan B and perform this replacement repeatedly for all occurrences of

variables that contradict the nicety of the original clause H ~ B. Call the

resulting sequence of atoms B'. It is easy to see that H ~ B' is nicely moded.

Note that, by unfolding (in the sense ofTamaki and Sato [1984]) the inserted

calls of" =0 c " in H ~ B', we obtain the original clause H ~ B.

The same transformation applied to an arbitrary goal transforms it into a

nicely moded goal. Finally, a similar transformation ensures that the head H

of H ~ Bis input linear. It suffices to replace repeatedly every occurrence of

a variable x that contradicts input linearity of H by a fresh variable z and,

to replace B by z = 0 c x, B. Clearly, the head of the resulting clause H' ~ B'

is input linear, and this transformation does not destroy the nicety of the

clause. Again, the original clause H ~ B can be obtained by unfolding the

inserted calls of" =0 c ".

The following result summarizes the effect of these transformations:

THEOREM 10.2. For every program P and goal G, there exists a program P'

and a goal G' such that

-P' and G' are nicely moded;

-the head of every clause of P' different from X =0 c X is input linear;

-P is the result of unfolding some calls of" =0 c " in P';

-G is the result of evaluating some calls of" = 0 c " in G'; and

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

716 K. R. Apt and A. Pellegrini

-all systems of equations considered in the LD-derivations of P' u {G'}, but

not associated with the calls of" = 0 c ", are NSTO.

Note that the clause X = 0 c X is not input linear, so Corollary 5.4 cannot be

applied to P' and G'.

PROOF. By construction and Theorem 10.1. D

As behavior of an unfolded program is closely related to the original

program (see, e.g., Bossi and Cocco [1990]), it is justifiable to summarize this

result by saying that every program and goal are equivalent to a nicely

moded program and nicely moded goal, respectively, such that the heads of

all clauses, except X = oc X, are input linear. In the PRO LOG execution of the

latter program and goal, only the inserted calls of" = 0 c " need to be evaluated

by means of a unification algorithm with the occur-check. Note that this

transformation trades some "fragments" of the unification with the call of the

relation "=0 c ". These inserted calls of" = 0 c " can be viewed as the overhead

needed to implement the original program correctly without the occur-check.

Alternatively, the part of the transformation that ensures that the head of

each clause is input linear could be dropped, and Theorem 10.1 could be

applied.

To conclude, let us see how this transformation can be applied to the

program curry. Consider the moding curry(+, +, -), in(+, +). The second

clause of curry is not nicely moded, because the second occurrence of S

contradicts its nicety. The corresponding transformed clause is nicely moded:

curry(R, apply(M, N), T) <- curry(R, M, S ~ T), curry(R, N, Z), Z = 0 ,.S.

Another problem is that the head of the second clause of in is not input

linear. The transformed version is

in(X, [Z IXsD <- Z = 0 c X.

Call the transformed program curry'. It is nicely moded, and the head of

every clause is input linear. By Corollary 5.4, we conclude that when t is

linear and Var(r,m) n Var(t) = 0, curry' U { <- curry(r, m, t)} is occur

check free. This allows us to draw the desired conclusion for the previously

considered goal <- curry([], m, T) with m = lambda(x, apply

(var(x), var(x))).

The proposed transformation can be easily used "manually" and also can be

efficiently implemented using two passes through the goal and the program,

one to ensure nice modedness and the other to ensure the input linearity of

the heads of the program clauses. This approach deals with the problem of

inserting occur-checks at the source level and is orthogonal to that of Beer

[1988], who proposed a revised implementation in which a new tag in the

Warren Abstract Machine is used. This tag maintains information about the

context in which a variable is used. This makes it possible to optimize the

generated code by avoiding calls to the occur-check routine at the cost a small

overhead at run time. It should be pointed out that in Beer's approach

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 717

unnecessary calls to the occur-check routine can be generated. For example,

Beer [1988] reports that 49 occur-checks were invoked for the quicksort
program.

11. CONCLUDING REMARKS

We have provided a systematic account of an approach for proving occur-check

freedom of PRO LOG programs based on syntactic analysis. In this approach,

also advocated by Chadha and Plaisted (1994], it is shown that the existence

of specific relationships between the variables of the goal and the variables of

the program implies occur-check freedom. As a side effect, we have also

explained how this approach can be used to prove the absence of floundering.

Finally, we have shown how these results can be used to deal with the

problem of insertion of occur-check tests in the program text by means of a

program transformation.

The results on the occur-check freedom were established following a similar

approach. First, systems of equations that are free from the occur-check were

identified. Then, a property of a moded goal and a moded program was

defined and proved to be "persistent" throughout the executions of the

programs. This property ensured that in all executions the selected atoms

lead to desired systems of equations. To deal with programs that use differ

ence lists, a modification of these results, which involved two different modes,

was needed.

Two other approaches to proving occur-check freedom were proposed in the

literature. One is based on the abstract interpretations, and the other uses

the attribute grammars. The first approach originated with Plaisted [1984]

and was further developed by Sondergaard (1986]. Sondergaard used an

abstract interpretation in which the information on the possibility of creating

a sharing of a variable or forming multiple occurrences of the same variable

(called spawning) is maintained. Then using abstract unification this sharing

and spawn information is propagated among the program representation, in

order to discover whether the abstract unification may lead to circularity. The

absence of circularity guarantees occur-check freedom.

The abstract interpretations were also used to prove the absence of floun

dering. The strongest results were obtained by Marriott et al. [1990]. To this

end they expressed a data-flow analysis of a general program by means of a

finitely computable approximation of the denotational semantics. Such an

approximation is determined by suitable functions that approximate the

groundness information and the unification algorithm.

The approach based on attribute grammars was originated by Deransart

and Maluszynski [1985] and was further developed in Deransart et al. [1991].

This approach exploits a close relationship between the abstract skeletons

associated with the executions of a goal and a program and the derivation

trees of the grammar associated with the goal and the program. The at

tributes are used to model relations between equations (like variable sharing).

It is shown that the occur-check freedom is implied by a combination of

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

718 K. R. Apt and A. Pellegrini

syntactic conditions and ofnoncircularity of the attribute dependency scheme.
This approach was applied recently by Dumant [1992] to deal with the
problem of inserting occur-checks in arbitrary resolution strategies.

The syntactic approach advocated in this paper is much more straightfor
ward and has, in our opinion, two important advantages: First, it can be
trivially implemented; and second, it can be easily used "manually." In fact,
we have shown that it can be readily applied to several well-known PROLOG
programs. Consequently, it seems to be sufficient to deal satisfactorily with
most common PROLOG programs. It would be interesting to clarify the
precise relationship between this approach and the other two.

APPENDIX

We prove here the promised undecidability results and Lemma 5.3. The
following theorem summarizes the undecidability issues:

THEOREM A.l. For some moded program P, the following properties are
undecidable:

-G is such that P U { G} is occur-check free,

-G is such that all LD-derivatives of P U {G} are data driven, and
-G is such that all LD-derivations of PU {G} are output driven.

PROOF. Below, Mp denotes the least Herbrand model of a program P and
Lp denotes the language determined by P. Let P0 be a strictly moded
program; let p be a new binary relation, moded p(+, -); and let P 1 = P0 U
{p(y, f(y)) ~ }.

The system E = {x = y, x = f(y)} is not NSTO, and by Corollary 6.5, for
every ground atom A, P 1 U {~A} is occur-check free. Thus, for a ground
atom A in Lp0 , P 1 U {~A,p(x,x)} is not occur-check free iff Eis consid
ered in an LD-derivation of P 1 U {~A, p(x, x)} iff there exists an LD-refuta
tion of P 1 U {~A} iff (by the completeness of LD-resolution) A E Mp 1 iff
A E Mp 0 .

So we have shown that, for every ground atom A in L 1, , A rf; Mp iff . 0 0 P 1 U {~A, p(x, x)} is occur-check free. An analogous argument using Theo-
rem 4.2 (resp., Theorem 5.2) shows that, for every ground atom A in Lp ,
A rf: Mp 0 iff all LD-derivations of P U { r- A, p(x, x)} are data driven (res;.,
iff all LD-derivations of P U {~A, p(x, x)} are output driven).

Thus, to prove the theorem it suffices to show that there exists a strictly
rnoded program P0 for which the set Mp 0 is undecidable. Now, Corollary 4.7
in Apt [1990) gave this result for some program P0 , so it suffices to check
that this corollary can be appropriately sharpened.

To this end it is enough to show that every recursive function can be
computed by a strictly moded program. The proof of computability of recur
sive functions by logic programs given in Shepherdson [1991} and based on a
straightforward encoding of register machines yields the needed result. In-
ACM Transactions on Programming Languages and Systems, Vol. 16, No.:~. May 1994.

On the Occur-Check-Free PROLOG Programs 719

deed, the obvious moding p(+, +, ... , -) for all relations p turns the

generated logic programs into strictly moded ones. This completes the proof.

0

We now turn to Lemma 5.3. We start by establishing a number of auxiliary

lemmas. The notation used below was defined in Section 1.

LEMMA A.2. Let e be a substitution, and let s and t be sequences of terms

such that

-Var(s) n Var(t) = 0,

-Ran(e I Var(s)) n Ran(e I Var(t)) = 0,

-Var(s) n Ran(e I Var(t)) = 0, and

-Var(t) n Ran(e I Var(s)) = 0.

Then Var(se) n Var(te) = 0.

PROOF. This is an immediate consequence of the fact that for any se

quence of terms u and substitution a we have Var(ua-) ~ Var(u) U Ran

(a- I Var(u)). D

The next two lemmas use the following notion:

DefinitionA.3. A substitution {x 1/t 1 , ... , xn/tn} is called linear if t 1 , ... , tn

is a linear family of terms.

LEMMA A.4. Let e be a substitution, and let t be a family of terms.

Suppose that

- (} is linear,

-t is linear, and

-Ran(&) n Var(t) = 0.

Then t e is a linear family of terms as well.

PROOF. Suppose a variable x has two distinct occurrences in te. Then one

of the following statements holds in regard to these occurrences:

-they are both occurrences in Range(e);

-they are both occurrences in t; or

-one is an occurrence in Range(e), and the other is an occurrence in t.

But each assumption of the lemma excludes the corresponding statement

above, so the claim follows. D

The following lemma is stated in Deransart and Maluszynski [1985]:

LEMMA A.5. Consider two atoms A and H with the same relation symbol.

Suppose that

-they have no variable in common, and

-A is linear.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

720 K. R. Apt and A. Pellegrini

Assume that A and Hare unifiable. Then there exists a relevant mgu e of A

and H such that

-e I Var(H) is linear, and

-Ran (8 I Var(H)) i;:;: Var(A).

PROOF. Given a set of equations E, let

RVar(E) = U Var(t),
s=IEE

EH = { s = t E E I Var (s) n Var (H) -=!= 0} .

Also, call a term t singular if each variable of it occurs in E only once. Call
an equation s = t singular if either s is a variable and singular or t is
singular. Finally call E singular if every equation in it is singular.

Consider the set of equations H = A (note the reverse ordering). We claim
that the conjunction of the following three statements is initially true for E
equal to H =A and is preserved by the action (1), (2), (3), (5), and (6) of the
Martelli-Montanari algorithm:

(1) EH is right linear,

(2) RVar(E) <;;; Var(A), and

(3) E is singular.

The checking of this claim is simple. The only subtle point arises when action
(5) applies. Let x = t be the chosen equation; x occurs elsewhere, so it is not
singular. Thus t is singular, and by Lemma A.4, after performing action (5)
EH remains right linear. Moreover, x then becomes singular, so the equation
x = t remains singular, though now on account of x. The other equations
clearly remain singular. The remaining cases are straightforward.

This shows that, when applying to the set H =A, the Martelli-Montanari
algorithm with action (4) omitted, eventually a set of equations E is pro
duced, which satisfies statements (1-3) and to which only action (4) can be
applied. Now let

E 1 = {s = t EE Is is not a variable},

E 2 =E-E1 •

None of the actions (1), (2), (3), (5), or (6) can be applied to E 1. Thus, each of
its equations is of the form s = x, where x is a variable. Moreover, by virtue
of statement (3),

where x 1, ..• , xn are different variables, each of which occurs in E only once.
Thus,

F = {x = s Is= x E E1}

is in solved form and determines a relevant mgu e 1 of E 1 such that
E2e1 = Ez.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

On the Occur-Check-Free PROLOG Programs 721

Next, none of the actions of the Martelli-Montanari algorithm can be

applied to E 2 • Thus, E 2 is in solved form and determines a relevant mgu 82

of E 2 and so of E 2 81. By statement (1), 82 I Var(H) is linear, and by

statement (2), Ran(82 I Var(H)) i;;;; Var(A).

By Lemma 2.4, 11 1 e2 is a relevant mgu of E. Moreover, by statement (2),

Dom(8 1) i;;;; Var(A), so by the disjointness of A and H, we get Dom(81) n

Var(H) = 0. Thus, 81 82 I Var(H) = 82 I Var(H). This shows that 8 = 81 82 is

the desired mgu. D

In Deransart and Maluszynski [1985, proposition 3, p. 143], this claim was

actually stated (without prooD for an arbitrary mgu 11. However, for A =

p(z, u), H = p(x, y), and 8 = {x/y, y/u, z/y}, we get a counterexample.

Below, given an atom A, we denote by Varln(A) (resp., VarOut(A)) the set

of variables occurring in the input (resp., output) positions of A. Similar

notation is used for sequences of atoms.

Finally, we need the following technical lemma:

LEMMA A.6. Consider two atoms A and H with the same relation symbol.

Suppose that

-they have no variable in common, and

-A is input-output disjoint and output linear.

Assume that A and Hare unifiable. Then there exists a relevant mgu 11 of A

and H such that for V = VarOut(H) - Varln(H), YJ 1 = 8 IV, and YJ 2 =

8 I Varln(H)

(i) 1) 1 is linear.

(ii) Ran(171) i;;;; Var(A), and

(iii) Ran(172) n (Ran(17 1) UV)= 0.

PROOF. Let it, ... , i~ (resp., if, ... , i~) be the therms filling in the input

positions of A (resp., H) and let a:, ... ,o; (resp., of1, ... ,o~) be the terms

filling in the output positions of A (resp., H). Let 81 be the relevant mgu of

{of = off, ... , ot- = ot-} constructed in the proof of Lemma A.5. By the dis

jointness of A and H, we have 81 I Var(H) = 81 I VarOut(H), so by Lemma

A.5,

81 I Var(H) is linear (3)

and

Ran(8 1 I Var(H)) i;;;; VarOut(A). (4)

Let 82 be a relevant mgu of {if =if, ... , i~ = i~}fJ 1 . By Lemma 2.4, 112

exists and 8 = 11 1 82 is a relevant mgu of A =H.

By the relevance of 81, we have Dom(e) ~ VarOut(A) U VarOut(H), so by

the input-output disjointness of A and the disjointness of A and H, we get

{if= if, ... ,i~ = i~}e 1 ={if= if8 1 , ... ,i~ = i~8 1 }. By the relevance of 82 ,

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

722 K. R. Apt and A. Pellegrini

we have Var(02) ~ Var({if = ifle1 , •.• , i~ = i;;;81}) ~ Varln(A) U Varln(H)
u Ran(01 I Varln(H)). Thus, by the disjointness of A and Hand (4),

Var(0 2) n V = 0. (5)

For the same reasons and, additionally, by the input-output disjointness of A

and (3),

Var(0 2) n Ran(e IV) = 0. (6)

Now, (5) and (6) imply that

(7)

Thus, 111 ~ 61 I Var(H); so by (3) we conclude (i), and by (4) we conclude (ii).
Now consider 112 • Note that 112 ~ (81 I Varln(H))(J2 , so

Ran(112) ~ Ran(0 1 I Varln(H)) U Var(8 2). (8)

But, by (3), (6), (4), disjointness of A and H, and (5),

(Ran(61 I Varln(H)) u Var(0 2)) n (Ran(8 1 IV) u V) = 0;

so by (8) and (7) we conclude (iii). D

We can now return to Lemma 5.3.

PROOF OF LEMMA 5.3. First, we prove three claims that appropriately
refine those of Lemma 4.3:

CLAIM 1. Suppose that A and H satisfy the assumptions of Lemma A.6,

and assume that e is a relevant mgu of A = H that satisfies conditions
(i)-(iii) of Lemma A.6. Let H -E- B be a nicely moded clause with no variables

in common with A. Then oE- Be is nicely moded.

PROOF. Below, by standardization apart we mean the assumption that
H -E- Band A have no variables in common. Let V, 171, and 'Y/2 be as in the
formulation of Lemma A.6.

Let 01 = e I VarOut(B) and 82 = e l(Varln(B) - VarOut(B)). We first es
tablish some claims about 81 and () 2 • By standardization apart and the
definition of a nicely moded clause,

VarOut(B) n (Var(A) u Var(H)) ~ V,

so by the fact that 8 is relevant,

81 ~ 'Y/1·

Thus, by the linearity of 711 (condition (i) of Lemma A.6),

81 is linear.

Moreover by (10), (ii) of Lemma A.6, and standardization apart,

Ran(81) n Var(B) = 0.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

(9)

(10)

(11)

(12)

On the Occur-Check-Free PROLOG Programs 723

Now, let 82 = 82 IV and 82 = 82 I Varln(H). We have

and

82 = e; u 02 ,

02 i;;; 7J1,

(13)

(14)

02 i;;; 712. (15)

Now consider e;. We have Dom(0 1) n Dom(82) = 0, so Dom(81) n
Dom(82) = 0. Thus, by (10), (14), and the linearity of 711 ,

Ran(82) n Ran(81) = 0. (16)

Moreover, by (14), (ii) of Lemma A.6, and standardization apart

Ran(82) n VarOut(B) = 0.

Now consider e;;. By (10), (15), and (iii) of Lemma A.6,

Ran(82) n Ran(8 1) = 0.

(17)

(18)

Also, by the fact that 8 is relevant, Ran(82) i;;; Var(A) u Var(H), so by (9),

Ran(8'2) n VarOut(B) i;;; V. Thus, by (15) and (iii) of Lemma A.6,

Ran(82) n VarOut(B) = 0. (19)

Combining (16) with (18) and (17) with (19), we get, by virtue of (13),

Ran(82) n (Ran(0 1) u VarOut(B)) = 0. (20)

Now consider Bin more detail. Suppose B =p 1(s 1,t 1), ... ,pn(sn,tn). By

assumption, t 1 , ... , tn is a linear family of terms, and for i E [1, n], tie = t 1 81.

So, by (11), (12), and Lemma A.4, t 1 e, ... , tn 0 is a linear family of terms as

well.

Now fix i E (1, n] and j E [i, n]. We have

Ran(tJ IVar(si)) i;;;Ran(8 1 IVar(si)) U Ran(82 IVar(s)) (21)

and

(22)

+-- B is nicely moded, so

Var(s) n Var(t;) = 0. (23)

Thus, by the linearity of 81, Ran(l3 1 I Var(si)) n Ran(81 I Var(t;)) = 0 and

consequently, by (21), (22), and (20),

Ran(e I Var(s)) n Ran(e I Var(t;)) = 0. (24)

Next, by (22) and (12),

Var(s) n Ran(e I Var(tj)) = 0. (25)

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

724 K. R. Apt and A. Pellegrini

Finally, by (21), (12), and (20),

Var(t) n Ran(e I Var(s;)) = 0. (26)

Now, by (23), (24), (25), (26), and Lemma A.2, we conclude that Var(si e) n
Var(tje) = 0.

This proves that <- Be is nicely moded. D

CLAIM 2. Let e be a substitution, and let <-- A be a nicely moded goal
such that Var(8) n VarOut(A) = 0. Then <- Ae is nicely moded as well.

PROOF. For any terms and a substitution er, we have Var(scr) ~ Var(s)
u Var(cr). Moreover, for any term t occurring at an output position of A by
the assumption about e we have t8 = t. The claim now follows by the
definition of a nicely moded goal. O

CLAIM 3. Suppose <- A and <- B are nicely moded goals such that
VarOut (A) n Var(B) = 0. Then <-- B,A is a nicely moded goal as well.

PROOF. Immediate by the definition of a nicely moded goal. O

Now consider a nicely moded goal <--A, A and a nicely moded clause
H <-- B that is variable disjoint with it, such that A and H unify. Observe
that A and H satisfy the assumptions of Lemma A.6. Assume that e is a
relevant mgu of A = H that satisfies conditions (i)-(iii) of Lemma A.6. By
Claim 1, <-- Be is nicely moded.

e is relevant, and Var(A) n VarOut(A) = 0; so by standardization apart,

Var(e) n VarOut(A) = 0. (27)

By Claim 2, <--AO is nicely moded.
But (27) implies that Var0ut(A8) = VarOut(A). Moreover, Var(B8) ~

Var(B) u Var(8), and by standardization apart, VarOut(A) n Var(B) = 0;
so, again by (27),

VarOut(Ae) n Var(Be) = 0. (28)

Now (28) establishes the last assumption of Claim 3 with <-A replaced by
<-- Ae and <-- B replaced by <--Be. We conclude by Claim 3 that the
LD-resolvent <- (B, A)B of the goal <-A, A and the clause H <-- B is nicely
moded. To draw the same conclusion for an arbitrary LD-resolvent of <--A, A
and H <-- B, it suffices to use Lemma 2.3. D

ACKNOWLEDGMENTS

We thank Pierre Deransart and the referees for constructive remarks on the
subject of this paper, and Dino Pedreschi for providing the curry program
example.

ACM Transactions on Programming Languages and Systems, Vol. 16, No.:>, May 1994.

On the Occur-Check-Free PROLOG Programs 725

REFERENCES

ALBERT, L., CASAS, R., AND FAGES, F. 1993. Average case analysis of unification algorithms.

Theor. Comput. Sci. 113, 1, 24, 3-34.

APT, K. R. 1990. Logic programming. In Handbook of Theoretical Computer Science, vol. B, J.

van Leeuwen, Ed. Elsevier, North-Holland, New York, 493-574.

APT, K. R. AND DOETS, K. 1994. A new definition of SLDNF-resolution. J. Logic Program. 18,
177-190.

APT, K. R., AND PELLEGRINI, A 1992. Why the occur-check is not a problem. In Proceedings of

the 4th International Symposium on Programming Language Implementation and Logic

Programming (PLILP 92), M. Bruynooghe and M. Wirsing, Eds. Lecture Notes in Computer

Science, vol 631, Springer-Verlag, Berlin, 69-86.

APT, K. R., VAN EMDE BOAS, P., AND WELLING, A. 1994. The STO problem is NP-hard. Res. Rep.

CT-94-08, Dept of Mathematics and Computer Science, Univ. of Amsterdam, The Netherlands.

BEER, J. 1988. The occur-check problem revisited. J. Logic Program. 5, 243-261.

Bossr, A., AND Cocco, N. 1990. Basic transformation operations for logic programs which

preserve computed answer substitutions. Tech. Rep. 16, Dipartimento di Matematica Pura ed

Applicata, Universita di Padova, Italy.

CHADHA, R., AND PLAISTED, D. A. 1994. Correctness of unification without occur check in

Prolog. J. Logic Program. 18, 99-122.

CLARK, K. L. 1979. Predicate logic as a computational formalism. Res. Rep. DOC 79/59, Dept.

of Computing, Imperial College, London.

CURRY, H. B., AND FEYS, R. 1958. Combinatory Logic. Vol. I. Studies in Logic and the

Foundation of Mathematics. North-Holland, Amsterdam.

DECKER, H. 1991. On generalized cover axioms. In Proceedings of the Sth International

Conference on Logic Programming, K. Furukawa, Ed. MIT Press, Paris, France, 693-707.

DEMBINSKI, P., AND MALUSZYNSK!, J. 1985. AND-parallelism with intelligent backtracking for

annotated logic programs. In Proceedings of the International Symposium on Logic Program

ming (Boston, Mass.). 29-38.

DERANSAR'I', P., AND MALUSZYNSKI, J. 1985. Relating logic programs and attribute grammars.

J. Logic Program., 2, 119-156.

DERANSART, P., FERRAND, G., AND TEGUIA, M. 1991. NSTO programs (not subject to occur-check).

In Proceedings of the International Logic Symposium, V. Saraswat and K. Ueda, Eds. MIT

Press, Cambridge, Mass., 533-547.

DRABENT, W. 1987. Do logic programs resemble programs in conventional languages? In

International Symposium on Logic Programming (San Francisco, Calif., Aug.) IEEE, New

York, 389-396.

DUMANT, B. 1992. Checking soundness of resolution schemes. In Proceedings of the Joint

International Conference and Symposium on Logic Programming, K. R. Apt, Ed. MIT Press,

Cambridge, Mass., 37-51.

LASSEZ, J.-L., MAHER, M. J., AND MARRIOTT, K. 1988. Unification revisited. In Foundations of

Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann, Los Altos,

Calif., 587-625.

LLOYD, J. W. 1987. Foundations of Logic Programming. 2nd ed. Springer-Verlag, Berlin.

MARIOTT, K., 80NDERGAARD, H., AND DAHT, P. 1990. A characterization of non-floundering logic

programs. In Proceedings of the North American Conference on Logic Programming '90, S.

Debray and M. Hermenegildo, Eds. MIT Press, Cambridge, Mass. 661-680.

MARTELLI, A., AND MONTANARI, U. 1982. An efficient unification algorithm. ACM Trans. Pro

gram. Lang. Syst. 4, 258-282.

MELLISH, C. S. 1981. The automatic generation of mode declarations for Prolog programs. DAI

Res. Pap. 163, Dept of Artificial Intelligence, Univ. of Edinburgh, Aug.

PLAISTED, D. A. 1984. The occur-check problem in Prolog. In Proceedings of the International

Conference on Logic Programming. IEEE, New York, 272-280.

REDDY, U. S. 1984. Transformation of logic programs into functional programs. In Interna

tional Symposium on Logic Programming (Silver Spring, Md., Feb.). IEEE, New York, 187-198.

REDDY, U. S. 1986. On the relationship between logic and functional languages. In Functional

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

726 K. R. Apt and A. Pellegrini

and Logic Programming, D. DeGroot and G. Lindstrom, Eds. Prentice-Hall, Englewood Cliffs,

N.J., 3-36.

ROSENBLUETH, D. A 1991. Using program transformation to obtain methods for eliminating

backtracking in fixed-mode logic programs. Tech. Rep. 7, Instituto de Investigaciones en

Matematicas Aplicadas yen Sistemas. Universidad Nacional Autonoma de Mexico.

SHEPHERDSON, J. C. 1991. Unsolvable problems for SLDNF resolution. J. Logic Program. 10,

1, 19-22.

80NDERGAARD, H. 1986. An application of abstract interpretation of logic programs: Occur

check reduction. In Proceedings of ESOP'86 (Sarrbruecken, Germany). 327-338.

STERLING, L., AND SHAPIRO, E. 1986. The Art of Prolog, MIT Press, Cambridge, Mass.

STROETMAN, K. 1993. A completeness result for SLDNF resolution. J. Logic Program. 15,

337-357.

TAMAKl, H., AND SATO, T. 1984. Unfold/fold transformation of logic programs. In Proceedings

of the 2nd International Conference on Logic Programming (Uppsala, Sweden). 127-137.

Received October 1992; accepted July 1993

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

