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Abstract— The Reorder Buffer (ROB) is a key component in
superscalar processors. It enables both in-order commitment of
instructions and precise exception management even in those
architectures that support out-of-order execution. The ROB
architecture typically includes a memory array whose size may
reach several thousands of bits. Testing this array may be
important to guarantee the correct behavior of the processor.
Proprietary BIST solutions typically adopted by manufacturers
for end-of-production test are not always suitable for on-line test.
In fact, they require the usage of test infrastructures that may be
expensive, or may not be accessible and/or documented. This
paper proposes an alternative solution, based on a functional
approach, which has been validated resorting to both a

architectural and a memory fault simulator.
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performance  are  pushing
microarchitectures inte™¢

(on-line test) are mandatory requir
are enforced by several stand y
26262 and DO-254) that spe
must be attained with res
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1¢ board or in the form of a
ional test approaches, also
referred to as Self-Test (SBST) methods [3],
may represent mising solution. A functional test applies
stimuli to the sysfem under test only resorting to its functional
inputs, and obserwes the system’s behavior only resorting to its
functional outputs.

System-on-Chi

Functional test methods have several advantages when
compared to traditional Design for Testability (DfT) or Built-In
Self-Test (BIST) techniques. First, they do not require any
modification of the processor design. This is an important
characteristic when third-party processor cores are integrated
into a SoC. Second, since functional tests exercise the unit
under test exactly in the same conditions used during normal
behavior, they easily enable at-speed testing while avoiding
over-testing. Finally, testing a processor-based system during
the operational phase using DfT techniques may be complex.
Detailed information about available DfT structures is often

missing. Moreover, these structures might be not accessible
during operational conditions or, even if they can be accessed
and activated in this phase, their usage may be prevented by
resource and time constraints imposed to the test.

While providing several advantages, the main drawback of

ively writing programs
], special modules (e.g.,
, of Jcache memories [7]), and

- ' s on the on-line test of the Reorder Buffer
witl ’ uperscalar processors. The ROB plays
le within processors supporting out-of-order
. cution. It guarantees that instruction

itment (i.e., the phase in which the result produced by the
tion is written to its destination) is performed in-order,

plemented in rather different ways in
gctures, for the purpose of this paper
adopted by the widely spread
1.9]. The ROB is based on a memory
entries. Each entry corresponds to an
waiting for being committed. Since the

ernal memory capacity is usually in the order of some
ahds of bits.

In this paper we propose a test algorithm easily translatable
into a program suitable for the on-line test of the ROB internal
memory. The overall idea is to map the set of fault primitives
required to sensitize and detect typical memory fault types [10]
to a proper sequence of processor instructions. One of the
major contributions of the paper is in describing how to
perform read and write operations on the ROB memory words
following a predefined order, thus enabling the translation of a
generic March algorithm into a corresponding test program.
The full set of single-cell and double-cell memory faults
typically considered in traditional memory testing approaches
are considered. The complexity of the resulting test algorithm
grows quadratically with the ROB size. Nevertheless, since the
ROB size is usually limited, the test program is still limited in
terms of size and duration. A major characteristic of the
resulting test program is also that it does not need to be
executed as a whole. In fact, it can be split in fragments to be
executed independently at different times (i.e., with reduced
cost in terms of stopping and resuming the test, as well as



checking its results), thus better matching the strict time
constraints imposed when testing a system in its operational
environment.

The approach proposed in this paper is clearly not suitable
for the end-of-manufacturing test performed by processor
manufacturing companies, which can resort to more effective
solutions based on DfT. However, the approach may be useful
for system companies, which buy processor or SoC devices
from third companies. In this case the engineer in charge of
developing the on-line test often does not have detailed
information on the internal architecture of the processor, but
only knows its Instruction Set Architecture.

The proposed algorithm has been validated resorting to
both an architectural and a memory fault simulator. We also
report results allowing to evaluate the cost of the approach in
terms of test program size and duration.

The paper is organized as follows: section 2 reports some
background about the ROB architecture and behavior. Section
3 describes the functional approach we propose for generating
suitable programs for its test; section 4 reports some data about
the experiments we performed. Section 5 draws some
conclusions.

II.  BACKGROUND

existing in almost every executed progra
processors support out-of-order executio i
combination with dynamic scheduhng, el
each instruction as soon as the require

be easily implemented
speculative executior

g: (i) an id of the 1nstruct1on (ii) the
rd. (i 1) the target where this value must be
written when the structlon is committed (correspondmg either
to a register or 1 a memory location). The ROB is accessed
during different phases of the execution of an instruction:

e During the issue phase, the processor assigns the
instruction to a free ROB entry. If no entry is available a
stall arises. ROB entries are assigned to instructions
following the instruction issue order. The ROB is therefore
organized as a First-In First-Out (FIFO) buffer, whose key
is the order of each entry (i.e., instruction) in the code.

e  When an instruction completes its execution, the produced
result is written in the value field of the associated ROB
entry together with all information items required to
identify the target location.

e At each clock cycle, the circuitry associated to the ROB
checks whether the oldest instructions in the ROB
(according to the issue order) have completed their
execution. If yes, the instructions are committed, i.e., the
produced values are written to the assigned target
locations.

e When a conditional branch instruction is executed, the
result is compared with the branch prediction. If a mis-
prediction occurs, all instructions following the branch and
already allocated in the ROB are aborted and removed
from the ROB.

e  When the input operand of an instruction is produced by
another instruction that has been executed but not yet
committed, the corresponding value is stored in the ROB,
only. To avoid a stall the processor reads this value from
the ROB, d

1 forwards it to

ad ofthe Register File. It the

mly refer to agtess @
issue phase, by allosating_€ntfies to instructions
ing” to the FI chayism. Moreover, issued

ta from the ROB if the data
mitted instructions;

structions may zqqd i
were produced by\ot yet

exceution phase of a generic instruction
i data into the value field (and others) of
try associated to the X;

it phase, to read the value field and write its
\lue in the instruction target location.

ing here that the ROB is typically used
y'the issue, execution and completion of
le same clock cycle For this reason a

OSED APPROACH

ording to Section II, the ROB is composed of several
entries, each comprising different fields. For the purpose of this
paper we will focus on a specific field, namely the value field,
and we will propose an algorithm for its functional testing. The
other fields, whose number and role often change depending on
the target processor, can be tested by extending the approach in
a rather straightforward manner.

Let us denote by n the number of entries of the ROB and by
m the number of bits composing the value field. Using this
notation the ROB internal memory can be modeled as a n x m
memory array whose test is the target of this paper.

The proposed test algorithm implements a deterministic
sequence of read/write operations on the ROB entries. In the
case of the value field, a write operation arises when the
instruction associated to the entry completes its execution: in
this stage, the produced value is written in the corresponding
ROB entry. Write operations are therefore executed following
the order in which instructions complete their execution. The
value written in each ROB entry is read when the



corresponding instruction is committed. The instruction result
is written to the target destination (either a register or a
memory location) and the instruction is removed from the
ROB, thus freeing the corresponding entry. Since the ROB
implements a FIFO strategy, the order of read operations
strictly follows the order instructions are issued and assigned to
the ROB.

The value field of the ROB entry associated to an
instruction Y whose execution has been completed but still not
committed is also read when an instruction X requires an
operand produced by Y.

In the following we will first recall the test conditions
required to detect single-cell and double-cell (i.e., coupling)
faults in a memory, and then will outline an algorithm able to
reproduce these test conditions on the ROB. For sake of
simplicity, in this section we will assume that the ROB
memory is only accessed by one instruction per stage per clock
cycle. However, this assumption can be removed without
impacting the effectiveness of the proposed algorithm.

A. Single- and double-cell fault test requirements

and with 4 and 7 the corresponding complemented p,
From the literature we can eas1ly derive the operatio
as Fault Primitives, or FPs') required to test fault
single cells in the memory [8]. They are summar

Let us denote by 4 and ¥V two m-bit test patterns for th grd M) <4 Vi v/ V>
aggressor entry and the victim entries of the ROB, respectively,
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Secondly, ¥ va ddress faults affecting pairs of memory

cells (denoted as @ggressor and victim, respectively) and report
the corresponding\FPs (see Table II).

Looking at Table II, double-cell faults (usually denoted as
coupling faults) can be grouped in two categories based on the
type of sensitizing operation:

1. Group 1: faults that are sensitized by an operation/state on
the aggressor cell and a state on the victim cell (CFds,
CFst)

! FP=<S/F/R> where S is the sequence of operations required to
sensitize the fault, F is the observed faulty behavior that deviates
from the correct memory behavior and R, in case of a read operation,
is the read result.

2. Group 2: faults that are sensitized by a state of the
aggressor cell and an operation on the victim cell (CFtr,
CFwd, CFrd, CFir, CFdrd).

TABLE I1. DOUBLE-CELL FAULT PRIMITIVES
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i @ults of group 1 are: (1) initialize the

given value, (2) sensitize the fault by
ree p0551ble sensmzmg operations (a non-

read out the content of the victim cells to check if some
changed their status.

The conditions to test faults of group 2 are: (1) initialize the
victim cells to a given value, (2) initialize the aggressor cell to
a given value; (3) for each victim cell sensitize the fault by
performing the three possible sensitizing operations (a non-
transition write, a transition write and a read) followed by (4) a
read operation to detect the fault.

B. Test algorithm

Considering an n entries ROB, the test conditions defined
by the considered FPs can be matched by a test program
implementing the following sequence of operations, denoted as
basic building block (BBB).

1. Write ¥/ 7 in all victim entries and then 4/ 4 in the
aggressor entry;

2. Write ¥/ V7 in all victim entries and then 4/ 4 in the
aggressor entry;



3. Read the content of all entries starting from the aggressor
to detect faults of group 1;

4. Write v/ 7V in all victim entries and then 4/ 4 in the
aggressor entry;

5. Read all victim entries two times (if possible) to detect all
faults of group 2.

To prove that BBB is able to detect the FPs introduced in
Section III.A we focus on double-cell faults reported in Table
II. Detection conditions for single-cell faults are in general
simpler and included in those required for double-cell faults
[10]. Let us consider faults of group 1 (i.e., CFds, CFst). To
sensitize these faults we need first to initialize the ROB entries.
This is performed in step 1 of BBB by writing ¥/ 7 in all
victim entries and then 4/ 4 in the aggressor entry. Step 2 of
BBB is the first step in which faults are sensitized. First all
victim entries are again initialized with ¥/ 7 . These redundant
write operations are required since the ROB applies a FIFO
strategy. Therefore, to write a new value in the aggressor entry
that was the last written during step 1 we need first to write all
victim entries. Secondly, the aggressor cell is written with
A/ 4 to sensitize the faults. The sensitized FPs depend on the
actual patterns written in the entries during steps 1 and 2. If fo
instance in both steps victim and aggressor entries
respectively written with patterns 4 and 7, FP3 of C
FP2 with non-transition write of CFst are sensitized
BBB starts reading the aggressor entry. This repre
sensitizing operation for group 1 faults
sensitize FP3 of CFds. At this point
operations have been executed. By

a
d

itry. Again this operation is
(O’policy of the ROB.

step 4 can be detected. Moreover, this operation sensitizes
CFrd, CFir and CFdrd FPs and detects CFrd, CFir FPs. The
second read operation is able to detect CFdrd FPs. In fact, in
this case the fault is sensitized by the first read but observed
only when the entry is read again.

The BBB must be executed 6 times changing the
combination of the test patterns in the victim and aggressor
cells during steps 1, 2 and 4 in order to address all selected FPs.
Finally, everything must be executed » times considering every
element of the ROB as the aggressor cell.

The main characteristic of this test algorithm is that write
instructions always follow the same order: first all victim cells

are written, followed by the aggressor cell. This behavior can
be reproduced on the ROB by forcing the processor to execute
a code fragment composed of:

e an instruction named I1 characterized by a long execution
time (e.g., DIV) and result equal to 4/ 4 ;

e n-/ instructions (named I2 to In) characterized by a short
execution time (e.g., ADD), result equal to ¥/V , and one
of the input operands corresponding to the output operand
of the previous instruction (except for the first).

For the purpose of analyzing the behavior of the ROB
during the execution of this fragment, we can identify the
following phases:

e Issue phase: all instructions of the fragment are issued. At
the end of this phase the ROB includes one entry devoted
to I1 (co nding to the aggressor en and all other
entries de to instructions 12 to Iz(£o onding to

) s that during this

the yiCtim &
e
o Execut : stru¢
1 t.before I1 finishe$, Thi
phase’12tg In rapidly i?@ish ir execution one after the

ther. As soon as mfinishes its execution, it
writes the produded(resultiiithe ROB. Immediately after,
the followingimstruction reads this value, enters execution,

and repeat amevoperation. However, instructions 12
to In ca iately commit, since they wait for the
conimi 1. During this phase each ROB cell (apart from
the one ciated to I1) undergoes a write, followed by a
gad operation due to the data dependency between
gnsecutive instructions; with the exception of the ROB
o In, where the read is not performed.
xecution of Il finishes, 11 writes its

to”In finish their

hg a hew read operation. All other instructions (12
In)Can now also commit. The values written in the
responding ROB slots are thus read and written in the
arget destinations (i.e., n-1 registers).

The above code fragment can be exploited to force the
processor to perform on the ROB the operations mandated by
the Basic Building Block.

The resulting test program can be summarized as follows:

1. execute I1 to In to initialize the ROB (step 1 of the Basic
Building Block);

2. execute Il to In to sensitize CFst and CFds that are
sensitized by operations on the aggressor cell (step 2 and 3
of the Basic Building Block);

3. execute n store instructions writing the n target registers
into memory and thus making the results of the previous
steps observable. According to the SimpleScalar model, in
the execution phase a store instruction writes into its ROB
entry the value to be moved to memory; thus, the ROB
entry value is not changed during the commit phase;



4. execute I1 to In to sensitize CFtr, CFwd, CFrd, CFir,
CFdrd that are sensitized by operations on the victim cells
(step 4 and 5 of the Basic Building Block);

5. execute n store instructions, moving the values of the n
target registers into memory;

6. repeat steps 0 to 4 six times with different values
A, A4,V/V forinstructions I1 to In

7. repeat steps 1 to 6 n times by allocating a different slot to
the “long” instruction I1 (which can be achieved by just
executing a “dummy” instruction before executing again
step 0). In this way we can test faults activated by each
possible aggressor cell.

The algorithm is completed by checking whether all the
values written into memory during the algorithm execution
comply with the expected ones. It is worth to note that the
above algorithm must not necessarily be executed as a whole,
but may be split in parts to be executed separately. In
particular, it is composed of small independent parts
(corresponding to steps 1 to 3 and 4 to 5) that can possibly be
executed at different times. This is an important characteristic
when functional test is executed in-field. In this situation, smal
time slots are periodically allocated to execute test procedur
on the system. When a test slot begins, the current state, g% th
processor is saved and then the test procedure is exec
the end of the slot the original state of the process
restored. Being suitable to be split into sm hu
valuable property for a test procedure in t
test even when small time slots are requi

The presented algorithm corre
x 6 x n’ instructions. Hence) the omplexity
proposed algorithm (j r of ins i
O(n’). Given the fact
(typically in the order of
still leads to relatively sho

ns of entries) €his

de oupling faults
12], to cover
a few more

between bits in the same ROB en
also these faults we can simpl to
steps:

. fuctions are €xecuted, writing a result
ttern X to the ROB, and

a register;

in the first step n

e the two steps are repeated substituting X with its
complement pattern X ;

e these three steps are repeated 1+log, m times, being m the
size of the value field, each time using a different data
background pattern. At the first iteration X=00=00 and
X=11211; at the second iteration X=00=11 (i.e., a word
composed of m/2 0 bits and m/2 1 bits) and X=11=200
(i.e., the opposite of X ); at the last iteration X=10=10
(i.e., a word composed of m alternated 0 and 1 bits) and
X=01201 (i.e., the opposite of X).

It is worth mentioning here that the ROB is typically used
in processors supporting the issue, execution and completion of
multiple instructions at the same clock cycle. For this reason a
ROB is typically organized as a multiple port memory, to
which multiple instructions can access concurrently from
different stages. Multiple port memories introduce a set of
additional faulty behaviors related to the presence of more than
one port to those listed in Table I and Table II. Nevertheless,
several publications [13][14] proved that March-like test
sequences like the one proposed in this paper, designed to test
single port memories, can be easily adapted to cover multi-port
specific fault models by properly selecting the port on which
operations are performed. Therefore, extending the proposed
test method also to the multi-port scenario does not represent a
significant issue.

idate the proposed apprqd
open-source proces
for computer

impléScalar can implg¢ineit B of arbitrary size
Update Unjt)or Jit-Can emulate several
1 86), it can be modified

intérnal)state of the processor, and its
in¢lude new instructions.

selected for our

order to check the correctness of the method,
C code has been modified to store some

port the characteristics of the test
ROBs of different sizes. The table

oA the number of ROB entries, the
tains the memory occupation in bytes

m. It is important to mention that we suitably set the
Simplescalar parameters in order to minimize the impact of
cache and TLB misses in terms of clock cycles. This is possible
to reach by modifying the Simplescalar configuration
parameters e.g., data cache miss/hit latencies, through a
configuration file.

TABLE IIL TEST CHARACTERISTICS FOR DIFFERENT ROB SIZES
ROB size Memory occupation Executed Time
[# entries] [# bytes] instructions [clock cycles]
8 6,32 K 1,575 2,137
16 249K 6,623 5,682

As the reader can notice, the experimental results validate
what has been reported in the paper in terms of program
complexity for 8 and 16 entries ROBs. As expected, the
number of instructions and memory occupation grows
following a quadratic trend depending on the number of entries
in the ROB. However, the program execution time does not
follow the same pace, since it mainly depends on the long




execution time instructions (called in these experiments // and
requiring 20 clock cycles) that actually only doubles in the
cases reported in Table III.

Interestingly, for ROBs composed of more than 32 entries,
the number of available general purpose registers may
represent a limitation that prevents us from applying the
proposed approach in the form proposed here. However, this
obstacle may be circumvented by also exploiting the floating-
point registers available in the processor at the expense of
slightly more complex test programs.

The fault coverage of the proposed test program has been
evaluated by modeling all operations performed on the ROB by
the proposed test algorithm into the RASTA memory fault
simulator [16]. Table IV shows the outcome of the fault
analysis considering different dimensions of the ROB.

TABLE IV. FAULT COVERAGE
ROB size Single-Cell CFst, CFds, CFtr, CFwd, CFdrd
[# entries] FPs CFrd, CFir
8 100% 100% 92.85%
16 100% 100% 96.66%
32 100% 100% 98.3%

As expected, regardless of the ROB dimensi
obtained 100% fault coverage on all instances o

coverage conditions have been
implementation of the algorithm.,
CFdrd is due to the i

overage penalty is
es, and, in general the

Buffer is a key component in modern
superscalar processors; testing the memory within this
component is therefore crucial for the correct behavior of the
processor. When resorting to DfT solutions (e.g., based on
BIST) is not possible (e.g., when the test has to be performed in
the field), the functional approach can be the only viable
alternative. This paper proposes an algorithm allowing to write
a functional program for the test of the ROB memory, to be
used for on-line test of a processor or a SoC including a
processor core.

Given the constraints in its access (a ROB is a FIFO buffer)
it is not possible to straightforwardly adopt a March algorithm.

Therefore, the proposed algorithm is based on a sequence of
operations, allowing to test both single- and double-cell faults.
The algorithm is particularly suitable for a test performed
during the operational phase, since it can be executed both as a
whole, or split in small independent pieces.

The algorithm correctness has been validated resorting to
the SimpleScalar simulator, while its fault coverage capabilities
with respect to the major fault types have been first evaluated
theoretically (working on the required fault primitives), and
then experimentally (resorting to a memory fault simulator).

The authors are now working towards removing the current
limitations of the proposed algorithm and extending it to the
test of the circuitry surrounding the ROB memory.
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