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Résumé. Un des buts de ce travail est d’illustrer de diverses manières l’efficacité des outils fonda-
mentaux introduits par Pierre Lelong dans l’étude de l’Analyse Complexe et de la Géométrie analy-
tique ou algébrique. Nous donnons d’abord une présentation détaillée du théorème d’extension L2

de Ohsawa-Takegoshi, avec le même point de vue géométrique que celui introduit par L. Manivel. Ce
faisant, nous simplifions la démarche de Ohsawa-Takegoshi et Manivel, et mettons en évidence une
difficulté (non encore surmontée) dans l’argument invoqué par Manivel pour la régularité en bidegré
(0, q), q> 1. Nous donnons ensuite quelques applications frappantes du théorème d’extension, en
particulier un théorème d’approximation des fonctions plurisouharmoniques par des logarithmes de
fonctions holomorphes, préservant autant que possible les singularités et nombres de Lelong de la
fonction plurisosuharmonique donnée. L’étude des singularités de fonctions plurisousharmoniques
se poursuit par un théorème de type Briançon-Skoda nouveau pour les faisceaux d’idéaux multi-
plicateurs de Nadel. En utilisant ce résultat et des idées de R. Lazarsfeld, nous donnons finalement
une preuve nouvelle d’un résultat récent de T. Fujita: la croissance du nombre des sections des mul-
tiples d’un fibré en droites gros sur une variété projective est donnée par la puissance d’intersection
de plus haut degré de la partie numériquement effective dans la décomposition de Zariski du fibré.

Abstract. One of the goals of this work is to demonstrate in several different ways the strength of
the fundamental tools introduced by Pierre Lelong for the study of Complex Analysis and Analytic
or Algebraic Geometry. We first give a detailed presentation of the Ohsawa-Takegoshi L2 extension
theorem, inspired by a geometric viewpoint introduced by L. Manivel in 1993. Meanwhile, we sim-
plify the original approach of the above authors, and point out a difficulty (yet to be overcome) in
the regularity argument invoked by Manivel in bidegree (0, q), q> 1. We then derive some striking
consequences of the L2 extension theorem. In particular, we give an approximation theorem of
plurisubharmonic functions by logarithms of holomorphic functions, preserving as much as pos-
sible the singularities and Lelong numbers of the given function. The study of plurisubharmonic
singularities is pursued, leading to a new Briançon-Skoda type result concerning Nadel’s multiplier
ideal sheaves. Using this result and some ideas of R. Lazarsfeld, we finally give a new proof of a
recent result of T. Fujita: the growth of the number of sections of multiples of a big line bundle
is given by the highest power of the first Chern class of the numerically effective part in the line
bundle Zariski decomposition.

Contents

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Notation and general setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Basic a priori inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. L2 existence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. The Ohsawa-Takegoshi-Manivel L2 extension theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
5. Regularity of the solution for bidegrees (0, q), q > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6. Approximation of psh functions by logarithms of holomorphic functions . . . . . . . . . . . . . . . . . . . 19
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0. Introduction

The Ohsawa-Takegoshi-Manivel L2 extension theorem addresses the following basic
problem.

Problem. Let Y be a complex analytic submanifold of a complex manifold X ;

given a holomorphic function f on Y satisfying suitable L2 conditions on Y , find a

holomorphic extension F of f to X, together with a good L2 estimate for F on X.

The first satisfactory solution has been obtained by Ohsawa-Takegoshi [OT87,
Ohs88, Ohs94, Ohs95]. We follow here a more geometric approach due to Manivel
[Man93], which provides a more general extension theorem in the framework of vec-
tor bundles and higher cohomology groups. The first goal of this notes is to simplify
further Manivel’s approach, as well as to point out a technical difficulty in Manivel’s
proof. This difficulty occurs in the regularity argument for (0, q) forms, when q > 1 ;
it does not look to be very serious, so we strongly hope that it will be overcome in
a new future !

As in Ohsawa-Takegoshi’s fundamental paper, the main idea is to use a modified
Bochner-Kodaira-Nakano inequality. Such inequalities were originally introduced in
the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier [DX84]. The main a
priori inequality we are going to use is a simplified (and slightly extended) version of
the original Ohsawa-Takegoshi a priori inequality, as proposed recently by Ohsawa
[Ohs95]; see also Berndtsson [Ber96] for related calculations in the special case of
domains in Cn.

We then describe how the Oshawa-Takegoshi-Manivel extension theorem can
be applied to solve several important problems of complex analysis or geometry.
The first of these is an approximation theorem for plurisubharmonic functions. It
is known since a long time that every plurisubharmonic function can be written as
a limit of logarithms of the modulus of holomorphic functions, multiplied by suit-
able small positive numbers (see Bremermann [Bre54] and Lelong [Lel72]). Here, we
show that the approximation can be made with a uniform convergence of the Lelong
numbers of the holomorphic functions towards those of the given plurisubharmonic
function. This result contains as a special case Siu’s theorem [Siu74] on the analyt-
icity of Lelong number sublevel sets. A geometric (more or less equivalent) form of
the result is the existence of approximations of an arbitrary closed positive current
of type (1, 1) of rational cohomology class by effective rational divisors. Somewhat
surprisingly, the proof of all the above only uses the 0-dimensional case of the L2

extension theorem !

By combining some of the results provided by the proof of that approximation
theorem with Skoda’s L2 estimates for the division of holomorphic functions, we
obtain a Briançon-Skoda type theorem for Nadel’s multiplier ideal sheaves. A weak
form of it says that I(ℓϕ) ⊂ I(ϕ)ℓ−n for every plurisubharmonic function on an
open set of Cn. This result can in its turn be used to prove Fujita’s “asymptotic
Zariski decomposition result”. The result tells us that if we write a big Q-divisor
D as a sum D = E + A with E effective and A ample, then the value of the
supremum of An is determined by the growth of the number of sections, and equal
to lim sup n!

knh
0(X, kL) where n = dimX .
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I thank wholeheartedly Pierre Dolbeault, Andrei Iordan and Henri Skoda for
giving me the opportunity to present this work on the occasion of Pierre Lelong’s
85th birthday celebration in September 1997.

1. Notation and general setting

Let X be a complex n-dimensional manifold equipped with a hermitian metric ω,
viewed as a positive (1, 1)-form

ω = i
∑

16j,k6n

ωjk(z) dzj ∧ dzk.

The bundle of (p, q)-forms Λp,qT ⋆X = ΛpT ⋆X⊗ΛqT
⋆

X then inherits a natural hermitian
metric. If (E, h) is a hermitian vector bundle, and u, v : X → Λp,qT ⋆X ⊗E are (p, q)-
forms with values in E with measurable coefficients, we set

(1.1) ‖u‖2 =

∫

X

|u|2dVω, 〈〈u, v〉〉 =

∫

X

〈u, v〉dVω

where |u| = |u|ω,h is the pointwise norm induced by ω and h on Λp,qT ⋆X ⊗ E, and
dVω = 1

n!ω
n is the hermitian volume element. In this way, we obtain a Hilbert space

L2(X,Λp,qT ⋆X ⊗ E) of sections, containing the space D(X,Λp,qT ⋆X ⊗ E) of smooth
compactly supported sections as a dense subspace.

If we assume that the metric h on E is smooth, there is a unique smooth
connection D = D′ +D′′ on E (the so-called Chern connection of (E, h)) acting on
forms with values in E, such that:

• D′ is of pure type (1, 0) and D′′ is of pure type (0, 1);
• D′′ coincides with the ∂ operator;
• D is compatible with h, that is, D satisfies the Leibnitz rule

d{u, v} = {Du, v}+ (−1)deg u{u,Dv}

where { , } : Λp,qT ⋆X ⊗ E × Λr,sT ⋆X ⊗ E → Λp+s,q+rT ⋆X is the sesquilinear product
which combines the the wedge product (u, v) 7→ u ∧ v on scalar valued forms with
the hermitian inner product on E.

As usual one can view D′, D′′ as closed and densely defined operators on the
Hilbert space L2(X,Λp,qT ⋆X ⊗ E); the domain of D′′, for example, is the set of all
u ∈ L2 such thatD′′u calculated in the sense of distributions satisfies D′′u ∈ L2. The
formal adjoints D′⋆, D′′⋆ also have closed extensions in the sense of distributions,
which do not necessarily coincide with the Hilbert space adjoints in the sense of
Von Neumann, since the latter ones may have strictly smaller domains. It is well
known, however, that the domains coincide if the hermitian metric ω is (geodesically)
complete. The complex Laplace Beltrami operators are defined by

(1.2) ∆′ = [D′, D′⋆] = D′D′⋆ +D′⋆D′, ∆′′ = [D′′, D′′⋆] = D′′D′′⋆ +D′′⋆D′′

where [A,B] = AB − (−)degA degBBA is the graded commutator bracket of oper-
ators. Other important operators of hermitian geometry are Lu := ω ∧ u and its



4 On the Ohsawa-Takegoshi-Manivel L2 extension theorem

adjoint Λ. Under the assumption that ω is Kähler, i.e. dω = 0, we have the following
basic commutation identities:

(1.3)
[D′′⋆, L] = iD′, [D′⋆, L] = −iD′′,

[Λ,D′′] = −iD′⋆, [Λ,D′] = iD′′⋆.

From there, one gets the fundamental Bochner-Kodaira-Nakano identity

(1.4) ∆′′ = ∆′ + [Λ, iΘ(E)],

where Θ(E) = D2 = D′D′′+D′′D′ ∈ C∞(X,Λ1,1T ⋆X ⊗Hom(E,E)) is the curvature
tensor of E.

2. Basic a priori inequality

The standard L2 estimates for solutions of ∂ equations (Andreotti-Vesentini [AV65],
Hörmander [Hör65, 66]) are based on a direct application of the Bochner-Kodaira-
Nakano identity (1.4). In this setting, the curvature integrals are spread over X and
everything goes through in a rather straightforward manner. For the application
to the L2 extension theorem, however, one has to “concentrate” the effect of the
curvature around the subvariety from which the extension is to be made. For this,
a modified a priori inequality is required, involving “bump functions” in the weight
of the L2 integrals. The following is an improved version, due to Ohsawa [Ohs95]
of the original a priori inequality used by Ohsawa-Takegoshi [OT87, Ohs88]. Earlier
similar estimates had been used in a different context by Donnelly-Fefferman [DF83]
and Donnelly-Xavier [DX84].

(2.1) Lemma ([Ohs95]. Let E be a hermitian vector bundle on a complex manifold

X equipped with a Kähler metric ω. Let η, λ > 0 be smooth functions on X. Then

for every form u ∈ D(X,Λp,qT ⋆X ⊗ E) with compact support we have

‖(η
1
2 + λ

1
2 )D′′⋆u‖2 + ‖η

1
2D′′u‖2 + ‖λ

1
2D′u‖2 + 2‖λ−

1
2 d′η ∧ u‖2

> 〈〈[η iΘ(E)− i d′d′′η − iλ−1d′η ∧ d′′η, Λ]u, u〉〉.

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D′ηD′⋆ +D′⋆ηD′ = η[D′, D′⋆] + [D′, η]D′⋆ + [D′⋆, η]D′

= η∆′ + (d′η)D′⋆ − (d′η)∗D′,

D′′ηD′′⋆ +D′′⋆ηD′′ = η[D′′, D′′⋆] + [D′′, η]D′′⋆ + [D′′⋆, η]D′′

= η∆′′ + (d′′η)D′′⋆ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators η•,
(d′η)∧ •, (d′′η)∧ •. By subtracting the above equalities and taking into account the
Bochner-Kodaira-Nakano identity ∆′′ −∆′ = [iΘ(E), Λ], we get

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′

= η[iΘ(E), Λ] + (d′′η)D′′⋆ − (d′′η)⋆D′′ + (d′η)⋆D′ − (d′η)D′⋆.(2.2)
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Moreover, the Jacobi identity yields

[D′′, [d′η, Λ]]− [d′η, [Λ,D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ,D′′] = −iD′⋆ by the basic commutation relations 7.2. A straightforward
computation shows that [D′′, d′η] = −(d′d′′η) and [d′η, Λ] = i(d′′η)⋆. Therefore we
get

i[D′′, (d′′η)⋆] + i[d′η,D′⋆]− [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η, Λ] = [D′′, (d′′η)⋆]+ [D′⋆, d′η] = D′′(d′′η)⋆+(d′′η)⋆D′′+D′⋆(d′η)+(d′η)D′⋆.

After adding this to (2.2), we find

D′′ηD′′⋆ +D′′⋆ηD′′ −D′ηD′⋆ −D′⋆ηD′ + [i d′d′′η, Λ]

= η[iΘ(E), Λ] + (d′′η)D′′⋆ +D′′(d′′η)⋆ + (d′η)⋆D′ +D′⋆(d′η).

We apply this identity to a form u ∈ D(X,Λp,qT ⋆X ⊗E) and take the inner bracket
with u. Then

〈〈(D′′ηD′′⋆)u, u〉〉 = 〈〈ηD′′⋆u,D′′⋆u〉〉 = ‖η
1
2D′′⋆u‖2,

and likewise for the other similar terms. The above equalities imply

‖η
1
2D′′⋆u‖2 + ‖η

1
2D′′u‖2 − ‖η

1
2D′u‖2 − ‖η

1
2D′⋆u‖2 =

〈〈[η iΘ(E)− i d′d′′η, Λ]u, u〉〉+ 2Re 〈〈D′′⋆u, (d′′η)⋆u〉〉+ 2Re 〈〈D′u, d′η ∧ u〉〉.

By neglecting the negative terms −‖η
1
2D′u‖2 − ‖η

1
2D′⋆u‖2 and adding the squares

‖λ
1
2D′′⋆u‖2 + 2Re 〈〈D′′⋆u, (d′′η)⋆u〉〉+ ‖λ−

1
2 (d′′η)⋆u‖2 > 0,

‖λ
1
2D′u‖2 + 2Re 〈〈D′u, d′η ∧ u〉〉+ ‖λ−

1
2 d′η ∧ u‖2 > 0

we get

‖(η
1
2 + λ

1
2 )D′′⋆u‖2 + ‖η

1
2D′′u‖2 + ‖λ

1
2D′u‖2 + ‖λ−

1
2 d′η ∧ u‖2 + ‖λ−

1
2 (d′′η)⋆u‖2

> 〈〈[η iΘ(E)− i d′d′′η, Λ]u, u〉〉.

Finally, we use the identities

(d′η)⋆(d′η)− (d′′η)(d′′η)⋆ = i[d′′η, Λ](d′η) + i(d′′η)[d′η, Λ] = [id′′η ∧ d′η, Λ],

‖λ−
1
2 d′η ∧ u‖2 − ‖λ−

1
2 (d′′η)⋆u‖2 = −〈〈[iλ−1d′η ∧ d′′η, Λ]u, u〉〉,

The inequality asserted in Lemma 2.1 follows by adding the second identity to our
last inequality. �

In the special case of (n, q)-forms, the forms D′u and d′η ∧ u are of bidegree
(n+ 1, q), hence the estimate takes the simpler form

(2.3) ‖(η
1
2 +λ

1
2 )D′′⋆u‖2+‖η

1
2D′′u‖2 > 〈〈[η iΘ(E)−i d′d′′η−iλ−1 d′η∧d′′η, Λ]u, u〉〉.
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3. L2 existence theorem

By essentially repeating the Hilbert space techniques already used by Kohn
[Ko63, 64] and Hörmander [Hör65, 66] in our context, we now derive from (2.3)
the following existence theorem.

(3.1) Proposition. Let X be a complete Kähler manifold equipped with a (non ne-

cessarily complete) Kähler metric ω, and let E be a hermitian vector bundle over X.

Assume that there are smooth and bounded functions η, λ > 0 on X such that the

(hermitian) curvature operator B = Bn,qE,ω,η = [η iΘ(E)− i d′d′′η− iλ−1d′η∧d′′η, Λω]
is positive definite everywhere on Λn,qT ⋆X ⊗E, for some q > 1. Then for every form

g ∈ L2(X,Λn,qT ⋆X ⊗E) such that D′′g = 0 and
∫
X
〈B−1g, g〉 dVω < +∞, there exists

f ∈ L2(X,Λn,q−1T ⋆X ⊗E) such that D′′f = g and
∫

X

(η + λ)−1|f |2 dVω 6 2

∫

X

〈B−1g, g〉 dVω.

Proof. Let v ∈ L2(X,Λn,qT ⋆X ⊗ E) be an arbitrary element. Assume first that ω is
complete, so that (KerD′′)⊥ = ImD′′⋆ ⊂ KerD′′⋆. Then, by using the decompo-
sition v = v1 + v2 ∈ (KerD′′)⊕ (KerD′′)⊥ and the fact that g ∈ KerD′′, we infer
from Cauchy-Schwarz the inequality

|〈g, v〉|2 = |〈g, v1〉|
2 6

∫

X

〈B−1g, g〉 dVω

∫

X

〈Bv1, v1〉 dVω.

We have v2 ∈ KerD′′⋆, hence D′′⋆v = D′′⋆v1, and (2.3) implies
∫

X

〈Bv1, v1〉 dVω 6 ‖(η
1
2 + λ

1
2 )D′′⋆v1‖

2 + ‖η
1
2D′′v1‖

2 = ‖(η
1
2 + λ

1
2 )D′′⋆v‖2

provided that v ∈ DomD′′⋆. Combining both, we find

|〈g, v〉|2 6
(∫

X

〈B−1g, g〉 dVω
)
‖(η

1
2 + λ

1
2 )D′′⋆v‖2.

This shows the existence of an element w ∈ L2(X,Λn,qT ⋆X ⊗ E) such that

‖w‖2 6

∫

X

〈B−1g, g〉 dVω and

〈〈v, g〉〉 = 〈〈(η
1
2 + λ

1
2 )D′′⋆v, w〉〉 ∀g ∈ DomD′′ ∩DomD′′⋆.

As (η1/2 + λ
1
2 )2 6 2(η + λ), it follows that f = (η1/2 + λ

1
2 )w satisfies D′′f = g

as well as the desired L2 estimate. If ω is not complete, we set ωε = ω + εω̂ with
some complete Kähler metric ω̂. The final conclusion is then obtained by passing
to the limit and using a monotonicity argument (the integrals are monotonic with
respect to ε). The technique is quite standard and entirely similar to the approach
described in [Dem82a], so we will not give any detail here. �

(3.2) Remark. We will also need a variant of the L2-estimate, so as to obtain
approximate solutions with weaker requirements on the data : given δ > 0 and
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g ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′g = 0 and
∫
X
〈(B + δI)−1g, g〉 dVω < +∞,

there exists an approximate solution f ∈ L2(X,Λn,q−1T ⋆X ⊗E) and a correcting
term h ∈ L2(X,Λn,qT ⋆X ⊗ E) such that D′′f + δ1/2h = g and

∫

X

(η + λ)−1|f |2 dVω +

∫

X

|h|2 dVω 6 2

∫

X

〈(B + δI)−1g, g〉 dVω.

The proof is almost unchanged, we rely instead on the estimates

|〈g, v1〉|
2 6

∫

X

〈(B + δI)−1g, g〉 dVω

∫

X

〈(B + δI)v1, v1〉 dVω,

and ∫

X

〈(B + δI)v1, v1〉 dVω 6 ‖(η
1
2 + λ

1
2 )D′′⋆v‖2 + δ‖v‖2. �

4. The Ohsawa-Takegoshi-Manivel L2 extension theorem

We now derive the basic L2 extension theorem, by using a variant of the original
“weight bumping technique” of Ohsawa-Takegoshi. At this point, our approach is
closer to Manivel’s exposition [Man93].

(4.1) Theorem. Let X be a weakly pseudoconvex n-dimensional complex manifold

equipped with a Kähler metric ω, let L (resp. E) be a hermitian holomorphic line

bundle (resp. a hermitian holomorphic vector bundle of rank r over X), and s a

global holomorphic section of E. Assume that s is generically transverse to the zero

section, and let

Y =
{
x ∈ X ; s(x) = 0, Λrds(x) 6= 0

}
, p = dimY = n− r.

Moreover, assume that the (1, 1)-form iΘ(L) + r i d′d′′ log |s|2 is semipositive and

that there is a continuous function α > 1 such that the following two inequalities

hold everywhere on X :

a) iΘ(L) + r i d′d′′ log |s|2 > α−1 {iΘ(E)s, s}

|s|2
,

b) |s| 6 e−α.

Then for every holomorphic section f of ΛnT ⋆X ⊗ L over Y , such that

∫

Y

|f |2|Λr(ds)|−2dVω < +∞,

there exists a holomorphic extension F to X such that F↾Y = f and

(⋆)

∫

X

|F |2

|s|2r(− log |s|)2
dVX,ω 6 Cr

∫

Y

|f |2

|Λr(ds)|2
dVY,ω ,

where Cr is a numerical constant depending only on r.
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We further state a conjecture for the extension (0, q) forms, a variant of which
was claimed as a theorem by L. Manivel [Man93]. The proof given by Manivel is
indeed essentially correct, apart from a minor regularity argument which is incor-
rectly settled in [Man93]. Although we have been unable to fix the difficulty, we
strongly hope that it will be overcome in a near future.

(4.2) Conjecture. If f is a smooth ∂-closed (0, q)-form over Y stisfying the same

L2 condition as above, there exists a locally square integrable extension (0, q)-form
F over X which is an extension of f , is smooth on X r {s = Λr(ds) = 0}, and
satisfies (⋆).

(4.3) Remark. Observe that the differential ds (which is intrinsically defined only
at points where s vanishes) induces a vector bundle isomorphism ds : TX/TY → E
along Y , hence a non vanishing section Λr(ds), taking values in

Λr(TX/TY )
⋆ ⊗ detE ⊂ ΛrT ⋆X ⊗ detE.

The norm |Λr(ds)| is computed here with respect to the metrics on ΛrT ⋆X and detE
induced by the Kähler metric ω and by the given metric on E. Also notice that
hypothesis a) is the only one that really matters: if a) is satisfied for some choice of
the function α > 1, one can always achieve b) by multiplying the metric of E with
a sufficiently small weight e−χ◦ψ (where ψ is a psh exhaustion on X and χ a convex
increasing function; property a) remains valid after we multiply the metric of L by
e−(r+α−1

0
)χ◦ψ, with α0 = infx∈X α(x).

We now split the proof of Theorem 4.1 in several steps, pushing forward the
general case of (0, q)-forms as long as we can (i.e. until the check of regularity, where
we unfortunately got stuck . . .). By this we mean that we consider a section f of

Λ0,qT ∗
Y ⊗ (ΛnT ∗

X ⊗ L)↾Y

with smooth coefficients on the regular part Yreg ⊂ Y , satisfying a further ad hoc
L2 condition on Y .

(4.4) Construction of a smooth extension f̃∞. Let us first assume that the
singularity set Σ = {s = 0} ∩ {Λr(ds) = 0} is empty, so that Y is closed and
nonsingular. We claim that there exists a smooth section

f̃∞ ∈ C∞(X,Λn,qT ⋆X ⊗ L) = C∞(X,Λ0,qT ⋆X ⊗ ΛnT ⋆X ⊗ L)

such that

(a) f̃∞ coincides with f in restriction to Y ,

(b) |f̃∞| = |f | at every point of Y ,

(c) D′′f̃∞ = 0 at every point of Y .

For this, consider coordinates patches Uj ⊂ X biholomorphic to polydiscs such that
Uj ∩ Y = {z ∈ Uj ; z1 = . . . = zr = 0} in the corresponding coordinates. We can
certainly find a section f̂ ∈ C∞(X,Λn,qT ⋆X ⊗ L) which achieves a) and b), since
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the restriction map (Λ0,qT ∗
X)↾Y → Λ0,qT ∗

Y can be viewed as an orthogonal projec-
tion onto a C∞-subbundle of (Λ0,qT ∗

X)↾Y . It is enough to extend this subbundle
from Uj ∩ Y to Uj (e.g. by extending each component of a frame), and then to ex-
tend f globally via local smooth extensions and a partition of unity. For any such
extension f̂ we have

(D′′f̂)↾Y = (D′′f̂↾Y ) = D′′f = 0.

It follows that we can divide D′′f̂ =
∑

16λ6r gj,λ(z) ∧ dzλ on Uj ∩ Y , with suitable
smooth (0, q)-forms gj,λ which we also extend arbitrarily from Uj ∩ Y to Uj . Then

f̃∞ := f̂ −
∑

j

θj(z)
∑

16λ6r

zλgj,λ(z)

coincides with f̂ on Y and satisfies (c).

(4.5) Construction of weights, using a bumping technique. Since we do not

know about f̃∞ far away from Y , we will consider a truncation f̃ε of f̃∞ with support
in a small tubular neighborhood |s| < ε of Y , and solve the equation D′′uε = D′′f̃ε
with the constraint that uε should be 0 on Y . As codimY = r, this will be the case
if we can guarantee that |uε|

2|s|−2r is locally integrable near Y . For this, we apply
Proposition 3.1 with a suitable choice of the functions η = ηε and λ = λε, and an
additional weight |s|−2r in the metric of L. The functions ηε and λε will present
carefully constructed “bumps”, taking effect on the tubular neighborhood |s| < ε.

Let us consider the smooth strictly convex function χ0 : ] −∞, 0] → ] −∞, 0]
defined by χ0(t) = t− log(1− t) for t 6 0, which is such that χ0(t) 6 t, 1 6 χ′

0 6 2
and χ′′

0(t) = 1/(1− t)2. We set

σε = log(|s|2 + ε2), ηε = ε− χ0(σε).

As |s| 6 e−α 6 e−1, we have σε 6 0 for ε small, and

ηε > ε− σε > ε− log(e−2α + ε2).

Given a relatively compact subset Xc = {ψ < c} ⋐ X , we thus have ηε > 2α for
ε < ε(c) small enough. Simple calculations yield

i d′σε =
i{D′s, s}

|s|2 + ε2
,

i d′d′′σε =
i{D′s,D′s}

|s|2 + ε2
−

i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
−

{iΘEs, s}

|s|2 + ε2

>
ε2

|s|2
i{D′s, s} ∧ {s,D′s}

(|s|2 + ε2)2
−

{iΘEs, s}

|s|2 + ε2

>
ε2

|s|2
id′σε ∧ d

′′σε −
{iΘEs, s}

|s|2 + ε2
,

thanks to Lagrange’s inequality i{D′s, s}∧ {s,D′s} 6 |s|2i{D′s,D′s}. On the other
hand, we have d′ηε = −χ′

0(σε)dσε with 1 6 χ′
0(σε) 6 2, hence
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−id′d′′ηε = χ′
0(σε)id

′d′′σε + χ′′
0(σε)id

′σε ∧ d
′′σε

>

( 1

χ′
0(σε)

ε2

|s|2
+

χ′′
0(σε)

χ′
0(σε)

2

)
id′ηε ∧ d

′′ηε − χ′
0(σε)

{iΘEs, s}

|s|2 + ε2
.

We consider the original metric of L multiplied by the weight |s|−2r. In this way,
we get a curvature form

iΘL + r id′d′′ log |s|2 >
1

2
χ′
0(σε)α

−1 {iΘEs, s}

|s|2 + ε2

by hypothesis a), thanks to the semipositivity of the left hand side and the fact that
1
2χ

′
0(σε)

1
|s|2+ε2 6 1

|s|2 . As ηε > 2α on Xc for ε small, we infer

ηε(iΘL + id′d′′ log |s|2)− id′d′′ηε −
χ′′
0(σε)

χ′
0(σε)

2
id′ηε ∧ d

′′ηε >
ε2

χ′
0(σε)|s|

2
id′ηε ∧ d

′′ηε

on Xc. Hence, if λε = χ′
0(σε)

2/χ′′
0(σε), we obtain

Bε :=
[
ηε(iΘL + id′d′′ log |s|2)− id′d′′ηε − λ−1

ε id′ηε ∧ d
′′ηε , Λ

]

>

[ ε2

χ′
0(σε)|s|

2
id′ηε ∧ d

′′ηε , Λ
]
=

ε2

χ′
0(σε)|s|

2
(d′′ηε)(d

′′ηε)
⋆

as an operator on (n, q)-forms (the last equality [i a ∧ a, Λ] = (a)(a)⋆ for a = a1,0 is
easily checked and left as an exercise to the reader; recall that we denote (a) = a∧•).

(4.6) Solving ∂ with L2 estimates, for suitably truncated forms. Let us fix
a cut-off function θ : R → [0, 1] such that θ(t) = 1 on ]−∞, 1/2], Supp θ ⊂ ]−∞, 1[

and |θ′| 6 3. For ε > 0 small, we consider the (n, q)-form f̃ε = θ(ε−2|s|2)f̃∞ and its
D′′-derivative

gε = D′′f̃ε = (1 + ε−2|s|2)θ′(ε−2|s|2)d′′σε ∧ f̃∞ + θ(ε−2|s|2)D′′f̃∞

[as is easily seen from the equality 1 + ε−2|s|2 = ε−2eσε ]; our later goal is to solve

the ∂ equation D′′uε = gε = D′′f̃ε. We observe that gε has its support contained in
the tubular neighborhood |s| < ε ; moreover, as ε→ 0, the second term in the right
hand side converges uniformly to 0 on every compact set; it will therefore produce
no contribution in the limit. On the other hand, the first term has the same order
of magnitude as d′′σε and d′′ηε, and can be controlled in terms of Bε. In fact, for
any (n, q)-form u and any (n, q + 1)-form v we have

|〈d′′ηε ∧ u, v〉|
2 = |〈u, (d′′ηε)

⋆v〉|2 6 |u|2|(d′′ηε)
⋆v|2 = |u|2〈(d′′ηε)(d

′′ηε)
⋆v, v〉

6
χ′
0(σε)|s|

2

ε2
|u|2〈Bεv, v〉.

This implies

〈B−1
ε (d′′ηε ∧ u), (d

′′ηε ∧ u)〉 6
χ′
0(σε)|s|

2

ε2
|u|2.

The main term in gε can be written

g(1)ε := (1 + ε−2|s|2)θ′(ε−2|s|2)χ′
0(σε)

−1d′′ηε ∧ f̃∞.
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On Supp g
(1)
ε ⊂ {|s| < ε}, since χ′

0(σε) > 1, we thus find

〈B−1
ε g(1)ε , g(1)ε 〉 6 (1 + ε−2|s|2)2 θ′(ε−2|s|2)2|f̃∞|2.

Instead of working on X itself, we will work rather on the relatively compact subset
XcrYc, where Yc = Y ∩Xc = Y ∩{ψ < c}. It is easy to check that XcrYc is again
complete Kähler (see e.g. [Dem82a]): a Kähler metric of the form

ωc = Cω + id′d′′
(
log

1

c− ψ
+ log |s| − log(C − log |s|)

)
, C ≫ 0

indeed satisfies ωc > |d′ log(c−ψ)|2 + |d′ log(C − log |s|)|2 and is therefore complete
Kähler. In this way, we avoid the singularity of the weight |s|−2r along Y . We find

∫

XcrYc

〈B−1
ε g(1)ε , g(1)ε 〉 |s|−2rdVω 6

∫

XcrYc

|f̃∞|2(1 + ε−2|s|2)2θ′(ε−2|s|2)2|s|−2rdVω.

Now, we let ε → 0 and view s as “transverse local coordinates” around Y . As f̃∞
coincides with f on Y , it is not hard to see from (4.4 b) that the right hand side
converges to cr

∫
Yc

|f |2|Λr(ds)|−2dVY,ω where cr is the “universal” constant

cr =

∫

z∈Cr, |z|61

(1 + |z|2)2θ′(|z|2)2
ir

2

Λr(dz) ∧ Λr(dz)

|z|2r
< +∞

depending only on r. The second term

g(2)ε = θ(ε−2|s|2)d′′f̃∞

in gε satisfies Supp(g
(2)
ε ) ⊂ {|s| < ε} and |g

(2)
ε | = O(|s|) (just look at the Taylor

expansion of d′′f̃∞ near Y ). From this we easily conclude that

∫

XcrYc

〈B−1
ε g(2)ε , g(2)ε 〉 |s|−2rdVX,ω = O(ε2),

provided that Bε remains locally uniformly bounded below near Y (this is the case
for instance if we have strict inequalities in the curvature assumption a)). If this
holds true, we apply Proposition 3.1 on Xc r Yc with the additional weight fac-
tor |s|−2r. Otherwise, we use the modified estimate stated in Remark 3.2 to solve
the approximate equation D′′u + δ1/2h = gε with δ > 0 small. This yields sections
u = uc,ε,δ, h = hc,ε,δ such that

∫

XcrYc

(ηε + λε)
−1|uc,ε,δ|

2|s|−2r dVω +

∫

XcrYc

|hc,ε,δ|
2|s|−2r dVω

6 2

∫

XcrYc

〈(Bε + δI)−1gε, gε〉|s|
−2r dVω,

and the right hand side is under control in all cases. The extra error term δ1/2h can
be removed at the end by letting δ tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for simplicity of exposition that
we do have the required lower bound for Bε and the estimates of g

(1)
ε and g

(2)
ε
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as above. For δ = 0, the above estimate provides a solution uc,ε of the equation

D′′uc,ε = gε = D′′f̃ε on Xc r Yc, such that

∫

XcrYc

(ηε + λε)
−1|uc,ε|

2|s|−2rdVX,ω 6 2

∫

XcrYc

〈B−1
ε gε, gε〉 |s|

−2rdVX,ω

6 2 cr

∫

Yc

|f |2

|Λr(ds)|2
dVY,ω +O(ε).

Here we have

σε = log(|s|2 + ε2) 6 log(e−2α + ε2) 6 −2α+O(ε2) 6 −2 +O(ε2),

ηε = ε− χ0(σε) 6 (1 +O(ε))σ2
ε ,

λε =
χ′
0(σε)

2

χ′′
0 (σε)

= (1− σε)
2 + (1− σε) 6 (3 +O(ε))σ2

ε ,

ηε + λε 6 (4 +O(ε))σ2
ε 6 (4 +O(ε))

(
− log(|s|2 + ε2)

)2
.

As f̃ε is uniformly bounded with support in {|s| < ε}, we conclude from an obvious
volume estimate that

∫

Xc

|f̃ε|
2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω 6

Const

(log ε)2
.

Therefore, thanks to the usual inequality |t+u|2 6 (1+k)|t|2+(1+k−1)|u|2 applied

to the sum Fc,ε = f̃ε − uc,ε with k = | log ε|, we obtain from our previous estimates

∫

XcrYc

|Fc,ε|
2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω 6 8 cr

∫

Yc

|f |2

|Λr(ds)|2
dVY,ω+O(| log ε|−1).

In addition to this, we have d′′Fc,ε = 0 on Xc r Yc, by construction. This equation
actually extends from Xc r Yc to Xc because Fc,ε is locally L2 near Yc. In fact, we
have the following well-known lemma in ∂-operator theory (see e.g. [Dem82a]).

(4.7) Lemma. Let Ω be an open subset of Cn and Y a complex analytic subset of

Ω. Assume that v is a (p, q−1)-form with L2
loc coefficients and w a (p, q)-form with

L1
loc coefficients such that ∂v = w on Ω r Y (in the sense of distribution theory).

Then ∂v = w on Ω.

(4.8) Final check, and regularity of the solution. If q = 0, then uc,ε must be
smooth also by the ellipticity of ∂ in bidegree (0, 0). The non integrability of the
weight |s|−2r along Y shows that uc,ε vanishes on Y , therefore

Fc,ε↾Y = f̃ε↾Y = f̃∞↾Y = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first
as ε→ 0, and then as c→ +∞. The initial assumption that Σ = {s = Λr(ds) = 0}
is empty can be easily removed in two steps: i) the result is true if X is Stein, since
we can always find a complex hypersurface Z in X such that Σ ⊂ Y ∩ Z ( Y , and
then apply the extension theorem on the Stein manifold XrZ, in combination with
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Lemma 11.10 ; ii) the whole procedure still works when Σ is nowhere dense in Y (and

possibly nonempty). Indeed local L2 extensions f̃j still exist by step i) applied on

small coordinate balls Uj ; we then set f̃∞ =
∑
θj f̃j and observe that |D′′f̃∞|2|s|−2r

is locally integrable, thanks to the estimate
∫
Uj

|f̃j |
2|s|−2r(log |s|)−2dV < +∞ and

the fact that |
∑
d′′θj ∧ f̃j | = O(|s|δ) for suitable δ > 0 [as follows from Hilbert’s

Nullstensatz applied to f̃j − f̃k at singular points of Y ].

(4.9) Remarks. Before discussing the difficulties to be overcome to reach the re-
quired regularity result for bidegrees (0, q), q > 1, we make a few remarks.

a) When q = 0, the estimates provided by Theorem 4.1 are independent of the
Kähler metric ω. In fact, if f and F are holomorphic sections of ΛnT ⋆X ⊗ L over Y
(resp. X), viewed as (n, 0)-forms with values in L, we can “divide” f by Λr(ds) ∈
Λr(TX/TY )⋆ ⊗ detE to get a section f/Λr(ds) of ΛpT ⋆Y ⊗ L ⊗ (detE)−1 over Y .
We then find

|F |2dVX,ω = in
2

{F, F},

|f |2

|Λr(ds)|2
dVY,ω = ip

2

{f/Λr(ds), f/Λr(ds)},

where {•, •} is the canonical bilinear pairing described in § 1.

b) The hermitian structure on E is not really used in depth. In fact, one only needs
E to be equipped with a Finsler metric, that is, a smooth complex homogeneous
function of degree 2 on E [or equivalently, a smooth hermitian metric on the tau-
tological bundle OP (E)(−1) of lines of E over the projectivized bundle P (E)]. The
section s of E induces a section [s] of P (E) over X r s−1(0) and a corresponding
section s̃ of the pull-back line bundle [s]⋆OP (E)(−1). A trivial check shows that
Theorem 4.1 as well as its proof extend to the case of a Finsler metric on E, if we
replace everywhere {iΘ(E)s, s} by {iΘ([s]⋆OP (E)(−1))s̃, s̃ } (especially in hypothe-
sis 4.1 a)). A minor issue is that |Λr(ds)| is (a priori) no longer defined, since no
obvious hermitian norm exists on detE. A posteriori, we have the following ad hoc
definition of a metric on (detE)⋆ which makes the L2 estimates work as before: for
x ∈ X and ξ ∈ ΛrE⋆x, we set

|ξ|2x =
1

cr

∫

z∈Ex

(1 + |z|2)2θ′(|z|2)2
ir

2

ξ ∧ ξ

|z|2r

where |z| is the Finsler norm on Ex [the constant cr is there to make the result agree
with the hermitian case; it is not hard to see that this metric does not depend on
the choice of θ ].

c) Even when q = 0, the regularity of uc,ε,δ requires some explanations, in case
δ > 0. In fact, the equation

D′′uc,ε,δ + δ1/2hc,ε,δ = gε = D′′f̃ε

does not immediately imply smoothness of uc,ε,δ (since hc,ε,δ need not be smooth in
general). However, if we take the pair (uc,ε,δ, hc,ε,δ) to be the minimal L2 solution
orthogonal to the kernel of D′′⊕ δ1/2 Id, then it must be in the closure of the image
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of the adjoint operator D′′ ∗ ⊕ δ1/2 Id, i.e. it must satisfy the additional condition
D′′ ∗hc,ε,δ = δ1/2uc,ε,δ, whence (∆′′+δ Id)hc,ε,δ = (D′′D′′ ∗+δ Id)hc,ε,δ = δ1/2D′′f̃ε,
and therefore hc,ε,δ is smooth by the ellipticity of ∆′′. �

We now present a few interesting corollaries. The first one is a qualitative
surjectivity theorem for restriction morphisms in Dolbeault cohomology.

(4.10) Corollary. Let X be a weakly pseudoconvex Kähler manifold, E a holomor-

phic vector bundle of rank r over X, and s a holomorphic section of E which is

everywhere transverse to the zero section, Y = s−1(0), and let L be a holomorphic

line bundle such that F = L1/r ⊗E⋆ is ample (in the sense that the associated Q-

line bundle π⋆L1/r ⊗OP (E)(1) is positive on the projectivized bundle π : P (E) → X
of lines of E). Then the restriction morphism

H0(X,ΛnT ⋆X ⊗ L) → H0
(
Y, (ΛnT ⋆X ⊗ L)|Y

)

is surjective.

Note that if conjecture 4.2 were true, we would also get the surjectivity of the
restriction morphism

Hq(X,ΛnT ⋆X ⊗ L) → Hq
(
Y, (ΛnT ⋆X ⊗ L)|Y

)
, ∀q > 0,

as asserted in [Man93]. However, this purely qualitative result is easy to check
directly [as we will see below, the real strength of Theorem 4.1 is in the quantitative
L2 estimate]. If codimY = 1, the hypothesis says that L ⊗ E⋆ = L ⊗ OX(−Y ) is
ample. We then conclude from the exact sequence

0 → OX(−Y ) → OX → (iY )⋆OY → 0

and the vanishing of Hq+1(X,ΛnT ⋆X ⊗ L ⊗ OX(−Y )) by Kodaira’s theorem. The
case r > 1 can be easily reduced to the case of codimension 1 by blowing up X
along Y (See also § 5 for more explanation on this strategy).

Proof. First assume for simplicity that F is Griffiths positive, i.e. that E has a
hermitian metric such that

1

r
iΘ(L)⊗ IdE −iΘ(E) >Grif 0.

A short computation gives

i d′d′′ log |s|2 = i d′
({s,D′s}

|s|2

)

= i
({D′s,D′s}

|s|2
−

{D′s, s} ∧ {s,D′s}

|s|4
+

{s, Θ(E)s}

|s|2

)
> −

{iΘ(E)s, s}

|s|2

thanks to Lagrange’s inequality and the fact that Θ(E) is antisymmetric. Hence, if
δ is a small positive constant such that

−iΘ(E) +
1

r
iΘ(L)⊗ IdE >Grif δ ω ⊗ IdE > 0,
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we find
iΘ(L) + r i d′d′′ log |s|2 > rδ ω.

The compactness of X implies iΘ(E) 6 Cω ⊗ IdE for some C > 0. Theorem 4.1
can thus be applied with α = rδ/C and Corollary 4.10 follows. In the case when
L1/r ⊗ E⋆ is just assumed to be ample, we can apply remark 4.9 b) and use the
same arguments (with a Finsler metric on E rather than a hermitian metric). �

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains Ω ⋐ Cn. Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(4.11) Corollary. Let Ω ⊂ Cn be a bounded pseudoconvex domain, and let Y ⊂ X
be a nonsingular complex submanifold defined by a section s of some hermitian

vector bundle E with bounded curvature tensor on Ω. Assume that s is everywhere

transverse to the zero section and that |s| 6 e−1 on Ω. Then there is a constant

C > 0 (depending only on E), with the following property: for every psh function

ϕ on Ω, every holomorphic function f on Y with
∫
Y
|f |2|Λr(ds)|−2e−ϕdVY < +∞,

there exists an extension F of f to Ω such that

∫

Ω

|F |2

|s|2r(− log |s|)2
e−ϕdVΩ 6 C

∫

Y

|f |2

|Λr(ds)|2
e−ϕdVY .

Proof. We apply essentially the same idea as for the previous corollary, in the special
case when L = Ω×C is the trivial bundle equipped with a weight function e−ϕ−A|z|2 .
The choice of a sufficiently large constant A > 0 guarantees that the curvature
assumption 4.1 a) is satisfied (A just depends on the presupposed bound for the
curvature tensor of E). �

(4.12) Remark. The special case when Y = {z0} is a point is especially interesting.
In that case, we just take s(z) = (e diamΩ)−1(z − z0), viewed as a section of the
rank r = n trivial vector bundle Ω ×Cn with |s| 6 e−1. We take α = 1 and replace
|s|2n(− log |s|)2 in the denominator by |s|2(n−ε), using the inequality

− log |s| =
1

ε
log |s|−ε 6

1

ε
|s|−ε, ∀ε > 0.

For any given value f0, we then find a holomorphic function f such that f(z0) = f0
and ∫

Ω

|f(z)|2

|z − z0|2(n−ε)
e−ϕ(z)dVΩ 6

Cn
ε2(diamΩ)2(n−ε)

|f0|
2e−ϕ(z0).
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5. Regularity of the solution for bidegrees (0, q), q > 1

When q > 1, the arguments needed to get a smooth solution necessarily involve
much more delicate considerations. This is the part where the proof given by Manivel
[Man93] appears to be incomplete. Actually, a natural idea is to consider the minimal
L2 solution uc,ε of the D′′ equation considered in § 4, with respect to the weight
(log(|s|2 + ε2))−2|s|−2r. This minimal solution satisfies

(5.1) D′′uc,ε = gε = D′′f̃ε, D′′⋆((log(|s|2 + ε2))−2|s|−2ruc,ε) = 0

on Xc r Yc, since D
′′⋆((log(|s|2 + ε2))−2|s|−2r

•) is the adjoint of D′′ for the L2

norms involving the additional weight. The main difficulty lies in the fact that the
differential system (5.1) is singular along Y . This forbids the use of a straightforward
elliptic regularity argument (as we did for the case q = 0). We nevertheless discuss a
strategy which might possibly lead to C0 or Hölder regularity – and one could then
use conventional regularization techniques to obtain a smooth solution from there.

Case of codimension r = 1. If r = 1, the subvariety Y is a divisor; therefore,
when we consider a D′′ equation with values in the line bundle ΛnT ⋆X ⊗ L, a L2

solution for the weight |s|−2 can be interpreted as a L2 solution with values in the
twisted line bundle ΛnT ⋆X⊗L⊗OX(−Y ), equipped with a smooth hermitian metric.
Hence, if r = 1, the minimal L2 solution uc,ε of the D′′ equation considered earlier
satisfies the equations

D′′uc,ε = gε = D′′f̃ε, D′′⋆((log(|s|2 + ε2))−2|s|−2uc,ε) = 0

on Xc r Yc. These equations can be rewritten as

(5.2) D′′(s−1uc,ε) = s−1D′′f̃ε, D′′⋆((log(|s|2 + ε2))−2s−1uc,ε) = 0

where s−1uc,ε is viewed as a (0, q)-form with values in ΛnT ⋆X ⊗ L ⊗ OX (−Y ). By
Lemma 4.7, the equalities (5.2) are valid onXc and not only onXcrYc, for s

−1uc,ε is

locally L2 and s−1D′′f̃ε is locally bounded. From this, we infer that Fc,ε = f̃ε−uc,ε
satisfies

D′′(s−1Fc,ε) = D′′(s−1f̃ε)− s−1D′′f̃ε,

D′′⋆((log(|s|2 + ε2))−2s−1Fc,ε) = D′′⋆((log(|s|2 + ε2))−2s−1f̃ε)

= D′′⋆
(
(log(|s|2 + ε2))−2θ(ε−2|s|2)s−1f̃∞

)
.

It is easy to show that D′′(s−1f̃) − s−1D′′f̃ is independent of the choice of the
smooth extension f̃ of f (whether f̃ is D′′-closed or not is irrelevant), and that it

is equal to the current D′′(s−1) ∧ f̃ with support in Y . On the other hand, s−1f̃∞
is locally integrable, hence θ(ε−2|s|2)s−1f̃∞ converges weakly to 0 as ε → 0. The
uniform L2 estimate on Fc,ε implies that there exists a weak limit Fc,ε → F in
L2
loc((|s| log |s|)

−2). From this we easily infer that

4(log(|s|2 + ε2))−2s−1Fc,ε → (log |s|)−2s−1F

in the weak topology of distributions, hence
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D′′(s−1F ) = D′′(s−1) ∧ f̃ , D′′⋆((log |s|)−2s−1F ) = 0

in the limit. This is an elliptic differential system on X r Y , therefore F is smooth
on X r Y . Unfortunately, the above equations do not imply smoothness of the
coefficients of F near Y . We hope that they nevertheless imply Hölder continuity

near Y , for any Hölder exponent γ < 1.

In order to justify this, we select a smooth local extension f̃ such that D′′f̃ = 0
and D′s f̃ = 0 on Y ( denotes contraction by (1, 0)-forms, which is an operator
of type (0,−1)). The form f̃ always exists: if the second condition is not satisfied,
we can replace f̃ with f̃ − D′′(s h), where h is a suitable smooth (n, q − 1)-form
on X ; the values taken by f̃ on Y are then uniquely defined. We then find

D′′(s−1(F − f̃)) = 0, D′′⋆((log |s|)−2s−1(F − f̃)) = −D′′⋆((log |s|)−2s−1f̃).

The main point with the choice of f̃ is that no derivative of s contributes in
D′′⋆((log |s|)−2s−1f̃), therefore the singularity of this form along Y is at most
(log |s|)−2s−1 ; in particular it is in L2 (and even a little bit better). We infer that

w := (log |s|)−2s−1(F − f̃) satisfies

(5.3) D′′((log |s|)2w) = 0, D′′⋆w = −D′′⋆((log |s|)−2s−1f̃).

This is a smooth elliptic differential system on X r Y , satisfied in the sense of
distributions on the whole of X , the section w is known to be L2, and the principal
terms in the differential system have mild singularities of the form (log |s|)2 at
worse. Our hope is that one can prove from this that w has singularities of the form
O((log |s|)C). This would imply

F − f̃ = O
(
|s|(log |s|)C

)
,

and thus F would extend to a continuous form on X , whose restriction to Y is
equal to f . From this, it would not be very hard to regularize F further (by local
convolution procedures) to get a smooth solution.

Case of arbitrary codimension r > 1. When r > 1, the above arguments can
no longer be applied directly; one possibility to overcome the difficulty is to blow-
up Y so as to deal again with the case of a divisor. We may assume that Σ = ∅
(otherwise, we just replace Xc withXcrΣ, which is again complete Kähler). Instead

of working on XcrYc as we did earlier, we work on the blow-up X̂c of Xc along Yc.
If µ : X̂c → Xc is the blow-up map, Ŷc = µ−1(Yc) the exceptional divisor and γ a

positive constant, we equip X̂c with the smooth Kähler metric

ω̂γ = µ⋆ω + γ (id′d′′ log |s|2 +
i

r
Θ(L)) > µ⋆ω.

Then the minimal L2(ωγ) solution uc,ε,γ satisfies the equations

D′′uc,ε,γ = µ⋆gε = D′′(µ⋆f̃ε), D′′⋆
ωγ

(|s|−2ruc,ε,γ) = 0

on X̂c r Ŷc, and F̂c,ε,γ = µ⋆f̃ε − uc,ε,γ satisfies the L2 estimate
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∫

X̂c

|F̂c,ε,γ|
2

(|ŝ|2 + ε2)r(− log(|ŝ|2 + ε2))2
dV

X̂c,ωγ
6 8 cr

∫

Yc

|f |2

|Λr(ds)|2
dVY,ω +

Const

(log ε)2

where ŝ = s ◦ µ [ one can use the fact that for every (n, q)-form u, the integrands of∫
|u|2ωdVω and

∫
〈B−1

ω u, u〉2ωdVω are decreasing functions of ω ; as ωγ > µ⋆ω, we then
infer that the right hand side always admits the given ω-estimate as an upper bound;
see e.g. [Dem82a] for details ]. We can view Xc as a submanifold of the projectivized

bundle P (E) of lines of E, and O
X̂c

(−Ŷc) as the restriction to Xc of the tautological

line bundle OP (E)(−1) on P (E). We thus view ŝ as a section of O
Ŷc
(−Ŷc) (actually,

ŝ is a generator of that ideal sheaf). Since |ŝ|−2r|uc,γ,ε|
2 is locally integrable by

construction, we get

D′′(ŝ−ruc,ε,γ) = ŝ−rD′′(µ⋆f̃ε), D′′⋆
ωγ

(ŝ−ruc,ε,γ) = 0

on X̂c. Thanks to the equality

µ⋆(ΛnT ⋆X) = ΛnT ⋆
X̂
⊗O

X̂
(−(r − 1)Ŷ ),

we see that µ⋆f̃ε vanishes at order r − 1 along Ŷ . If we view our (n, q)-forms on X̂
rather as (0, q)-forms with values in µ⋆(ΛnT ⋆X ⊗L), we may consider philosophically

that we cancel out a factor ŝ r−1 in the equations. The same proof as in the case of
codimension 1 now shows that F̂c,ε,γ is smooth on X̂crŶc and has Hölder continuous

coefficients on X̂c ; in particular, we have a meaningful restriction equality

F̂
c,ε,γ↾Ŷc

= µ⋆f in µ⋆(ΛnT ⋆X ⊗ L)⊗ Λ0,qT ⋆
X̂
, over X̂c.

We now want to take the limit as ε, γ tend to 0 and c tends to +∞. The trouble
is that we lose control on the regularity properties as γ goes to zero (ω̂γ becomes a

degenerate metric on X̂c for γ = 0). We can nevertheless let ε go to 0 and then c

to +∞. In this way we find a section F̂γ of µ⋆(ΛnT ⋆X ⊗L)⊗Λ0,qT ⋆
X̂

on X̂ such that

F̂
γ↾Ŷ

= µ⋆f in µ⋆(ΛnT ⋆X ⊗ L)⊗ Λ0,qT ⋆
X̂
,(5.4)

∫

X̂

|F̂γ |
2

|ŝ|2r(− log(|ŝ|2))2
dV

X̂,ωγ
6 8 cr

∫

Y

|f |2

|Λr(ds)|2
dVY,ω.(5.5)

If what we have said earlier in codimension 1 holds true, then F̂γ is continuous and

we can smooth it further to get a smooth solution on X̂ satisfying essentially the
same L2 estimate. We still have to push forward the solution down to X and obtain
an L2 estimate for it when γ = 0 (and still without losing the regularity of the
solution). For this, we observe that there is a commutative diagram

(5.6)

Hq(X,ΛnT ⋆X ⊗ L)
µ⋆

−→ Hq
(
X̂, µ⋆(ΛqT ⋆X ⊗ L)

)

restr

y
y restr

Hq(Y, (ΛnT ⋆X ⊗ L)|Y )
µ⋆

−→ Hq
(
Ŷ , µ⋆(ΛnT ⋆X ⊗ L)

|Ŷ

)
.
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The horizontal arrows are isomorphisms, thanks to Leray’s spectral sequence and
the fact that the higher direct sheaves Rqµ⋆(OX̂

) (resp. Rq(µ
|Ŷ
)⋆(OŶ

)) are zero on

X (resp. Y ) for q > 1, by Künneth’s formula and the well known cohomological
properties of projective spaces. The left hand restriction arrow is surjective by what
we have just proved (any (0, q) section becomes L2 with a suitable rapidly decaying
weight e−χ◦ψ). Hence the right hand vertical arrow is also surjective, and we infer
that there is a ∂-closed form

F ∈ C∞
(
X, (ΛnT ⋆X ⊗ L)⊗ Λ0,qT ⋆X

)

such that F|Y = f . [Note: a priori F is obtained only as a cohomology class, since

every coboundary form ∂g on Y extends to X , we even conclude that the extension
exists as a pointwise defined form]. This is anyway enough to conclude the qualitative
extension result stated after Corollary 4.10, in the case of arbitrary degree q and
arbitrary codimension r. �

6. Approximation of psh functions by logarithms of

holomorphic functions

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that
every psh function on a pseudoconvex open set Ω ⊂ Cn can be approximated very
accurately by functions of the form c log |f |, where c > 0 and f is a holomorphic
function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93b] and Demailly-Kollár [DK96]. Recall that the Lelong number
of a function ϕ ∈ Psh(Ω) at a point x0 is defined to be

ν(ϕ, x0) = lim inf
z→x0

logϕ(z)

log |z − x0|
= lim

r→0+

supB(x0,r) ϕ

log r
.

In particular, if ϕ = log |f | with f ∈ O(Ω), then ν(ϕ, x0) is equal to the vanishing
order ordx0

(f) = sup{k ∈ N ;Dαf(x0) = 0, ∀|α| < k}.

(6.1) Theorem. Let ϕ be a plurisubharmonic function on a bounded pseudoconvex

open set Ω ⊂ Cn. For every m > 0, let HΩ(mϕ) be the Hilbert space of holomorphic

functions f on Ω such that
∫
Ω
|f |2e−2mϕdλ < +∞ and let ϕm = 1

2m log
∑

|σℓ|
2

where (σℓ) is an orthonormal basis of HΩ(mϕ). Then there are constants C1, C2 > 0
independent of m such that

a) ϕ(z) −
C1

m
6 ϕm(z) 6 sup

|ζ−z|<r

ϕ(ζ) +
1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ϕm converges to ϕ pointwise

and in L1
loc topology on Ω when m→ +∞ and

b) ν(ϕ, z) −
n

m
6 ν(ϕm, z) 6 ν(ϕ, z) for every z ∈ Ω.

Proof. Note that
∑

|σℓ(z)|
2 is the square of the norm of the evaluation linear form

f 7→ f(z) on HΩ(mϕ). As ϕ is locally bounded above, the L2 topology is actually
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stronger than the topology of uniform convergence on compact subsets of Ω. It
follows that the series

∑
|σℓ|

2 converges uniformly on Ω and that its sum is real
analytic. Moreover we have

ϕm(z) = sup
f∈B(1)

1

m
log |f(z)|

where B(1) is the unit ball of HΩ(mϕ). For r < d(z, ∂Ω), the mean value inequality
applied to the psh function |f |2 implies

|f(z)|2 6
1

πnr2n/n!

∫

|ζ−z|<r

|f(ζ)|2dλ(ζ)

6
1

πnr2n/n!
exp

(
2m sup

|ζ−z|<r

ϕ(ζ)
)∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ϕm(z) 6 sup
|ζ−z|<r

ϕ(ζ) +
1

2m
log

1

πnr2n/n!

and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi exten-
sion theorem (estimate 4.10) applied to the 0-dimensional subvariety {z} ⊂ Ω shows
that for any a ∈ C there is a holomorphic function f on Ω such that f(z) = a and

∫

Ω

|f |2e−2mϕdλ 6 C3|a|
2e−2mϕ(z),

where C3 only depends on n and diamΩ. We fix a such that the right hand side
is 1. This gives the other inequality

ϕm(z) >
1

m
log |a| = ϕ(z) −

logC3

2m
.

The above inequality implies ν(ϕm, z) 6 ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ϕm(x) 6 sup
|ζ−z|<2r

ϕ(ζ) +
1

m
log

C2

rn
.

Divide by log r and take the limit as r tends to 0. The quotient by log r of the
supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus we
obtain

ν(ϕm, x) > ν(ϕ, x)−
n

m
. �

Theorem 6.1 implies in a straightforward manner the deep result of [Siu74] on
the analyticity of the Lelong number sublevel sets.

(6.2) Corollary. Let ϕ be a plurisubharmonic function on a complex manifold X.

Then, for every c > 0, the Lelong number sublevel set

Ec(ϕ) =
{
z ∈ X ; ν(ϕ, z) > c

}
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is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ϕ on a pseudoconvex open set Ω ⊂ Cn. The inequalities obtained in 6.1 b)
imply that

Ec(ϕ) =
⋂

m>m0

Ec−n/m(ϕm).

Now, it is clear that Ec(ϕm) is the analytic set defined by the equations σ
(α)
ℓ (z) = 0

for all multi-indices α such that |α| < mc. Thus Ec(ϕ) is analytic as a (countable)
intersection of analytic sets. �

We now translate Theorem 6.1 into a more geometric setting. Let X be a
projective manifold and L a line bundle over X . A singular hermitian metric h on
L is a metric such that the weight function ϕ of h is L1

loc in any local trivialization
(such that L|U ≃ U ×C and ‖ξ‖h = |ξ|e−ϕ(x), ξ ∈ Lx ≃ C). The curvature of L can
then be computed in the sense of distributions

T =
i

2π
Θh(L) =

i

π
∂∂ϕ,

and L is said to be pseudoeffective if L admits a singular hermitian metric h such
that the curvature current T = i

2π
Θh(L) is semipositive [The weight functions ϕ of

L are thus plurisubharmonic]. Our goal is to approximate T in the weak topology by
divisors which have roughly the same Lelong numbers as T . The existence of weak
approximations by divisors has already been proved in [Lel72] for currents defined
on a pseudoconvex open set Ω ⊂ Cn with H2(Ω,R) = 0, and in [Dem92, 93b] in
the situation considered here (cf. also [Dem82b], although the argument given there
is somewhat incorrect). We take the opportunity to present here a slightly simpler
derivation. In what follows, we use an additive notation for Pic(X), i.e. kL is meant
for the line bundle L⊗k.

(6.3) Proposition. For any T = i
2πΘh(L) > 0 and any ample line bundle F ,

there is a sequence of non zero sections hs ∈ H0(X, psF + qsL) with ps, qs > 0,
lim qs = +∞ and lim ps/qs = 0, such that the divisors Ds = 1

qs
div(hs) satisfy

T = limDs in the weak topology and supx∈X |ν(Ds, x)− ν(T, x)| → 0 as s→ +∞.

(6.4) Remark. The proof will actually show, with very slight modifications, that
Proposition 6.3 also holds when X is a Stein manifold and L is an arbitrary holo-
morphic line bundle.

Proof. We first use Hörmander’s L2 estimates to construct a suitable family of holo-
morphic sections and combine this with some ideas of [Lel72] in a second step. Select
a smooth metric with positive curvature on F , choose ω = i

2π
Θ(F ) > 0 as a Kähler

metric on X and fix some large integer k (how large k must be will be specified
later). For all m > 1 we define

wm(z) = sup
16j6N

1

m
log ‖fj(z)‖,
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where (f1, . . . , fN) is an orthonormal basis of the space of sections of O(kF +mL)
with finite global L2 norm

∫
X
‖f‖2dVω. Let eF and eL be non vanishing holomorphic

sections of F and L on a trivializing open set Ω, and let e−ψ = ‖eF ‖, e
−ϕ = ‖eL‖

be the corresponding weights. If f is a section of O(kF +mL) and if we still denote
by f the associated complex valued function on Ω with respect to the holomorphic
frame ekF ⊗ emL , we have ‖f(z)‖ = |f(z)|e−kψ(z)−mϕ(z) ; here ϕ is plurisubharmonic,
ψ is smooth and strictly plurisubharmonic, and T = i

π
∂∂ϕ, ω = i

π
∂∂ψ. In Ω, we

can write

wm(z) = sup
16j6N

1

m
log |fj(z)| − ϕ(z)−

k

m
ψ(z).

In particular Tm := i
π∂∂wm + T + k

mω is a closed positive current belonging to the

cohomology class c1(L) +
k
mc1(F ).

Step 1. We claim that Tm converges to T as m tends to +∞ and that Tm satisfies
the inequalities

(6.4) ν(T, x)−
n

m
6 ν(Tm, x) 6 ν(T, x)

at every point x ∈ X . Note that Tm is defined on Ω by Tm = i
π∂∂vm,Ω with

vm,Ω(z) = sup
16j6N

1

m
log |fj(z)|,

∫

Ω

|fj|
2e−2kψ−2mϕdVω 6 1.

We proceed in the same way as for the proof of Theorem 6.1. We suppose here that
Ω is a coordinate open set with analytic coordinates (z1, . . . , zn). Take z ∈ Ω′ ⋐ Ω
and r 6 r0 = 1

2d(Ω
′, ∂Ω). By the L2 estimate and the mean value inequality for

subharmonic functions, we obtain

|fj(z)|
2 6

C1

r2n

∫

|ζ−z|<r

|fj(ζ)|
2dλ(ζ) 6

C2

r2n
sup

|ζ−z|<r

e2mϕ(ζ)

with constants C1, C2 independent of m and r (the smooth function ψ is bounded
on any compact subset of Ω). Hence we infer

(6.5) vm,Ω(z) 6 sup
|ζ−z|<r

ϕ(ζ) +
1

2s
log

C2

r2n
.

If we choose for example r = 1/m and use the upper semi-continuity of ϕ, we
infer lim sups→+∞ vm,Ω 6 ϕ. Moreover, if γ = ν(ϕ, x) = ν(T, x), then ϕ(ζ) 6

γ log |ζ − x|+O(1) near x. By taking r = |z − x| in (6.5), we find

vm,Ω(z) 6 sup
|ζ−x|<2r

ϕ(ζ)−
n

m
log r +O(1) 6

(
γ −

n

m

)
log |z − x|+O(1),

ν(Tm, x) = ν(vm,Ω, x) >
(
γ −

n

m

)
+
> ν(T, x)−

n

m
.

In the opposite direction, the inequalities require deeper arguments since we actually
have to construct sections in H0(X, kF +mL). Assume that Ω is chosen isomorphic
to a bounded pseudoconvex open set in Cn. By the Ohsawa-Takegoshi L2 extension
theorem (remark (4.11)), for every point x ∈ Ω, there is a holomorphic function g
on Ω such that g(x) = emϕ(x) and
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∫

Ω

|g(z)|2e−2mϕ(z)dλ(z) 6 C3,

where C3 depends only on n and diam(Ω). For x ∈ Ω′, set

σ(z) = θ
(
|z − x|/r

)
g(z) eF (z)

k ⊗ eL(z)
m, r = min

(
1, 2−1d(Ω′, ∂Ω)

)
,

where θ : R → [0, 1] is a cut-off function such that θ(t) = 1 for t < 1/2 and
θ(t) = 0 for t > 1. We solve the global equation ∂u = v on X with v = ∂σ, after
multiplication of the metric of kF +mL with the weight

e−2nρx(z), ρx(z) = θ
(
|z − x|/r

)
log |z − x| 6 0.

The (0, 1)-form v can be considered as a (n, 1)-form with values in the line bundle
O(−KX + kF +mL) and the resulting curvature form of this bundle is

Ricci(ω) + kω +mT + n
i

π
∂∂ρx.

Here the first two summands are smooth, i∂∂ρx is smooth on X r {x} and > 0 on
B(x, r/2), and T is a positive current. Hence by choosing k large enough, we can
suppose that this curvature form is > ω, uniformly for x ∈ Ω′. By Hörmander’s
standard L2 estimates [AV65, Hör65, 66], we get a solution u on X such that

∫

X

‖u‖2e−2nρxdVω 6 C4

∫

r/2<|z−x|<r

|g|2e−2kψ−2mϕ−2nρxdVω 6 C5 ;

to get the estimate, we observe that v has support in the corona r/2 < |z − x| < r
and that ρx is bounded there. Thanks to the logarithmic pole of ρx, we infer that
u(x) = 0. Moreover

∫

Ω

‖σ‖2dVω 6

∫

Ω′+B(0,r/2)

|g|2e−2kψ−2mϕdVω 6 C6,

hence f = σ − u ∈ H0(X, kF +mL) satisfies
∫
X
‖f‖2dVω 6 C7 and

‖f(x)‖ = ‖σ(x)‖ = ‖g(x)‖ ‖eF (x)‖
m‖eL(x)‖

m = ‖eF (x)‖
k = e−kψ(x).

In our orthonormal basis (fj), we can write f =
∑
λjfj with

∑
|λj |

2 6 C7. There-
fore

e−kψ(x) = ‖f(x)‖ 6
∑

|λj | sup ‖fj(x)‖ 6
√
C7N emwm(x),

wm(x) >
1

m
log(C7N)−1/2‖f(x)‖ > −

1

m

(
log(C7N)1/2 + k ψ(x)

)

where N = dimH0(X, kF + mL) = O(mn). By adding ϕ + k
mψ, we get vm,Ω >

ϕ− C8m
−1 logm. Thus limm→+∞ vm,Ω = ϕ everywhere, Tm = i

π
∂∂vm,Ω converges

weakly to T = i
π∂∂ϕ, and

ν(Tm, x) = ν(vm,Ω , x) 6 ν(ϕ, x) = ν(T, x).

Note that ν(vm,Ω, x) =
1
m min ordx(fj) where ordx(fj) is the vanishing order of fj

at x, so our initial lower bound for ν(Tm, x) combined with the last inequality gives
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(6.6) ν(T, x)−
n

m
6

1

m
min ordx(fj) 6 ν(T, x).

Step 2: Construction of the divisors Ds.

Select sections (g1, . . . , gN) ∈ H0(X, k0F ) with k0 so large that k0F is very
ample, and set

hℓ,m = f ℓ1g1 + . . .+ f ℓNgN ∈ H0
(
X, (k0 + ℓk)F + ℓmL

)
.

For almost every N -tuple (g1, . . . , gN ), Lemma 6.7 below and the weak continuity
of ∂∂ show that

∆ℓ,m =
1

ℓm

i

π
∂∂ log |hℓ,m| =

1

ℓm
div(hℓ,m)

converges weakly to Tm = i
π
∂∂vm,Ω as ℓ tends to +∞, and that

ν(Tm, x) 6 ν
( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

1

ℓm
.

This, together with the first step, implies the proposition for some subsequence
Ds = ∆ℓ(s),s, ℓ(s) ≫ s≫ 1. We even obtain the more explicit inequality

ν(T, x)−
n

m
6 ν

( 1

ℓm
∆ℓ,m, x

)
6 ν(T, x) +

1

ℓm
. �

(6.7) Lemma. Let Ω be an open subset in Cn and let f1, . . . , fN ∈ H0(Ω,OΩ)
be non zero functions. Let G ⊂ H0(Ω,OΩ) be a finite dimensional subspace whose

elements generate all 1-jets at any point of Ω. Finally, set v = sup log |fj| and

hℓ = f ℓ1g1 + . . .+ f ℓNgN , gj ∈ Gr {0}.

Then for all (g1, . . . , gN ) in (G r {0})N except a set of measure 0, the sequence
1
ℓ
log |hℓ| converges to v in L1

loc(Ω) and

ν(v, x) 6 ν
(1
ℓ
log |hℓ|

)
6 ν(v, x) +

1

ℓ
, ∀x ∈ X, ∀ℓ > 1.

Proof. The sequence 1
ℓ
log |hℓ| is locally uniformly bounded above and we have

lim
ℓ→+∞

1

ℓ
log

∣∣hℓ(z)
∣∣ = v(z)

at every point z where all absolute values |fj(z)| are distinct and all gj(z) are
nonzero. This is a set of full measure in Ω because the sets {|fj|

2 = |fl|
2, j 6= l} and

{gj = 0} are real analytic and thus of zero measure (without loss of generality, we
may assume that Ω is connected and that the fj ’s are not pairwise proportional).
The well-known uniform integrability properties of plurisubharmonic functions then
show that 1

ℓ
log |hℓ| converges to v in L1

loc(Ω). It is easy to see that ν(v, x) is the
minimum of the vanishing orders ordx(fj), hence

ν(log |hℓ|, x) = ordx(hℓ) > ℓ ν(v, x).
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In the opposite direction, consider the set Eℓ of all (N + 1)-tuples

(x, g1, . . . , gN) ∈ Ω ×GN

for which ν(log |hℓ|, x) > ℓ ν(v, x) + 2. Then Eℓ is a constructible set in Ω × GN : it
has a locally finite stratification by analytic sets, since

Eℓ =
⋃

s>0

( ⋃

j, |α|=s

{
x ; Dαfj(x) 6= 0

}
×GN

)
∩

⋂

|β|6ℓs+1

{
(x, (gj)) ; D

βhℓ(x) = 0
}
.

The fiber Eℓ∩({x}×GN ) over a point x ∈ Ω where ν(v, x) = min ordx(fj) = s is the
vector space of N -tuples (gj) ∈ GN satisfying the equations Dβ

(∑
f ℓj gj(x)

)
= 0,

|β| 6 ℓs+ 1. However, if ordx(fj) = s, the linear map

(0, . . . , 0, gj, 0, . . . , 0) 7−→
(
Dβ(f ℓj gj(x))

)
|β|6ℓs+1

has rank n + 1, because it factorizes into an injective map J1
xgj 7→ Jℓs+1

x (f ℓj gj). It

follows that the fiber Eℓ ∩ ({x} ×GN ) has codimension at least n+ 1. Therefore

dim Eℓ 6 dim(Ω ×GN )− (n+ 1) = dimGN − 1

and the projection of Eℓ on G
N has measure zero by Sard’s theorem. By definition

of Eℓ, any choice of (g1, . . . , gN ) ∈ GN r
⋃
ℓ>1 pr(Eℓ) produces functions hℓ such that

ν(log |hℓ|, x) 6 ℓ ν(v, x) + 1 on Ω. �

7. Multiplier ideal sheaves and the Briançon-Skoda theorem

In this section, we briefly recall the definition and main properties of multiplier
ideal sheaves. These have been originally introduced by A. Nadel [Nad89, 90] for
the study of the existence of Kähler-Einstein metrics.

(7.1) Definition. Let ϕ be a psh function on an open subset Ω ⊂ X ; to ϕ is as-

sociated the ideal subsheaf I(ϕ) ⊂ OΩ of germs of holomorphic functions f ∈ OΩ,x

such that |f |2e−2ϕ is integrable with respect to the Lebesgue measure in some local

coordinates near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighborhood of which
e−2ϕ is non integrable. Such points occur only if ϕ has logarithmic poles, in virtue
of the following basic Lemma due to Skoda [Sko72a].

(7.2) Lemma (Skoda). Let ϕ be a psh function on an open set Ω and let x ∈ Ω.

a) If ν(ϕ, x) < 1, then e−2ϕ is integrable in a neighborhood of x, in particular

I(ϕ)x = OΩ,x.

b) If ν(ϕ, x) > n + s for some integer s > 0, then e−2ϕ > C|z − x|−2n−2s in a

neighborhood of x and I(ϕ)x ⊂ m
s+1
Ω,x , where mΩ,x is the maximal ideal of OΩ,x.

c) The zero variety V (I(ϕ)) of I(ϕ) satisfies
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En(ϕ) ⊂ V (I(ϕ)) ⊂ E1(ϕ)

where Ec(ϕ) = {x ∈ X ; ν(ϕ, x) > c} is the c-sublevel set of Lelong numbers

of ϕ. �

In fact, the ideal sheaf I(ϕ) is always a coherent ideal sheaf, and therefore
its zero variety is an analytic set. This result is due to Nadel ([Nad89], see also
[Dem93b]).

(7.3) Proposition (Nadel). For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ) is

a coherent sheaf of ideals over Ω. �

Proof. As the main argument will be needed hereafter, we briefly reproduce the
argument. As the result is local, we may assume that Ω is a bounded pseudoconvex
open set in Cn. Let E be the set of all holomorphic functions f on Ω such that∫
Ω
|f |2e−2ϕ dλ < +∞. By the strong noetherian property of coherent sheaves, the

set E generates a coherent ideal sheaf J ⊂ OΩ . It is clear that J ⊂ I(ϕ); in
order to prove the equality, we need only check that Jx + I(ϕ)x ∩ m

s+1
Ω,x = I(ϕ)x

for every integer s, in view of the Krull lemma. Let f ∈ I(ϕ)x be defined in a
neighborhood V of x and let θ be a cut-off function with support in V such that
θ = 1 in a neighborhood of x. We solve the equation ∂u = g := ∂(θf) by means of
Hörmander’s L2 estimates applied with the strictly plurisubharmonic weight

ϕ̃(z) = ϕ(z) + (n+ s) log |z − x|+ |z|2.

We get a solution u such that
∫
Ω
|u|2e−2ϕ|z− x|−2(n+s)dλ <∞, thus F = θf − u is

holomorphic, F ∈ E and fx−Fx = ux ∈ I(ϕ)x ∩m
s+1
Ω,x . This proves our contention.

�

The importance of multiplier ideal sheaves stems from the following basic van-
ishing theorem due to Nadel [Nad89] (see also [Dem93b]), which is a direct conse-
quence of the Andreotti-Vesentini-Hörmander L2 estimates. If (L, h) is a pseudoef-
fective line bundle, we denote I(h) = I(ϕ) where ϕ is the weight function of h on
any trivialization open set.

(7.4) Nadel vanishing theorem. Let (X,ω) be a compact Kähler manifold, and

let L be a holomorphic line bundle over X equipped with a singular hermitian metric

h such that iΘh(L) > εω for some continuous positive function ε on X. Then

Hq
(
X,O(KX ⊗ L)⊗ I(h)

)
= 0 for all q > 1. �

Our next goal is to understand somewhat better the behaviour of a multiplier
ideal sheaf I(kϕ) as k tends to +∞. The intuition is that the ideal grows more or
less “linearly”. The following result provides a natural inclusion result for multiplier
ideal sheaves, inspired by the classical Briançon-Skoda theorem [BS74].

(7.5) Theorem. Let X be complex n-dimensional manifold and let ϕ, ψ be plurisub-

harmonic functions on X. Then for any integer k > n we have
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I(kϕ+ ψ) ⊂ I(ϕ)k−nI(ψ).

Proof. Since the result is local, we can assume that X = Ω is a bounded pseudocon-
vex open set. In that case, possibly after shrinking Ω a little bit, the proof of (7.3)
shows that I(ϕ) is generated by a finite number of elements g = (g1, . . . , gN) ∈ O(Ω)
such that ∫

Ω

|gj |
2e−2ϕdλ < +∞.

We set as usual |g|2 = |g1|
2 + · · · + |gN |

2. It is a consequence of estimate (6.1a)
(and thus of the Ohsawa-Takegoshi theorem) that ϕ 6 log |g|+ C for some constant
C > 0. Now, let f ∈ I(kϕ + ψ)z0 be a germ of holomorphic function defined on a
neighborhood V of z0 ∈ Ω. If V is small enough, we have

∫

V

|f |2|g|−2ke−2ψdλ 6 C′

∫

V

|f |2e−2kϕ−2ψdλ < +∞.

By Skoda’s division theorem (in its original form [Sko72b]; see also [Sko78]), this
implies that f can be written as

f = g · h =
∑

16j6N

gjhj

with a N -tuple h = (h1, . . . , hN ) of holomorphic functions hj such that
∫

V

|h|2|g|−2(k−1)e−2ψdλ 6
k − n+ 1

k − n

∫

V

|f |2|g|−2ke−2ψdλ,

provided that k > n, i.e. k−1 > n. By induction, we find a multi-indexed collection
uℓ = (uℓ,j1j2...jℓ) of holomorphic functions on V such that

f = gℓ · uℓ =
∑

gj1gj2 · · · gjℓuℓ,j1j2...jℓ

and ∫

V

∑

ℓ

|uℓ|
2|g|−2(k−ℓ)e−2ψdλ 6

k − n+ 1

k − n+ 1− ℓ

∫

V

|f |2|g|−2ke−2ψdλ

whenever k − ℓ > n. The last L2 inequality shows that uℓ ∈ I(ψ)z0 . The theorem
follows by taking ℓ = k − n. �

8. On Fujita’s approximate Zariski decomposition of big line

bundles

Our goal here is to reprove a result of Fujita [Fuj93], relating the growth of sections
of multiples of a line bundle to the Chern numbers of its “largest nef part”. Fujita’s
original proof is by contradiction, using the Hodge index theorem and intersection
inequalities. It turns out that Theorem 7.5 (of Briançon-Skoda type) can be used
to derive a simple direct proof, based on different techniques (Theorem 8.5 below).
The idea arose in the course of discussions with R. Lazarsfeld [Laz99].
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Let X be a projective n-dimensional algebraic variety and L a line bundle
over X . We define the volume of L to be

v(L) = lim sup
k→+∞

n!

kn
h0(X, kL) ∈ [0,+∞[.

The line bundle is said to be big if v(L) > 0. If L is ample, we have hq(X, kL) = 0
for q > 1 and k ≫ 1 by the Kodaira-Serre vanishing theorem, hence

h0(X, kL) ∼ χ(X, kL) ∼
Ln

n!
kn

by the Riemann-Roch formula. Thus v(L) = Ln ( = c1(L)
n) if L is ample. This is

still true if L is nef (numerically effective), i.e. if L·C > 0 for every effective curve C.
In fact, one can show that hq(X, kL) = O(kn−q) in that case. The following well-
known proposition characterizes big line bundles.

(8.1) Proposition. The line bundle L is big if and only if there a multiple m0L
such that m0L = E + A, where E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition km0L = kE+kA gives rise to
an injection H0(X, kA) →֒ H0(X, km0L), thus v(L) > m−n

0 v(A) > 0. Conversely,
assume that L is big, and take A to be a very ample nonsingular divisor in X . The
exact sequence

0 −→ OX(kL−A) −→ OX(kL) −→ OA(kL|A) −→ 0

gives rise to a cohomology exact sequence

0 → H0(X, kL− A) −→ H0(X, kL) −→ H0(A, kL|A),

and h0(A, kL|A) = O(kn−1) since dimA = n−1. Now, the assumption that L is big
implies that h0(X, kL) > ckn for infinitely many k, hence H0(X,m0L− A) 6= 0 for
some large integer m0. If E is the divisor of a section in H0(X,m0L − A), we find
m0L− A = E, as required. �

(8.2) Lemma. Let G be an arbitrary line bundle. For every ε > 0, there exists a

positive integer m and a sequence ℓν ↑ +∞ such that

h0
(
X, ℓν(mL−G)

)
>
ℓmν m

n

n!

(
v(L)− ε

)
,

in other words, v(mL−G) > mn(v(L)− ε) for m large enough.

Proof. Clearly, v(mL−G) > v(mL− (G+E)) for every effective divisor E. We can
take E so large that G+E is very ample, and we are thus reduced to the case where
G is very ample by replacing G with G + E. By definition of v(L), there exists a
sequence kν ↑ +∞ such that

h0(X, kνL) >
knν
n!

(
v(L)−

ε

2

)
.
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We take m≫ 1 (to be precisely chosen later), and ℓν =
[
kν
m

]
, so that kν = ℓνm+rν ,

0 6 rν < m. Then

ℓν(mL−G) = kνL− (rνL+ ℓνG).

Fix a constant a ∈ N such that aG − L is an effective divisor. Then rνL 6 maG
(with respect to the cone of effective divisors), hence

h0
(
X, ℓν(mL −G)

)
> h0

(
X, kνL− (ℓν + am)G

)
.

We select a smooth divisor D in the very ample linear system |G|. By looking at
global sections associated with the exact sequences of sheaves

0 → O(−(j + 1)D)⊗O(kνL) → O(−jD)⊗O(kνL) → OD(kνL− jD) → 0,

0 6 j < s, we infer inductively that

h0(X, kνL− sD) > h0(X, kνL)−
∑

06j<s

h0
(
D,OD(kνL− jD)

)

> h0(X, kνL)− s h0
(
D, kνL|D)

>
knν
n!

(
v(L)−

ε

2

)
− sCkn−1

ν

where C depends only on L and G. Hence, by putting s = ℓν + am, we get

h0
(
X, ℓν(mL−G)

)
>
knν
n!

(
v(L)−

ε

2

)
− C(ℓν + am)kn−1

ν

>
ℓnνm

n

n!

(
v(L)−

ε

2

)
− C(ℓν + am)(ℓν + 1)n−1mn−1

and the desired conclusion follows by taking ℓν ≫ m≫ 1. �

The next lemma is due to Siu and was first observed in [Siu97] for the proof of
the invariance of plurigenera.

(8.3) Lemma. There exists an ample line bundle G on X such that for every

pseudoeffective line bundle (L, h), the sheaf O(G + L) ⊗ I(h) is generated by its

global sections. In fact, G can be chosen as follows: pick any very ample line bundle

A, and take G such that G− (KX + (n+ 1)A) is ample, e.g. G = KX + (n+ 2)A.

Proof. Let ϕ be the weight of the metric h on a small neighborhood of a point z0 ∈ X .
Assume that we have a local section u of O(G+L)⊗I(h) on a coordinate open ball
B = B(z0, δ), such that

∫

B

|u(z)|2e−2ϕ(z)|z − z0|
−2(n+1)dV (z) < +∞.

Then Skoda’s division theorem [Sko72b] implies u(z) =
∑

(zj − zj,0)vj(z) with

∫

B

|vj(z)|
2e−2ϕ(z)|z − z0|

−2(n+1)dV (z) < +∞,
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in particular uz0 ∈ O(G+L)⊗I(h)⊗mX,z0 . Select a very ample line bundle A on X .
We take a basis σ = (σj) of sections of H0(X,G⊗ mX,z0) and multiply the metric
h of G by the factor |σ|−2(n+1). The weight of the above metric has singularity
(n+ 1) log |z − z0|

2 at z0, and its curvature is

(⋆) iΘ(G) + (n+ 1)i∂∂ log |σ|2 > iΘ(G)− (n+ 1)Θ(A).

Now, let f be a local section in H0(B,O(G+ L)⊗ I(h)) on B = B(z0, δ), δ small.
We solve the global ∂ equation

∂u = ∂(θf) on X

with a cut-off function θ supported near z0 and with the weight associated with our
above choice of metric on G+L. Thanks to Nadel’s theorem 7.4, the solution exists
if the metric of G + L −KX has positive curvature. As Θh(L) > 0 in the sense of
currents, (⋆) shows that a sufficient condition is G −KX − (n + 1)A > 0. We then
find a smooth solution u such that uz0 ∈ O(G+ L)⊗ I(h) ⊗mX,z0 , hence

F := θf − u ∈ H0(X,O(G+ L)⊗ I(h))

is a global section differing from f by a germ in O(G+L)⊗I(h)⊗mX,z0 . Nakayama’s
lemma implies that H0(X,O(G+L)⊗I(h)) generates the stalks of O(G+L)⊗I(h).

�

We further need to invoke the existence of metrics with minimal singularities (the
reader will find more details about this topic in [Dem98] and [DPS99]). This result
can be seen as the analytic analogue of Zariski decomposition for pseudo-effective
divisors. Although algebraic Zariski decomposition does not always exist and is a
very hard problem to deal with, it turns out that the existence of metrics with min-
imal singularities is a simple basic consequence of the existence of upper envelopes
of plurisubharmonic functions, as already mentioned in Lelong’s early work on the
subject.

(8.4) Proposition. Let L be a pseudoeffective line bundle X. There exists a singular

hermitian metric h0 satisfying

(i) iΘh0
(L) > 0.

(ii) h0 has minimal singularities among all metrics h with iΘh(L) > 0, i.e. h0 6 Ch,
where C is a constant, for every such h.

Moreover, for every nonnegative integer k, there is a natural isomorphism

(iii) H0(X,O(kL)⊗ I(hk0)) →֒ H0(X,O(kL)).

Proof. Let us fix once for all a smooth hermitian metric h∞ on L (with a curvature
form θ∞ = iΘh∞

(L) of arbitrary signature). We write any other singular hermitian
metric as h = e−ψh∞ where ψ ∈ L1

loc(X). Since L is pseudoeffective, it is possible
to find ψ such that iΘh(L) = i∂∂ψ + θ∞ > 0, and we will always assume that this
is the case. In particular, ψ is almost plurisubharmonic and locally bounded from
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above. Also, we only deal with h up to equivalence of singularities, so we may adjust
ψ by a constant in such a way that supX ψ 6 0. We define

ψ0(x) = sup
{
ψ(x) ; ψ almost psh, i∂∂ψ + θ∞ > 0, sup

X
ψ 6 0

}
.

By the well known properties of plurisubharmonic functions (see Lelong [Lel68]),
the upper semicontinuous regularization ψ⋆0 is almost plurisubharmonic and satis-
fies i∂∂ψ⋆0 + θ∞ > 0, supψ⋆0 6 0. We see that ψ⋆0 concurs in the supremum defining
ψ0, hence ψ

⋆
0 = ψ0. The metric h0 = e−ψ0θ∞ is by definition a metric with minimal

singularities which satisfies iΘh0
(L) > 0. If σ ∈ H0(X, kL), we define a correspond-

ing singular hermitian metric on L by

‖ξ‖h =
∣∣∣ ξ

⊗k

σ(x)

∣∣∣
1/k

, ξ ∈ Lx.

Its curvature is Θh(L) =
1
k [Zσ] > 0 where Zσ is the zero divisor of σ, hence (up to

a multiplicative constant) h := e−ψh∞ also concurs in the definition of ψ0. From
this, we infer ψ 6 ψ0 + C, hence

‖σ‖h⊗k
0

6 ekC‖σ‖h⊗k = ekC .

A fortiori σ is a L2 section with respect to the metric h0, i.e.

σ ∈ H0(X,O(kL)⊗ I(h⊗k0 )),

therefore H0(X,O(kL)⊗ I(h⊗k0 )) = H0(X,O(kL)), as desired. �

We are now ready to prove Fujita’s decomposition theorem.

(8.5) Theorem (Fujita). Let L be a big line bundle. Then for every ε > 0, there

exists a modification µ : X̃ → X and a decomposition µ⋆L = E + A, where E is an

effective Q-divisor and A an ample Q-divisor, such that An > v(L)− ε.

(8.6) Remark. Of course, if µ⋆L = E + A with E effective and A nef, we get an
injection

H0(X̃, kA) →֒ H0(X̃, kE + kA) = H0(X̃, kµ⋆L) = H0(X, kL)

for every integer k which is a multiple of the denominator of E, hence An 6 v(L).

(8.7) Remark. Once Theorem 8.4 is proved, the same kind of argument easily
shows that

v(L) = lim
k→+∞

n!

kn
h0(X, kL),

because the formula is true for every ample line bundle A.

Proof of Theorem 8.5. It is enough to prove the theorem with A being a big and nef
divisor. In fact, Proposition 8.1 then shows that we can write A = E′ + A′ where
E′ is an effective Q-divisor and A′ an ample Q-divisor, hence
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E + A = E + εE′ + (1− ε)A+ εA′

where A′′ = (1 − ε)A + εA′ is ample and the intersection number A′′n approaches
An as closely as we want. Let G be as in Lemma 8.3. Lemma 8.2 implies that
v(mL−G) > mn(v(L)−ε) for m large. By Proposition 8.4, there exists a hermitian
metric hm of weight ϕm on mL−G such that

H0
(
X, ℓ(mL−G)

)
= H0

(
X, ℓ(mL−G)⊗ I(ℓϕm)

)

for every ℓ > 0. We take a smooth modification µ : X̃ → X such that

µ⋆I(ϕm) = O
X̃
(−E)

is an invertible ideal sheaf in O
X̃
. This is possible by taking the blow-up of X with

respect to the ideal I(ϕm) and by resolving singularities (Hironaka [Hir64]). Lemma
8.3 applied to L′ = mL−G implies that O(mL)⊗I(ϕm) is generated by its global
sections, hence its pull-back O(mµ⋆L−E) is also generated. This implies

mµ⋆L = E + A

where E is an effective divisor and A is a nef (semi-ample) divisor in X̃. We find

H0(X̃, ℓA) = H0
(
X̃, ℓ(mµ⋆L− E)

)

⊃ H0
(
X̃, µ⋆

(
O(ℓmL)⊗ I(ϕm)ℓ

))

⊃ H0
(
X̃, µ⋆

(
O(ℓmL)⊗ I((ℓ+ n)ϕm)

))
,

thanks to the inclusion of sheaves I((ℓ+n)ϕm) ⊂ I(ϕm)ℓ implied by the Briançon-
Skoda theorem. Moreover, the direct image µ⋆µ

⋆I(ℓϕm) coincides with the integral
closure of I(ℓϕm), hence with I(ℓϕm), because a multiplier ideal sheaf is always
integrally closed. From this we infer

H0(X̃, ℓA) ⊃ H0
(
X,O(ℓmL)⊗ I((ℓ+ n)ϕm)

)

⊃ H0
(
X,O((ℓ+ n)(mL−G))⊗ I((ℓ+ n)ϕm)

)

= H0
(
X,O((ℓ+ n)(mL−G))

)
.

The final equality is given by (8.4 iii), whereas the second inclusion holds true if
(ℓ+ n)G− nmL is effective. This is certainly the case if ℓ≫ m. By Lemma 8.2, we
find

h0(X̃, ℓA) >
(ℓ+ n)n

n!
mn

(
v(L)− ε

)

for infinitely many ℓ, therefore v(A) = An > mn(v(L)− ε). Theorem 8.5 is proved,
up to a minor change of notation E 7→ 1

m
E, A 7→ 1

m
A. �
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