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Abstract— The Reorder Buffer (ROB) is a key component in 

superscalar processors. It enables both in-order commitment of 

instructions and precise exception management even in those 

architectures that support out-of-order execution. The ROB 

architecture typically includes a memory array whose size may 

reach several thousands of bits. Testing this array may be 

important to guarantee the correct behavior of the processor. 

Proprietary BIST solutions typically adopted by manufacturers 

for end-of-production test are not always suitable for on-line test. 

In fact, they require the usage of test infrastructures that may be 

expensive, or may not be accessible and/or documented. This 

paper proposes an alternative solution, based on a functional 

approach, which has been validated resorting to both an 

architectural and a memory fault simulator. 

Keywords—microprocessor testing, software-based self-test, 

embedded memory test, on-line test 

I.  INTRODUCTION 

The widespread use of embedded microprocessors coupled 
with the demand for increased functionality and higher 
performance are pushing out-of-order superscalar 
microarchitectures into the embedded microprocessor space. 
This trend is also embracing safety related applications (e.g., 
the automotive, railways and aerospace domains [1][2]). For 
these application domains, both accurate end-of-manufacturing 
test and periodic test procedures during the operational phase 
(on-line test) are mandatory requirements. These requirements 
are enforced by several standards and regulations (e.g., ISO 
26262 and DO-254) that specify the fault coverage figures that 
must be attained with respect to permanent faults.  

When considering processor-based systems, either 
implemented within an electronic board or in the form of a 
System-on-Chip (SoC), functional test approaches, also 
referred to as Software-Based Self-Test (SBST) methods [3], 
may represent a promising solution. A functional test applies 
stimuli to the system under test only resorting to its functional 
inputs, and observes the system’s behavior only resorting to its 
functional outputs.  

Functional test methods have several advantages when 
compared to traditional Design for Testability (DfT) or Built-In 
Self-Test (BIST) techniques. First, they do not require any 
modification of the processor design. This is an important 
characteristic when third-party processor cores are integrated 
into a SoC. Second, since functional tests exercise the unit 
under test exactly in the same conditions used during normal 
behavior, they easily enable at-speed testing while avoiding 
over-testing. Finally, testing a processor-based system during 
the operational phase using DfT techniques may be complex. 
Detailed information about available DfT structures is often 

missing. Moreover, these structures might be not accessible 
during operational conditions or, even if they can be accessed 
and activated in this phase, their usage may be prevented by 
resource and time constraints imposed to the test.  

While providing several advantages, the main drawback of 
functional test approaches is the difficulty in devising test 
programs matching existing constraints in terms of duration, 
size, and fault coverage. Starting from the first attempt to 
develop functional tests for microprocessors proposed by 
Thatte et al. in 1980 [4], a rich literature has been produced. 
Publications propose methods for effectively writing programs 
for the test of whole microprocessors [5], special modules (e.g., 
branch prediction units [6], or cache memories [7]), and 
peripherals components [8].  

This paper focuses on the on-line test of the Reorder Buffer 
(ROB) existing within superscalar processors. The ROB plays 
an important role within processors supporting out-of-order 
speculative execution. It guarantees that instruction 
commitment (i.e., the phase in which the result produced by the 
instruction is written to its destination) is performed in-order, 
and that exceptions are managed in a precise manner [9]. Since 
the ROB function is implemented in rather different ways in 
different processor architectures, for the purpose of this paper 
we selected the solution adopted by the widely spread 
SimpleScalar simulator [15]. The ROB is based on a memory 
block organized in entries. Each entry corresponds to an 
executed instruction waiting for being committed. Since the 
size of the ROB is usually in the order of some tens of entries, 
its internal memory capacity is usually in the order of some 
thousands of bits.  

In this paper we propose a test algorithm easily translatable 
into a program suitable for the on-line test of the ROB internal 
memory. The overall idea is to map the set of fault primitives 
required to sensitize and detect typical memory fault types [10] 
to a proper sequence of processor instructions. One of the 
major contributions of the paper is in describing how to 
perform read and write operations on the ROB memory words 
following a predefined order, thus enabling the translation of a 
generic March algorithm into a corresponding test program. 
The full set of single-cell and double-cell memory faults 
typically considered in traditional memory testing approaches 
are considered. The complexity of the resulting test algorithm 
grows quadratically with the ROB size. Nevertheless, since the 
ROB size is usually limited, the test program is still limited in 
terms of size and duration. A major characteristic of the 
resulting test program is also that it does not need to be 
executed as a whole. In fact, it can be split in fragments to be 
executed independently at different times (i.e., with reduced 
cost in terms of stopping and resuming the test, as well as 



checking its results), thus better matching the strict time 
constraints imposed when testing a system in its operational 
environment.  

The approach proposed in this paper is clearly not suitable 
for the end-of-manufacturing test performed by processor 
manufacturing companies, which can resort to more effective 
solutions based on DfT. However, the approach may be useful 
for system companies, which buy processor or SoC devices 
from third companies. In this case the engineer in charge of 
developing the on-line test often does not have detailed 
information on the internal architecture of the processor, but 
only knows its Instruction Set Architecture.  

The proposed algorithm has been validated resorting to 
both an architectural and a memory fault simulator. We also 
report results allowing to evaluate the cost of the approach in 
terms of test program size and duration. 

The paper is organized as follows: section 2 reports some 
background about the ROB architecture and behavior. Section 
3 describes the functional approach we propose for generating 
suitable programs for its test; section 4 reports some data about 
the experiments we performed. Section 5 draws some 
conclusions. 

II. BACKGROUND 

In order to better exploit the Instruction Level Parallelism 
existing in almost every executed program, superscalar 
processors support out-of-order execution. This approach, in 
combination with dynamic scheduling, enables the execution of 
each instruction as soon as the required functional unit is free 
and the values of the input operands are available. However, 
this mechanism can affect the correctness of the computation 
(e.g., due to Write After Write hazards and imprecise exception 
handling).  

The ROB, or other structures playing a similar role in other 
processors, is mainly intended to guarantee that, despite the 
out-of-order execution, the completion of each instruction (in 
particular the phase in which results are written in the target 
destination) is performed in-order. In this way, Write After 
Write hazards cannot arise and precise exception handling can 
be easily implemented. The ROB also plays a key role in 
speculative execution [11]. 

A ROB is a memory organized in entries, each composed 
of several fields including: (i) an id of the instruction, (ii) the 
value it produced, and (iii) the target where this value must be 
written when the instruction is committed (corresponding either 
to a register or to a memory location). The ROB is accessed 
during different phases of the execution of an instruction: 

• During the issue phase, the processor assigns the 
instruction to a free ROB entry. If no entry is available a 
stall arises. ROB entries are assigned to instructions 
following the instruction issue order. The ROB is therefore 
organized as a First-In First-Out (FIFO) buffer, whose key 
is the order of each entry (i.e., instruction) in the code. 

• When an instruction completes its execution, the produced 
result is written in the value field of the associated ROB 
entry together with all information items required to 
identify the target location. 

• At each clock cycle, the circuitry associated to the ROB 
checks whether the oldest instructions in the ROB 
(according to the issue order) have completed their 
execution. If yes, the instructions are committed, i.e., the 
produced values are written to the assigned target 
locations. 

• When a conditional branch instruction is executed, the 
result is compared with the branch prediction. If a mis-
prediction occurs, all instructions following the branch and 
already allocated in the ROB are aborted and removed 
from the ROB. 

• When the input operand of an instruction is produced by 
another instruction that has been executed but not yet 
committed, the corresponding value is stored in the ROB, 
only. To avoid a stall the processor reads this value from 
the ROB, instead of the Register File. It then forwards it to 
the functional unit, which can thus start its execution. 

To summarize, access to the ROB is performed (for sake of 
simplicity we mainly refer to access to the value field): 

• In the issue phase, by allocating entries to instructions 
according to the FIFO mechanism. Moreover, issued 
instructions may read input data from the ROB if the data 
were produced by not yet committed instructions; 

• At the end of the execution phase of a generic instruction 
X, to write output data into the value field (and others) of 
the ROB entry associated to the X; 

• In the commit phase, to read the value field and write its 
value in the instruction target location. 

It is worth mentioning here that the ROB is typically used 
in processors supporting the issue, execution and completion of 
multiple instructions at the same clock cycle. For this reason a 
ROB is typically organized as a multiple-port memory, to 
which multiple instructions can access concurrently from 
different stages. 

III. PROPOSED APPROACH 

According to Section II, the ROB is composed of several 
entries, each comprising different fields. For the purpose of this 
paper we will focus on a specific field, namely the value field, 
and we will propose an algorithm for its functional testing. The 
other fields, whose number and role often change depending on 
the target processor, can be tested by extending the approach in 
a rather straightforward manner. 

Let us denote by n the number of entries of the ROB and by 
m the number of bits composing the value field. Using this 
notation the ROB internal memory can be modeled as a n × m 
memory array whose test is the target of this paper. 

The proposed test algorithm implements a deterministic 
sequence of read/write operations on the ROB entries. In the 
case of the value field, a write operation arises when the 
instruction associated to the entry completes its execution: in 
this stage, the produced value is written in the corresponding 
ROB entry. Write operations are therefore executed following 
the order in which instructions complete their execution. The 
value written in each ROB entry is read when the 



corresponding instruction is committed. The instruction result 
is written to the target destination (either a register or a 
memory location) and the instruction is removed from the 
ROB, thus freeing the corresponding entry. Since the ROB 
implements a FIFO strategy, the order of read operations 
strictly follows the order instructions are issued and assigned to 
the ROB. 

The value field of the ROB entry associated to an 
instruction Y whose execution has been completed but still not 
committed is also read when an instruction X requires an 
operand produced by Y.  

In the following we will first recall the test conditions 
required to detect single-cell and double-cell (i.e., coupling) 
faults in a memory, and then will outline an algorithm able to 
reproduce these test conditions on the ROB. For sake of 
simplicity, in this section we will assume that the ROB 
memory is only accessed by one instruction per stage per clock 
cycle. However, this assumption can be removed without 
impacting the effectiveness of the proposed algorithm. 

A. Single- and double-cell fault test requirements 

Let us denote by A  and V  two m-bit test patterns for the 

aggressor entry and the victim entries of the ROB, respectively, 
and with A  and V  the corresponding complemented patterns. 

From the literature we can easily derive the operations (denoted 
as Fault Primitives, or FPs

1
) required to test faults affecting 

single cells in the memory [8]. They are summarized in Table I. 

TABLE I.  SINGLE-CELL FAULT PRIMITIVES 

Fault FP Fault Model 

SF (1) < A / A / − >   (2) < A / A / − >  State fault 

TF (1) < AwA / A / − >  (2) < Aw
A

/ A / − >  Transition 

fault 

WDF (1) < Aw
A

/ A / − >  (2) < AwA / A / − >  
Write 

destructive 

fault 

RDF (1) < Ar
A

/ A / A >   (2) < ArA / A / A >  
Read 

destructive 

Fault 

IRF (1) < Ar
A

/ A / A >  (2) < ArA / A / A >  
Incorrect 

read-fault 

DRDF (1) < Ar
A

/ A / A >  (2) < ArA / A / A >  
Deceptive 

RDF 

 

Secondly, we can address faults affecting pairs of memory 
cells (denoted as aggressor and victim, respectively) and report 
the corresponding FPs (see Table II). 

Looking at Table II, double-cell faults (usually denoted as 
coupling faults) can be grouped in two categories based on the 
type of sensitizing operation: 

1. Group 1: faults that are sensitized by an operation/state on 
the aggressor cell and a state on the victim cell (CFds, 
CFst) 

                                                           
1  FP=<S/F/R> where S is the sequence of operations required to 

sensitize the fault, F is the observed faulty behavior that deviates 

from the correct memory behavior and R, in case of a read operation, 

is the read result. 

2. Group 2: faults that are sensitized by a state of the 
aggressor cell and an operation on the victim cell (CFtr, 
CFwd, CFrd, CFir, CFdrd). 

TABLE II.  DOUBLE-CELL FAULT PRIMITIVES 

Fault FP Fault Model 

CFst (1) < A;V /V / − >  (2) < A;V /V / − >  State 

coupling 
fault (3) < A;V /V / − >  (4) < A;V /V / − >  

CFds
(1) 

< xw
y
;V /V / − >

 (2) 
< xw

y
;V /V / − >

 
Disturb 

coupling 
fault 

(3) 
< xr

x
;V / V / − >

 (4) 
< xw

x
;V / V / − >

 

CFtr
(1) 

< A;Vw
V

/V / − >
 

(2) < A;Vw
V

/V / − >  Transition 

coupling 
fault (3) < A;Vw

V
/ V / − >  (4) < A;Vw

V
/V / − >  

CFwd (1) < A;Vw
V

/V / − >  (2) < A;Vw
V

/V / − >  Write 
destructive 

coupling 
fault 

(3) < A;Vw
V

/V / − >  (4) < A;Vw
V

/ V / − >  

CFrd (1) < A;Vr
V

/V / V >  (2) < A;Vr
V

/ V / V >  Read 
destructive 

coupling 
fault 

(3) < A;Vr
V

/V /V >  (4) < A;Vr
V

/V /V >  

CFir (1) < A;Vr
V

/V /V >  (2) < A;Vr
V

/ V /V >  Incorrect 
read 
coupling 
fault 

(3) < A;Vr
V

/V / V >  (4) < A;Vr
V

/V / V >  

CFdr
d 

(1) < A;Vr
V

/V / V >  (2) < A;Vr
V

/ V / V >  Deceptive 
read 

destructive 
CF 

(3) < A;Vr
V

/V /V >  (4) < A;Vr
V

/V /V >  

 

The conditions to test faults of group 1 are: (1) initialize the 
victim cells to a given value, (2) sensitize the fault by 
performing the three possible sensitizing operations (a non-
transition write, a transition write and a read) on the aggressor 
cell, (3) read out the content of the victim cells to check if some 
of them changed their status.  

The conditions to test faults of group 2 are: (1) initialize the 
victim cells to a given value, (2) initialize the aggressor cell to 
a given value; (3) for each victim cell sensitize the fault by 
performing the three possible sensitizing operations (a non-
transition write, a transition write and a read) followed by (4) a 
read operation to detect the fault. 

B. Test algorithm 

Considering an n entries ROB, the test conditions defined 
by the considered FPs can be matched by a test program 
implementing the following sequence of operations, denoted as 
basic building block (BBB). 

1. Write V / V  in all victim entries and then A / A  in the 

aggressor entry; 

2. Write V / V  in all victim entries and then A / A  in the 

aggressor entry; 



3. Read the content of all entries starting from the aggressor 
to detect faults of group 1; 

4. Write V / V  in all victim entries and then A / A  in the 

aggressor entry; 

5. Read all victim entries two times (if possible) to detect all 
faults of group 2. 

To prove that BBB is able to detect the FPs introduced in 
Section III.A we focus on double-cell faults reported in Table 
II. Detection conditions for single-cell faults are in general 
simpler and included in those required for double-cell faults 
[10]. Let us consider faults of group 1 (i.e., CFds, CFst). To 
sensitize these faults we need first to initialize the ROB entries. 
This is performed in step 1 of BBB by writing V / V  in all 

victim entries and then A / A  in the aggressor entry. Step 2 of 
BBB is the first step in which faults are sensitized. First all 
victim entries are again initialized with V / V . These redundant 

write operations are required since the ROB applies a FIFO 
strategy. Therefore, to write a new value in the aggressor entry 
that was the last written during step 1 we need first to write all 
victim entries. Secondly, the aggressor cell is written with 
A / A  to sensitize the faults. The sensitized FPs depend on the 

actual patterns written in the entries during steps 1 and 2.  If for 
instance in both steps victim and aggressor entries are 
respectively written with patterns A  and V , FP3 of CFst and 

FP2 with non-transition write of CFst are sensitized. Step 3 of 
BBB starts reading the aggressor entry. This represents the last 
sensitizing operation for group 1 faults and is required to 
sensitize FP3 of CFds. At this point all possible sensitizing 
operations have been executed. By reading out all victim 
entries it is possible to detect if any fault occurred. 

The remaining two steps of BBB are required to address 
faults of group 2 (i.e., CFtr, CFwd, CFrd, CFir, CFdrd). All 
these faults are sensitized by a state of the aggressor entry and 
an operation on the victim entry. When reaching step 4 the 
memory is already initialized. By performing a write operation 
on all victim entries FPs belonging to CFtr and CFwd models 
can be sensitized. Again the specific sensitized FP depends on 
the applied test patterns. If the aggressor entry was initialized 
with A , the victim entries were initialized with V  and a w

V
 

operation is performed on each victim, FP4 of CFtr 
( < A;Vw

V
/V / − > ) is sensitized. Step 4 terminates with a write 

operation on the aggressor entry. Again this operation is 
required to cope with the FIFO policy of the ROB. 

In the last step of the BBB (step 5) all victim cells are read 
2 times. With the first read operation faults sensitized during 
step 4 can be detected. Moreover, this operation sensitizes 
CFrd, CFir and CFdrd FPs and detects CFrd, CFir FPs. The 
second read operation is able to detect CFdrd FPs. In fact, in 
this case the fault is sensitized by the first read but observed 
only when the entry is read again. 

The BBB must be executed 6 times changing the 
combination of the test patterns in the victim and aggressor 
cells during steps 1, 2 and 4 in order to address all selected FPs. 
Finally, everything must be executed n times considering every 
element of the ROB as the aggressor cell.  

The main characteristic of this test algorithm is that write 
instructions always follow the same order: first all victim cells 

are written, followed by the aggressor cell. This behavior can 
be reproduced on the ROB by forcing the processor to execute 
a code fragment composed of:  

• an instruction named I1 characterized by a long execution 
time (e.g., DIV) and result equal to A / A ; 

• n-1 instructions (named I2 to In) characterized by a short 
execution time (e.g., ADD), result equal to V / V , and one 

of the input operands corresponding to the output operand 
of the previous instruction (except for the first). 

For the purpose of analyzing the behavior of the ROB 
during the execution of this fragment, we can identify the 
following phases:  

• Issue phase: all instructions of the fragment are issued. At 
the end of this phase the ROB includes one entry devoted 
to I1 (corresponding to the aggressor entry), and all other 
entries devoted to instructions I2 to In (corresponding to 
the victim entries). 

• Execute phase: the short instructions I2 to In finish their 
execution before I1 finishes. This means that during this 
phase I2 to In rapidly finish their execution one after the 
other. As soon as one of them finishes its execution, it 
writes the produced result in the ROB. Immediately after, 
the following instruction reads this value, enters execution, 
and repeats the same operation. However, instructions I2 
to In cannot immediately commit, since they wait for the 
commit of I1. During this phase each ROB cell (apart from 
the one associated to I1) undergoes a write, followed by a 
read operation due to the data dependency between 
consecutive instructions; with the exception of the ROB 
cell corresponding to In, where the read is not performed. 
When at last the execution of I1 finishes, I1 writes its 
result to the associated ROB slot.  

• Commit phase: when finally I1 completes its execution, it 
commits. The value written in the corresponding ROB 
entry is read and written in the target destination, thus 
executing a new read operation. All other instructions (I2 
to In) can now also commit. The values written in the 
corresponding ROB slots are thus read and written in the 
target destinations (i.e., n-1 registers).  

The above code fragment can be exploited to force the 
processor to perform on the ROB the operations mandated by 
the Basic Building Block.   

The resulting test program can be summarized as follows: 

1. execute I1 to In to initialize the ROB (step 1 of the Basic 
Building Block); 

2. execute I1 to In to sensitize CFst and CFds that are 
sensitized by operations on the aggressor cell (step 2 and 3 
of the Basic Building Block); 

3. execute n store instructions writing the n target registers 
into memory and thus making the results of the previous 
steps observable. According to the SimpleScalar model, in 
the execution phase a store instruction writes into its ROB 
entry the value to be moved to memory; thus, the ROB 
entry value is not changed during the commit phase; 



4. execute I1 to In to sensitize CFtr, CFwd, CFrd, CFir, 
CFdrd that are sensitized by operations on the victim cells 
(step 4 and 5 of the Basic Building Block); 

5. execute n store instructions, moving the values of the n 
target registers into memory;  

6. repeat steps 0 to 4 six times with different values 
A , A , V / V  for instructions I1 to In 

7. repeat steps 1 to 6 n times by allocating a different slot to 
the “long” instruction I1 (which can be achieved by just 
executing a “dummy” instruction before executing again 
step 0). In this way we can test faults activated by each 
possible aggressor cell. 

The algorithm is completed by checking whether all the 
values written into memory during the algorithm execution 
comply with the expected ones. It is worth to note that the 
above algorithm must not necessarily be executed as a whole, 
but may be split in parts to be executed separately. In 
particular, it is composed of small independent parts 
(corresponding to steps 1 to 3 and 4 to 5) that can possibly be 
executed at different times. This is an important characteristic 
when functional test is executed in-field. In this situation, small 
time slots are periodically allocated to execute test procedures 
on the system. When a test slot begins, the current state of the 
processor is saved and then the test procedure is executed. At 
the end of the slot the original state of the processor is finally 
restored. Being suitable to be split into small chunks is a 
valuable property for a test procedure in order to execute the 
test even when small time slots are required [2]. 

The presented algorithm corresponds to the execution of 5 

× 6 × n
2
 instructions. Hence, the total complexity of the 

proposed algorithm (in terms of number of instructions) is 
O(n

2
). Given the fact that the size n of the ROB is limited 

(typically in the order of some tens of entries) this complexity 
still leads to relatively short and fast test programs. 

The proposed algorithm still does not detect coupling faults 
between bits in the same ROB entry. Following [12], to cover 
also these faults we can simply add to the algorithm a few more 
steps: 

• in the first step n instructions are executed, writing a result 
value corresponding to a given pattern X  to the ROB, and 
then reading and moving it to a register; 

• in the second step the target register values are transferred 
to observable memory locations resorting to n store 
instructions;  

• the two steps are repeated substituting X  with its 
complement pattern X ; 

• these three  steps are repeated 1+ log2 m  times, being m the 

size of the value field, each time using a different data 
background pattern. At the first iteration X = 00 00  and 

X =11 11 ; at the second iteration X = 00 11  (i.e., a word 

composed of m/2 0 bits and m/2 1 bits) and X =11 00   

(i.e., the opposite of X ); at the last iteration X =10 10  

(i.e., a word composed of m alternated 0 and 1 bits) and 

X = 01 01  (i.e., the opposite of X). 

It is worth mentioning here that the ROB is typically used 
in processors supporting the issue, execution and completion of 
multiple instructions at the same clock cycle. For this reason a 
ROB is typically organized as a multiple port memory, to 
which multiple instructions can access concurrently from 
different stages. Multiple port memories introduce a set of 
additional faulty behaviors related to the presence of more than 
one port to those listed in Table I and Table II. Nevertheless, 
several publications [13][14] proved that March-like test 
sequences like the one proposed in this paper, designed to test 
single port memories, can be easily adapted to cover multi-port 
specific fault models by properly selecting the port on which 
operations are performed. Therefore, extending the proposed 
test method also to the multi-port scenario does not represent a 
significant issue. 

IV. EXPERIMENTAL RESULTS 

In order to validate the proposed approach we resorted to 
SimpleScalar [9], an open-source processor architectural 
simulator widely used for computer architecture research and 
teaching. SimpleScalar can implement a ROB of arbitrary size 
(called Register Update Unit, or RUU), it can emulate several 
instruction sets (Alpha, PISA, ARM, x86), it can be modified 
to monitor and store the internal state of the processor, and its 
ISA is easily expandable to include new instructions.  

The PISA architecture has been selected for our 
experiments, and SimpleScalar has been set to use a variable 
length ROB. In order to check the correctness of the method, 
the SimpleScalar C code has been modified to store some 
additional data during the simulation, allowing to record each 
time an access is performed to the ROB. We then wrote the 
code of the proposed algorithm, and checked that it performs 
the expected sequence of accesses to the ROB. 

In Table III, we report the characteristics of the test 
programs developed for ROBs of different sizes. The table 
reports in the first column the number of ROB entries, the 
second column contains the memory occupation in bytes 
required by the test program, the third column shows the 
number of instructions, and finally, the last column indicates 
the number of clock cycles required to execute the test 
program. It is important to mention that we suitably set the 
Simplescalar parameters in order to minimize the impact of 
cache and TLB misses in terms of clock cycles. This is possible 
to reach by modifying the Simplescalar configuration 
parameters e.g., data cache miss/hit latencies, through a 
configuration file. 

TABLE III.  TEST CHARACTERISTICS FOR DIFFERENT ROB SIZES 

ROB size    
[# entries] 

Memory occupation 
[# bytes] 

Executed 
instructions 

Time         
[clock cycles] 

8 6,32 K 1,575 2,137

16 24,9 K 6,623 5,682

As the reader can notice, the experimental results validate 
what has been reported in the paper in terms of program 
complexity for 8 and 16 entries ROBs. As expected, the 
number of instructions and memory occupation grows 
following a quadratic trend depending on the number of entries 
in the ROB. However, the program execution time does not 
follow the same pace, since it mainly depends on the long 



execution time instructions (called in these experiments I1 and 
requiring 20 clock cycles) that actually only doubles in the 
cases reported in Table III. 

Interestingly, for ROBs composed of more than 32 entries, 
the number of available general purpose registers may 
represent a limitation that prevents us from applying the 
proposed approach in the form proposed here. However, this 
obstacle may be circumvented by also exploiting the floating-
point registers available in the processor at the expense of 
slightly  more complex test programs.  

The fault coverage of the proposed test program has been 
evaluated by modeling all operations performed on the ROB by 
the proposed test algorithm into the RASTA memory fault 
simulator [16]. Table IV shows the outcome of the fault 
analysis considering different dimensions of the ROB. 

TABLE IV.  FAULT COVERAGE 

ROB size 
[# entries] 

Single-Cell 
FPs 

CFst, CFds, CFtr, CFwd, 
CFrd, CFir 

CFdrd

8 100% 100% 92.85%

16 100% 100% 96.66%

32 100% 100% 98.38%

As expected, regardless of the ROB dimension, we 
obtained 100% fault coverage on all instances of single-cell 
faults and double-cell faults with the exception of CFdrd that 
was not fully covered. This confirms that all requested 
coverage conditions have been respected during the 
implementation of the algorithm. The not-full coverage of 
CFdrd is due to the impossibility of performing two 
consecutive read operations on all victim cells of the buffer. As 
reported in Section III our test program first reads each entry of 
the ROB with the exception of the last entry since each short 
instruction uses as operand the outcome of the previous 
instruction that is stored in the ROB. All entries (including the 
last one) are then read again during the commit phase when the 
content of the ROB is written in the target location. Therefore, 
the CFdrd sensitizing condition (i.e., two consecutive reads) is 
not respected for the last entry of the ROB, preventing a 100% 
coverage of this type of faults. This coverage penalty is 
mitigated when the ROB size increases, and, in general the 
overall coverage figure can be considered satisfactory even for 
the smaller ROB size. 

V. CONCLUSIONS 

The Reorder Buffer is a key component in modern 
superscalar processors; testing the memory within this 
component is therefore crucial for the correct behavior of the 
processor. When resorting to DfT solutions (e.g., based on 
BIST) is not possible (e.g., when the test has to be performed in 
the field), the functional approach can be the only viable 
alternative. This paper proposes an algorithm allowing to write 
a functional program for the test of the ROB memory, to be 
used for on-line test of a processor or a SoC including a 
processor core. 

Given the constraints in its access (a ROB is a FIFO buffer) 
it is not possible to straightforwardly adopt a March algorithm. 

Therefore, the proposed algorithm is based on a sequence of 
operations, allowing to test both single- and double-cell faults. 
The algorithm is particularly suitable for a test performed 
during the operational phase, since it can be executed both as a 
whole, or split in small independent pieces.  

The algorithm correctness has been validated resorting to 
the SimpleScalar simulator, while its fault coverage capabilities 
with respect to the major fault types have been first evaluated 
theoretically (working on the required fault primitives), and 
then experimentally (resorting to a memory fault simulator). 

The authors are now working towards removing the current 
limitations of the proposed algorithm and extending it to the 
test of the circuitry surrounding the ROB memory. 
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