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Abstract. It is shown that spherically symmetric collapse can lead to singularities which
are not hidden within “black holes™.

1. Introduction

It is widely believed that, in the framework of general relativity,
gravitational collapse inevitably leads to singularities which are hidden
within “black holes”; that “naked singularities” are forbidden by some
basic principles of relativity physics. We need hardly point out the
fundamental importance of this conjecture (but will do so anyway):
should it turn out to be false, then gravitational collapse would force
far reaching revisions of present physical theory, since this would be
tantamount to a disastrous breakdown of general relativity.

The conjecture (like most conjectures about gravitational collapse)
is based to a large extent upon properties of the (spherically symmetric)
Schwarzschild-Kruskal vacuum solution, with its singularity hidden
behind the familiar horizon. Implicit in this way of thinking is the
assumption that the presence of matter does not appreciably alter the
character of the singularity. This is not necessarily a sensible extra-
polation.

We shall show here that in fact even spherically symmetric collapse
can lead to naked singularities.

Our results do not exclude the possibility that some suitably sharpened
version of the conjecture may hold (there is some discussion about this
below), but they certainly indicate that the conjecture cannot be taken
for granted and must be scrutinized much more closely than it has been
up to now.

Let us begin by defining some terms. As usual, we restrict attention
to spacetimes which contain only a single object!, and can therefore

* Work supported by the Deutsche Forschungsgemeinschaft.
! In physical terms, this means that the collapsing object is assumed sufficiently far
away from everything else in the universe so that everything else can be ignored.
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reasonably be assumed to be weakly asymptotically simple. We say
that this object is undergoing gravitational collapse if 1) the spacetime
contains a regular (“initial”) spacelike hypersurface on which the energy-
momentum tensor has connected compact support and all physical
quantities are well behaved, 2) there exists a causal curve within the
matter? which is nonextendible into the future and has finite affine
length. As first principles we require that Einstein’s field equations are
fulfilled, with an energy-momentum tensor that satisfies the dominant
energy condition [ 1], and that the spacetime is stably causal. We say that
the singularity is naked if there exists a causal curve® with one end on
#* and the other end “on the singularity”.

Let us briefly contrast naked singularities with hidden ones. Recall
that the horizon in a weakly asymptotically simple spacetime is defined
as the boundary of the past of #*; that is, it is the boundary of the set
of events in spacetime which can communicate with the asymptotic
“flat” region. In the case of a hidden singularity, no nonextendible
incomplete causal curve can lie entirely in the region which can com-
municate with #*; roughly speaking, “the singularity is hidden behind
the horizon”. The mere existence of a nonempty horizon does not,
however, in itself preclude the existence of a naked singularity (see, for
instance, the examples in Section II below).

There are of course many well known static solutions which have
naked singularities, but their physical significance is far from clear, and
they are in any case excluded from the present discussion by condition 1)
of our definition of gravitational collapse.

In Section II we show that naked singularities can occur for collapsing
spherically symmetric dust clouds. In Section III we show that even if
there are nonzero pressures, naked singularities can still occur. Section IV
contains some conclusions and remarks.

II. Collapsing Dust Clouds

The line element for a spherically symmetric dust cloud with “New-
tonian” initial conditions [2] is, written in comoving coordinates (the
radial coordinate is fixed as follows: the ball of coordinate radius
contains r particles of dust),

ds? = —d* + R¥d6? +sin>0 dp?) + Ry B> A~ dr?, (1)

2 By “within the matter” we of course mean: within the region where the energy-
momentum tensor is nonzero. From the physical point of view, one is particularly interested
in the case where some invariantly defined physical quantities (for instance the energy
density) tend toward infinity along this curve; this is the behaviour in the examples we
give below.

3 In our examples, there exists such a causal curve which is also a geodesic.
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where ' denotes partial derivative with respect to r,
R(r,):= Ry(r) A>
A(r, t):= 1 =3 Qur/R)Ft 2
B(r,t):=1 -3 2ur/Ro** (Ro/3rRo)t

and the positive constant y is the rest mass of a dust particle. This holds
for r <b, where r = b >0 is the boundary of the dust cloud; the junction
conditions to a (Schwarzschild) vacuum exterior are automatically ful-
filled. The energy-momentum tensor is T°%=045%65, with the energy
density ¢ given by

0=p@dnR*RyAB)™ . 3)

The Ricci scalar is of course proportional to the energy density in this
case.
Let us choose
R (r)3:{f(r)’ re[O,b/Z]
0 k(r/bY exp(a- cos(nr/b)), re[b/2,b],

where the monotonically increasing function f(r) is such that R,* is of
class C?* for r € [0, b], f ~rin a neighbourhood of r =0, and k, ¢, and a are
positive constants. The exact form of f(r) will not be of any interest to us.

In order to have a finite initial energy density [ Eq. (3)], we must have
a<e-M, where M:=max {K|1 —Kx-sinx=0, xe[n/2, n]}; M exists
and is a finite positive number.

We shall also require that the initial radius of the cloud is greater
than its Schwarzschild radius. Since the total mass of the cloud is ub,
this means that if we set

N:=2ub/Ry(b),

then N must be smaller than 1. By the way, this last equation enables
us to express k as a function of 4, b, ¢, a, and N.

As the time increases, ¢ increases, approaching infinity as the hyper-
surface B =0 is approached. This hypersurface can therefore be regarded
as a singular boundary for the spacetime (we shall give this singular
boundary a causal structure below). Let us fix b and u since these
quantities are of no significance for the qualitative behaviour of the
spacetime. We then have a family of spacetimes parametrized by ¢, a,
and N. We shall show that each of these spacetimes belongs to one of
the following three subfamilies:

1. The singularity is hidden behind a horizon.

I1. The event horizon of the spacetime (which is just the event

horizon of the vacuum exterior maximally extended into the interior



138 P. Yodzis et al.

of the cloud) terminates on the singularity, as, for instance, in the causal
diagram (Fig. 1). In general, part of the singularity extends below the
point of intersection with the horizon and can therefore communicate
with #*: the singularity is naked.

1I1. The horizon does not cross the surface of the matter, as shown
in Fig. 3: Again the singularity is naked. This subfamily has a particularly
interesting causal structure, which will be discussed below.

We shall now show how these properties arise. Observe first that if
we describe the singular boundary by writing ¢ =t,(r), this function has
the following behaviour: 1) it is positive and finite everywhere on the
singular boundary, 2) it has a single minimum in the interval (b/2, b],
3) the value of ¢, at this minimum can be made arbitrarily small (if we
set a =¢M, the minimum value of ¢, would be precisely 0).

The time at which the singularity reaches the surface of the matter
is t(b); let t, be the time at which the surface of the matter crosses the
horizon. Then t,(b) is given by B(b, t,(b))=0, with B(r,?) as in Eq. (2);
and f, is given by R(b, t,) =2ub, with R(r,t) as in Eq. (2) (which is just
the familiar vacuum horizon condition that the total mass ub should
be equal to half of the curvature radius R). One finds, using also the
definition of N, that

t(h=%ubN 3%¢, t,=%ubN (1 —N?%).

Plainly, for any choice of @ and N, if ¢ < 1 — N* the spacetime belongs
to subfamily III.

Suppose instead that {:=e(1 — N#)~!>1. Obviously, if a is suffi-
ciently small the spacetime belongs to subfamily I. Now let us obtain
a sufficient condition for the spacetime to belong to subfamily II. Since,
by choosing a sufficiently large, we can bring the earliest point of the
singularity in the region b/2<r=<b arbitrarily close to t=0; such
a sufficient condition is clearly that, in the region S specified by
b/2 <r=b, 0 <t<min(t,(r), t,), the “slope” of the horizon (that is to say,
dr/dt evaluated on a radial curve lying in the horizon) is bounded above
by 2t,/b. From Eq. (1), one sees that this condition can be written as

RoBA ¥ <2t,/b
throughout S. A careful examination of Ry BA~% shows that, through-
out S,
RoBA™F <$luexp(((1 —NHM/3)-(1 - NHN~?
independent of the choice of a. Therefore, if { —1 and 1 — N*¥ are suffi-

ciently small and a is sufficiently large, the required inequality holds
and the spacetime belongs to subfamily II.
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Now let us look at the maximal vacuum extensions of these space-
times. We shall display the extensions for subfamilies II and III only
(Figs. 1-3).

These pictures represent 2-surfaces 6 = constant, ¢ =constant; that
is, they correspond to the r-t plane. This plane is the orbit space of the
rotation group (which is the isometry group of our spacetimes), since cach
point in it represents a 2-sphere on which the rotation group acts
transitively. Thus the timelike curve which is the center of spherical
symmetry is represented in our pictures as a boundary line (labelled in
the pictures as “center line™).

Our diagrams correspond to the r-t plane, but they are not exactly
the r-t plane. Firstly, this plane has been distorted in such a way that
all null directions lying in it have slope =+ 1. Secondly, these are “Penrose
pictures”: null infinity is represented as a finite boundary, depicted in
our diagrams by a double line. All singularities are represented by cross-
hatched lines. Since the projection into the orbit space of any causal
curve in the $pacetime is again a causal curve, and since the null curves
in our pictures are simply straight lines with slope =1, this sort of
diagram is very well suited for the eludication of causal structure.

Figure 1 shows the maximal vacuum extension for subfamily II,
with ¢e= 1. The curve C represents the initial hypersurface ¢t =0. The
horizon consists of two disjoint null surfaces; note that these surfaces
terminate on the singularity. Region g is causally isolated behind the
horizon, and region d is causally isolated within the dust. Observers in
region ¢ can see the singularity.

For subfamily II, with e<1, the extension is a little more com-
plicated. The singularity within the matter in this case cannot terminate
on the R=0 singularity of the Kruskal vacuum exterior, because R
[in Eq. (1)] for our interior solution is nonzero for all r = b/2. Therefore
the spacetime can be extended across the curve PQ: this is done by
identifying the curve PQ with one side of the curve P'Q’ in the vacuum
Kruskal manifold (which has mass ub) pictured in Fig. 2. The other
side of the curve P'Q’ is identified with one side of a similar curve in
yet another vacuum Kruskal manifold (again with mass ub), and so on.
The point P is singular in the sense that the curvature approaches
infinity as P is approached from some directions, while P is only a branch
point. Otherwise said: the maximally extended orbit space cannot be
conformally embedded in the Euclidean 2-plane, but only in the log-
arithmic Riemann surface. In Fig. 2 (and also in Fig. 3) two sheets of the
Riemann surface are depicted.

The regions a, ¢, and d have the same properties as for the case ¢ > 1.
Region e can communicate with some points in the future of the initial
surface C.
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Fig. 1

Fig. 2
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Fig.3

For subfamily III, ¢ is always less than 1 and the causal structure is
always as shown in Fig. 3. The curves C and PQ and the regions g, c, d,
and e have the same meanings as in the cases just discussed. The new
feature in subfamily 11T is the occurrence of the regions f and b. Events
in region f can communicate, across P'Q’ via region b, with that 4"
which lies in the future of C: thus, the spacetime contains a “white hole™.

Returning to the general solution (1), (2), (3), one can characterize
the singularities of collapsing dust clouds with “Newtonian” initial
conditions as follows *. For each value of r, the singular boundary occurs
at the value of ¢ given by A(r, t) =0 if Ro(r)/3rRy(r) < 1, and at the value
of t given by B(r, t) =0 if Ry(r)/3r Ry(r) = 1. This can be seen from Eq. (3).

4 A similar characterisation can be given for non-Newtonian initial conditions,
but it cannot be stated so concisely. Incidentally, for “Newtonian” initial conditions, the
spacetime is regular into the past.
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The limit of the metric as the singular boundary is approached gives the
causal behaviour of the singular boundary, regarded as a causal boundary.
From Eq. (1), one sees that points of the singular boundary for which
Ry (r)/3rRy(r) < 1 are spacelike, and points of the singular boundary for
which Ry/3rRy 2 1 are timelike or null. Points of the singular boundary
which are spacelike cannot communicate with .# .

A spacelike point of the singular boundary can be enclosed in a
spacelike 2-sphere (in the spacetime) of arbitrarily small (metric) radius.

The nonspacelike points of the singular boundary correspond to a
“crossing” of two r = constant “shells” of dust, or (in geometric terms)
to the formation of a Kruskal-like “throat” in a t= constant hyper-
surface.

The collapsing dust spacetimes with naked singularities violate none
of the first principles set out above. They are, however, utterly unrealistic,
since they contain no pressure. It appears that naked singularities can
be ruled out (if they can be ruled out at all) only by invoking some
“second principles” which dictate that the energy-momentum tensor
should be “realistic”. Unfortunately, it is much more difficult to state
second principles than it is to state first principles, and it is also more
difficult to maintain one’s certitude about second principles. A minimal
second principle would surely be that the pressures should be nonzero;
let us demand also that they should be positive, though this need not
always hold (one need only think of a hard crust). We have not yet been
able to show precisely how the properties of dust cloud singularities
outlined above are altered by the presence of nonzero pressures, but the
discussion in the next section does show this much: even if one adds the
second principle we have just stated to our first principles, this still is not
enough to exclude naked singularities.

III. Collapse with Pressure

Let us write the line element of a spherically symmetric spacetime
in the form

ds*= —e" dt* + r2(d0* +sin® 0 dp?) + e* dr?

where o and y are functions of r and ¢. As it is well known, the “curvature
coordinate” r is not always an admissible coordinate (it fails to be
admissible if the spacetime contains a Kruskal-type “throat”), but in the
spacetimes discussed in this section it is in fact admissible. Consider first
a static perfect fluid, with equation of state

poM = 00 —p, (e(0,1/3), p=const>0.
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For such an equation of state there exists a bounded solution of Ein-
stein’s field equations, with boundary at r=R, say, and with g4(r)
uniquely fixed, for any given central density ¢,(0) [3]. (In the present
section, all quantities with a subscript , refer to this static perfect fluid
solution.)

Now let us make the following ansatz:

0:= —T§ =a(t) b(r) +0o(r) @
pi= T!={a(@®b(r)+{ o) —p
where
0sat)=1; O0Za(n=t; a(®)=0 for t=Z¢,, (5a)

b(r) defined on (0,R]; for r—0: b—> +00, b(r)in —,
R (5p)

b'(r)-r, and b"(r)-r*> are bounded. b(r) is C* on (O,R].

b(R)=0=">(R); ?fz b{f)d#=0. (5¢)

0

As shown for instance by Synge [4], if one is given the quantities o(r, t)
and p(r,t), one can then construct a complete solution of Einstein’s
equations having Ty = —p and T} =p, by direct integration. We shall
demand that some physical principles are satisfied, which will lead to
certain further restrictions on a(f); these further restrictions are com-
patible with one another and are consistent with the restrictions (5a)

’

. . 0 .
already stated above. Throughout this section, ' means i and

means ——.

ot
The metric coefficients are given by {we set the coupling constant
k=1)
2 v
Mo _ L[5 b(rydr
0

P2 (P di =1 —
#* o(F) dF .

e_"‘=1—i
p

o ~

y=—a+ [F(p+ o) dF
4]

where

2mg:= [ 7% go(F) d7 .
0
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Note that if a(f) is sufficiently small, then exp(—a) is positive and
finite for all r < R, and y is finite for all  <R.

The component T} of the energy-momentum tensor is given, for
r<R, by
a

r2

Ti=— 5 [P b dF.

O N

From the conditions (5¢) it follows that T} (R)=0 and T, (R)=0, which
implies that this solution can be matched to a Schwarzschild vacuum
exterior across the surface »=R.

It can be shown that in any interval (0, r,], ro <R:

—ay 4 —ay r
o = —(lne” %' = —e*(e )=r-lni-f1,

.
y=—od+répto=rlng-f,

&= —ee ) =drf;,

y=d-rfy,
—T}=ab,

Ti=afs,

Ti' = Cab +(0j,

where f,, f,, f3, fi are functions of r and ¢ and f5 is a function of r,
such that f; and f; - r are bounded for all r € (0, r,] and for all ¢, for each
i=1,...,5 To show this one uses the fact that a(f) is bounded for all ¢,
and also the fact that

—-———1 f #2 b(F) d#
r o

31_
rnR

is bounded near r =0. This last assertion follows from (5b) along with
the observation that, by L’'Hospital’s rule,

1 ¥
1in3———— [ # b(p) df =
0



Occurrence of Naked Singularities 145

. ro. .
Since r-In 5 is bounded, so is

Finally, we may note that a similar argument shows that the quantities

o] ()
r r ¥
are bounded on (0, R].

Note that, since ¢ can be made arbitrarily small, so can T;. This
means that our quantities ¢ and p can be made as close as we like to the
two eigenvalues of the energy-momentum tensor which correspond to
the energy density and the principal radial pressure. Since, from Egs. (4),
the quantities g and p satisfy the “equation of state” p={p — p, it follows
that we can come as close as we like to a situation in which the radial
principal pressure and the energy density are related by such an equation
of state. Therefore, at least so far as the energy density and the radial
pressure are concerned, our first and second principles are satisfied, and
in an eminently reasonable way.

It remains only to examine T, which is given by

oo, T
T22=Tll-f‘7T11 +?V(T11_Tf)+ET14—Ze "o+ P) Ty

—ptrab {j2+ghr /2 +r? ln%(l Y Obaf,/4

P2 It (0o + po) fufd = re T2+ 13 fy — fi)d®) fo/4.

Note first that T# vanishes at r =R since T7(R) is time independent,
and for t <t, the energy-momentum tensor is that of a static perfect
fluid. Note further that T} —p is of the form afg + df; + difg (of course
T —p is afi{+afs+dfs) where fg, f,, and fg are bounded every-
where inside the matter, and f§, f5, and fg are bounded everywhere
inside the matter except in an arbitrarily small neighbourhood of »=0.
Therefore, by choosing a, d, and ¢ sufficiently small, we can fit 77 into
an arbitrary uniform C° neighbourhood of p, and if we exclude a neigh-
bourhood of r =0, we can fit T? into an arbitrary uniform C! neighbour-
hood of p. This means in particular, since p’ is bounded away from zero
in a neighbourhood of r = R (because p'(R) = py(R) > 0) that T3 is positive
everywhere inside the matter. Moreover, since T3 can be made arbitrarily
close to p, the dominant energy condition is fulfilled, and what is more,
our matter is almost (in the sense just explained) a perfect fluid.
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From the form of g, Eq. (4), it is clear that the line r=0, t>¢, is
singular in the sense that as this line is approached, the density and
pressure tend toward infinity. However, the metric coefficients have a C*
extension onto this singular line, and the extended v is finite everywhere,
whence the singularity is timelike and the (extended) spacetime contains
no horizons. That is: the singularity is naked.

There is one further detail to be dealt with: we have not shown that
our conditions (5b, ¢) on the function b(r) are compatible. In fact, they
are compatible since, for instance, the function

r 5(r>2 8 r i1
mo o+ () - b

bo)=—np+2i®) "3 R %

satisfies them.

The question may well arise in the reader’s mind: what is the essential
physical mechanism for the formation of this remarkable singularity?
It is the following. Our matter is almost a perfect fluid, but not quite.
The small difference between Ty and T7 has been arranged mathe-
matically in just such a way as to “squeeze” the matter into a (naked)
singularity.

It is conceivable that one could obtain, by an iteration process,
solutions in which an exact equation of state is satisfied. It seems to us
quite likely that in such solutions the boundary of the object would
have to collapse, and it is also possible that the causal character of the
singularity would be altered; whether these two processes would conspire
to hide the singularity is impossible to say at this point.

The reader will note that there is a sudden jump in o(r=0) at the
time t,y, from a constant finite to an infinite value. This is not in any
sense a characteristic of naked singularities, but only reflects the particu-
larly simple form of our ansatz (4). This sudden jump can be avoided
within the framework of the present method, but only at the expense of
making our equations more complicated. Likewise, our requirement that
T, should be “small” has no fundamental significance, but only enables
us to easily interpret the quantities ¢ and p. Again, the property that the
boundary of the matter remains fixed at r=R has no fundamental
significance, but is a matter of mathematical convenience. Even in the
present approach a moving boundary could be incorporated, but would
only add complication, rather than insight.

Is the above solution (really: set of solutions) somehow very peculiar
and special, so much so that the set of spacetimes with naked singularities
is of “measure zero” in the space of all spherically symmetric spacetimes?
This is a very difficult and subtle question, whose answer depends, for
instance, on what one means by “measure zero”. For the moment, we
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can only remark that, even within the context of our present method,
one can construct solutions which are “almost” perfect fluids and have
naked singularities, with rather weak restrictions on the ansatz from
which one starts.

One can have a naked singularity for any (“almost” obeyed) equation
of state, so long as p is a monotonically increasing function of g, is
dominated by g, and reaches zero at a positive value of ¢. One then has
the following freedom in choosing the behaviour at small r of the ansatz
for g: 1) if p remains finite as ¢ approaches infinity, then any choice of ¢
which is bounded above by ! in a neighbourhood of =0 is allowed;
2) if p approaches infinity as ¢ approaches infinity, but p is bounded above
by ¢° (0 <& < 1) for large g, then any choice of ¢ which is bounded above
by (—Inr)'” in a neighbourhood of r=0 is allowed; 3) for any other
equation of state, any choice of ¢ which is bounded above by —Inr
in a neighbourhood of r =0 is allowed.

IV. Concluding Remarks

It should be clear from the above that if there exists a cogent state-
ment which rules out naked singularities, it must be worded with some
care. In our view, there are two directions along which one might try
to approach such a statement.

The first one is to consider the question of stability. We have shown
that first principles, and probably any reasonable second principles,
allow naked singularities. However, we have not shown that this property
is stable with respect to, say, initial data and equations of state.

The second approach would be insist that the second principles we
have taken into account thus far are too weak. In particular, one could
demand that an exact equation of state, subject to some restrictions,
is obeyed; we have already discussed this possibility somewhat in
Section I1I. However, especially in the presence of timelike singularities,
it seems problematical to decide what is really a “reasonable” equation
of state, for one can conceive of the possibility that there could be
formidable radiation terms to be taken into account, so that a reasonable
equation of state may look at the first glance very strange.

It is an open question whether there exists a cogent statement
excluding naked singularities. The resolution of this question is likely
to involve some very interesting considerations, and to produce some
physical insight.
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Note added in proof. Meanwhile, we have extended the results of Section 1I as follows
(H. Miiller zum Hagen, P. Yodzis, and H.-J. Seifert, “On the occurance of Naked Singulari-
ties in General Relativity II”, preprint U. Hamburg, August 1973): we have shown that
naked “shell crossing” singularities can occur in the spherically symmetric collapse of
perfect fluids, for a large family of equations of state in which the pressure has an (arbitrarily
large) upper bound, and that this behaviour is stable with respect to spherically symmetric
perturbations of the initial data, as well as with respect to perturbations of the equation
of state.



