
20 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the On-line Functional Test of the Reorder Buffer Memory in Superscalar Processors / DI CARLO, Stefano;
SANCHEZ SANCHEZ, EDGAR ERNESTO; SONZA REORDA, Matteo. - STAMPA. - (2013), pp. 36-41. ((Intervento
presentato al convegno IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2013 tenutosi a Karlovy Vary nel 8-10 April 2013 [10.1109/DDECS.2013.6549785].

Original

On the On-line Functional Test of the Reorder Buffer Memory in Superscalar Processors

Publisher:

Published
DOI:10.1109/DDECS.2013.6549785

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507591 since: 2016-09-16T18:11:47Z

IEEE

On the on-l ine functional test of

the Reorder Buffer memory in

superscalar processors

Authors: Di Carlo, S. ; Sanchez, E. ; Sonza Reorda, M.

Published in the Proceedings of the IEEE 16th International Symposium on Design and Diagnostics of

Electronic Circuits & Systems (DDECS), 2013

N.B. This is a copy of the ACCEPTED version of the manuscript. The final

PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6549785

DOI: 10.1109/DDECS.2013.6549785

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6549785
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6549785
http://dx.doi.org/10.1109/DDECS.2013.6549785
http://dx.doi.org/10.1109/DDECS.2013.6549785

On the On-line Functional Test of the Reorder Buffer

Memory in Superscalar Processors

S. Di Carlo, E. Sanchez, M. Sonza Reorda

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

{stefano.dicarlo, ernesto.sanchez, matteo.sonzareorda}@polito.it

Abstract— The Reorder Buffer (ROB) is a key component in

superscalar processors. It enables both in-order commitment of

instructions and precise exception management even in those

architectures that support out-of-order execution. The ROB

architecture typically includes a memory array whose size may

reach several thousands of bits. Testing this array may be

important to guarantee the correct behavior of the processor.

Proprietary BIST solutions typically adopted by manufacturers

for end-of-production test are not always suitable for on-line test.

In fact, they require the usage of test infrastructures that may be

expensive, or may not be accessible and/or documented. This

paper proposes an alternative solution, based on a functional

approach, which has been validated resorting to both an

architectural and a memory fault simulator.

Keywords—microprocessor testing, software-based self-test,

embedded memory test, on-line test

I. INTRODUCTION

The widespread use of embedded microprocessors coupled
with the demand for increased functionality and higher
performance are pushing out-of-order superscalar
microarchitectures into the embedded microprocessor space.
This trend is also embracing safety related applications (e.g.,
the automotive, railways and aerospace domains [1][2]). For
these application domains, both accurate end-of-manufacturing
test and periodic test procedures during the operational phase
(on-line test) are mandatory requirements. These requirements
are enforced by several standards and regulations (e.g., ISO
26262 and DO-254) that specify the fault coverage figures that
must be attained with respect to permanent faults.

When considering processor-based systems, either
implemented within an electronic board or in the form of a
System-on-Chip (SoC), functional test approaches, also
referred to as Software-Based Self-Test (SBST) methods [3],
may represent a promising solution. A functional test applies
stimuli to the system under test only resorting to its functional
inputs, and observes the system’s behavior only resorting to its
functional outputs.

Functional test methods have several advantages when
compared to traditional Design for Testability (DfT) or Built-In
Self-Test (BIST) techniques. First, they do not require any
modification of the processor design. This is an important
characteristic when third-party processor cores are integrated
into a SoC. Second, since functional tests exercise the unit
under test exactly in the same conditions used during normal
behavior, they easily enable at-speed testing while avoiding
over-testing. Finally, testing a processor-based system during
the operational phase using DfT techniques may be complex.
Detailed information about available DfT structures is often

missing. Moreover, these structures might be not accessible
during operational conditions or, even if they can be accessed
and activated in this phase, their usage may be prevented by
resource and time constraints imposed to the test.

While providing several advantages, the main drawback of
functional test approaches is the difficulty in devising test
programs matching existing constraints in terms of duration,
size, and fault coverage. Starting from the first attempt to
develop functional tests for microprocessors proposed by
Thatte et al. in 1980 [4], a rich literature has been produced.
Publications propose methods for effectively writing programs
for the test of whole microprocessors [5], special modules (e.g.,
branch prediction units [6], or cache memories [7]), and
peripherals components [8].

This paper focuses on the on-line test of the Reorder Buffer
(ROB) existing within superscalar processors. The ROB plays
an important role within processors supporting out-of-order
speculative execution. It guarantees that instruction
commitment (i.e., the phase in which the result produced by the
instruction is written to its destination) is performed in-order,
and that exceptions are managed in a precise manner [9]. Since
the ROB function is implemented in rather different ways in
different processor architectures, for the purpose of this paper
we selected the solution adopted by the widely spread
SimpleScalar simulator [15]. The ROB is based on a memory
block organized in entries. Each entry corresponds to an
executed instruction waiting for being committed. Since the
size of the ROB is usually in the order of some tens of entries,
its internal memory capacity is usually in the order of some
thousands of bits.

In this paper we propose a test algorithm easily translatable
into a program suitable for the on-line test of the ROB internal
memory. The overall idea is to map the set of fault primitives
required to sensitize and detect typical memory fault types [10]
to a proper sequence of processor instructions. One of the
major contributions of the paper is in describing how to
perform read and write operations on the ROB memory words
following a predefined order, thus enabling the translation of a
generic March algorithm into a corresponding test program.
The full set of single-cell and double-cell memory faults
typically considered in traditional memory testing approaches
are considered. The complexity of the resulting test algorithm
grows quadratically with the ROB size. Nevertheless, since the
ROB size is usually limited, the test program is still limited in
terms of size and duration. A major characteristic of the
resulting test program is also that it does not need to be
executed as a whole. In fact, it can be split in fragments to be
executed independently at different times (i.e., with reduced
cost in terms of stopping and resuming the test, as well as

checking its results), thus better matching the strict time
constraints imposed when testing a system in its operational
environment.

The approach proposed in this paper is clearly not suitable
for the end-of-manufacturing test performed by processor
manufacturing companies, which can resort to more effective
solutions based on DfT. However, the approach may be useful
for system companies, which buy processor or SoC devices
from third companies. In this case the engineer in charge of
developing the on-line test often does not have detailed
information on the internal architecture of the processor, but
only knows its Instruction Set Architecture.

The proposed algorithm has been validated resorting to
both an architectural and a memory fault simulator. We also
report results allowing to evaluate the cost of the approach in
terms of test program size and duration.

The paper is organized as follows: section 2 reports some
background about the ROB architecture and behavior. Section
3 describes the functional approach we propose for generating
suitable programs for its test; section 4 reports some data about
the experiments we performed. Section 5 draws some
conclusions.

II. BACKGROUND

In order to better exploit the Instruction Level Parallelism
existing in almost every executed program, superscalar
processors support out-of-order execution. This approach, in
combination with dynamic scheduling, enables the execution of
each instruction as soon as the required functional unit is free
and the values of the input operands are available. However,
this mechanism can affect the correctness of the computation
(e.g., due to Write After Write hazards and imprecise exception
handling).

The ROB, or other structures playing a similar role in other
processors, is mainly intended to guarantee that, despite the
out-of-order execution, the completion of each instruction (in
particular the phase in which results are written in the target
destination) is performed in-order. In this way, Write After
Write hazards cannot arise and precise exception handling can
be easily implemented. The ROB also plays a key role in
speculative execution [11].

A ROB is a memory organized in entries, each composed
of several fields including: (i) an id of the instruction, (ii) the
value it produced, and (iii) the target where this value must be
written when the instruction is committed (corresponding either
to a register or to a memory location). The ROB is accessed
during different phases of the execution of an instruction:

• During the issue phase, the processor assigns the
instruction to a free ROB entry. If no entry is available a
stall arises. ROB entries are assigned to instructions
following the instruction issue order. The ROB is therefore
organized as a First-In First-Out (FIFO) buffer, whose key
is the order of each entry (i.e., instruction) in the code.

• When an instruction completes its execution, the produced
result is written in the value field of the associated ROB
entry together with all information items required to
identify the target location.

• At each clock cycle, the circuitry associated to the ROB
checks whether the oldest instructions in the ROB
(according to the issue order) have completed their
execution. If yes, the instructions are committed, i.e., the
produced values are written to the assigned target
locations.

• When a conditional branch instruction is executed, the
result is compared with the branch prediction. If a mis-
prediction occurs, all instructions following the branch and
already allocated in the ROB are aborted and removed
from the ROB.

• When the input operand of an instruction is produced by
another instruction that has been executed but not yet
committed, the corresponding value is stored in the ROB,
only. To avoid a stall the processor reads this value from
the ROB, instead of the Register File. It then forwards it to
the functional unit, which can thus start its execution.

To summarize, access to the ROB is performed (for sake of
simplicity we mainly refer to access to the value field):

• In the issue phase, by allocating entries to instructions
according to the FIFO mechanism. Moreover, issued
instructions may read input data from the ROB if the data
were produced by not yet committed instructions;

• At the end of the execution phase of a generic instruction
X, to write output data into the value field (and others) of
the ROB entry associated to the X;

• In the commit phase, to read the value field and write its
value in the instruction target location.

It is worth mentioning here that the ROB is typically used
in processors supporting the issue, execution and completion of
multiple instructions at the same clock cycle. For this reason a
ROB is typically organized as a multiple-port memory, to
which multiple instructions can access concurrently from
different stages.

III. PROPOSED APPROACH

According to Section II, the ROB is composed of several
entries, each comprising different fields. For the purpose of this
paper we will focus on a specific field, namely the value field,
and we will propose an algorithm for its functional testing. The
other fields, whose number and role often change depending on
the target processor, can be tested by extending the approach in
a rather straightforward manner.

Let us denote by n the number of entries of the ROB and by
m the number of bits composing the value field. Using this
notation the ROB internal memory can be modeled as a n × m
memory array whose test is the target of this paper.

The proposed test algorithm implements a deterministic
sequence of read/write operations on the ROB entries. In the
case of the value field, a write operation arises when the
instruction associated to the entry completes its execution: in
this stage, the produced value is written in the corresponding
ROB entry. Write operations are therefore executed following
the order in which instructions complete their execution. The
value written in each ROB entry is read when the

corresponding instruction is committed. The instruction result
is written to the target destination (either a register or a
memory location) and the instruction is removed from the
ROB, thus freeing the corresponding entry. Since the ROB
implements a FIFO strategy, the order of read operations
strictly follows the order instructions are issued and assigned to
the ROB.

The value field of the ROB entry associated to an
instruction Y whose execution has been completed but still not
committed is also read when an instruction X requires an
operand produced by Y.

In the following we will first recall the test conditions
required to detect single-cell and double-cell (i.e., coupling)
faults in a memory, and then will outline an algorithm able to
reproduce these test conditions on the ROB. For sake of
simplicity, in this section we will assume that the ROB
memory is only accessed by one instruction per stage per clock
cycle. However, this assumption can be removed without
impacting the effectiveness of the proposed algorithm.

A. Single- and double-cell fault test requirements

Let us denote by A and V two m-bit test patterns for the

aggressor entry and the victim entries of the ROB, respectively,
and with A and V the corresponding complemented patterns.

From the literature we can easily derive the operations (denoted
as Fault Primitives, or FPs

1
) required to test faults affecting

single cells in the memory [8]. They are summarized in Table I.

TABLE I. SINGLE-CELL FAULT PRIMITIVES

Fault FP Fault Model

SF (1) < A / A / − > (2) < A / A / − > State fault

TF (1) < AwA / A / − > (2) < Aw
A

/ A / − > Transition

fault

WDF (1) < Aw
A

/ A / − > (2) < AwA / A / − >
Write

destructive

fault

RDF (1) < Ar
A

/ A / A > (2) < ArA / A / A >
Read

destructive

Fault

IRF (1) < Ar
A

/ A / A > (2) < ArA / A / A >
Incorrect

read-fault

DRDF (1) < Ar
A

/ A / A > (2) < ArA / A / A >
Deceptive

RDF

Secondly, we can address faults affecting pairs of memory
cells (denoted as aggressor and victim, respectively) and report
the corresponding FPs (see Table II).

Looking at Table II, double-cell faults (usually denoted as
coupling faults) can be grouped in two categories based on the
type of sensitizing operation:

1. Group 1: faults that are sensitized by an operation/state on
the aggressor cell and a state on the victim cell (CFds,
CFst)

1 FP=<S/F/R> where S is the sequence of operations required to

sensitize the fault, F is the observed faulty behavior that deviates

from the correct memory behavior and R, in case of a read operation,

is the read result.

2. Group 2: faults that are sensitized by a state of the
aggressor cell and an operation on the victim cell (CFtr,
CFwd, CFrd, CFir, CFdrd).

TABLE II. DOUBLE-CELL FAULT PRIMITIVES

Fault FP Fault Model

CFst (1) < A;V /V / − > (2) < A;V /V / − > State

coupling
fault (3) < A;V /V / − > (4) < A;V /V / − >

CFds
(1)

< xw
y
;V /V / − >

 (2)
< xw

y
;V /V / − >

Disturb

coupling
fault

(3)
< xr

x
;V / V / − >

 (4)
< xw

x
;V / V / − >

CFtr
(1)

< A;Vw
V

/V / − >

(2) < A;Vw
V

/V / − > Transition

coupling
fault (3) < A;Vw

V
/ V / − > (4) < A;Vw

V
/V / − >

CFwd (1) < A;Vw
V

/V / − > (2) < A;Vw
V

/V / − > Write
destructive

coupling
fault

(3) < A;Vw
V

/V / − > (4) < A;Vw
V

/ V / − >

CFrd (1) < A;Vr
V

/V / V > (2) < A;Vr
V

/ V / V > Read
destructive

coupling
fault

(3) < A;Vr
V

/V /V > (4) < A;Vr
V

/V /V >

CFir (1) < A;Vr
V

/V /V > (2) < A;Vr
V

/ V /V > Incorrect
read
coupling
fault

(3) < A;Vr
V

/V / V > (4) < A;Vr
V

/V / V >

CFdr
d

(1) < A;Vr
V

/V / V > (2) < A;Vr
V

/ V / V > Deceptive
read

destructive
CF

(3) < A;Vr
V

/V /V > (4) < A;Vr
V

/V /V >

The conditions to test faults of group 1 are: (1) initialize the
victim cells to a given value, (2) sensitize the fault by
performing the three possible sensitizing operations (a non-
transition write, a transition write and a read) on the aggressor
cell, (3) read out the content of the victim cells to check if some
of them changed their status.

The conditions to test faults of group 2 are: (1) initialize the
victim cells to a given value, (2) initialize the aggressor cell to
a given value; (3) for each victim cell sensitize the fault by
performing the three possible sensitizing operations (a non-
transition write, a transition write and a read) followed by (4) a
read operation to detect the fault.

B. Test algorithm

Considering an n entries ROB, the test conditions defined
by the considered FPs can be matched by a test program
implementing the following sequence of operations, denoted as
basic building block (BBB).

1. Write V / V in all victim entries and then A / A in the

aggressor entry;

2. Write V / V in all victim entries and then A / A in the

aggressor entry;

3. Read the content of all entries starting from the aggressor
to detect faults of group 1;

4. Write V / V in all victim entries and then A / A in the

aggressor entry;

5. Read all victim entries two times (if possible) to detect all
faults of group 2.

To prove that BBB is able to detect the FPs introduced in
Section III.A we focus on double-cell faults reported in Table
II. Detection conditions for single-cell faults are in general
simpler and included in those required for double-cell faults
[10]. Let us consider faults of group 1 (i.e., CFds, CFst). To
sensitize these faults we need first to initialize the ROB entries.
This is performed in step 1 of BBB by writing V / V in all

victim entries and then A / A in the aggressor entry. Step 2 of
BBB is the first step in which faults are sensitized. First all
victim entries are again initialized with V / V . These redundant

write operations are required since the ROB applies a FIFO
strategy. Therefore, to write a new value in the aggressor entry
that was the last written during step 1 we need first to write all
victim entries. Secondly, the aggressor cell is written with
A / A to sensitize the faults. The sensitized FPs depend on the

actual patterns written in the entries during steps 1 and 2. If for
instance in both steps victim and aggressor entries are
respectively written with patterns A and V , FP3 of CFst and

FP2 with non-transition write of CFst are sensitized. Step 3 of
BBB starts reading the aggressor entry. This represents the last
sensitizing operation for group 1 faults and is required to
sensitize FP3 of CFds. At this point all possible sensitizing
operations have been executed. By reading out all victim
entries it is possible to detect if any fault occurred.

The remaining two steps of BBB are required to address
faults of group 2 (i.e., CFtr, CFwd, CFrd, CFir, CFdrd). All
these faults are sensitized by a state of the aggressor entry and
an operation on the victim entry. When reaching step 4 the
memory is already initialized. By performing a write operation
on all victim entries FPs belonging to CFtr and CFwd models
can be sensitized. Again the specific sensitized FP depends on
the applied test patterns. If the aggressor entry was initialized
with A , the victim entries were initialized with V and a w

V

operation is performed on each victim, FP4 of CFtr
(< A;Vw

V
/V / − >) is sensitized. Step 4 terminates with a write

operation on the aggressor entry. Again this operation is
required to cope with the FIFO policy of the ROB.

In the last step of the BBB (step 5) all victim cells are read
2 times. With the first read operation faults sensitized during
step 4 can be detected. Moreover, this operation sensitizes
CFrd, CFir and CFdrd FPs and detects CFrd, CFir FPs. The
second read operation is able to detect CFdrd FPs. In fact, in
this case the fault is sensitized by the first read but observed
only when the entry is read again.

The BBB must be executed 6 times changing the
combination of the test patterns in the victim and aggressor
cells during steps 1, 2 and 4 in order to address all selected FPs.
Finally, everything must be executed n times considering every
element of the ROB as the aggressor cell.

The main characteristic of this test algorithm is that write
instructions always follow the same order: first all victim cells

are written, followed by the aggressor cell. This behavior can
be reproduced on the ROB by forcing the processor to execute
a code fragment composed of:

• an instruction named I1 characterized by a long execution
time (e.g., DIV) and result equal to A / A ;

• n-1 instructions (named I2 to In) characterized by a short
execution time (e.g., ADD), result equal to V / V , and one

of the input operands corresponding to the output operand
of the previous instruction (except for the first).

For the purpose of analyzing the behavior of the ROB
during the execution of this fragment, we can identify the
following phases:

• Issue phase: all instructions of the fragment are issued. At
the end of this phase the ROB includes one entry devoted
to I1 (corresponding to the aggressor entry), and all other
entries devoted to instructions I2 to In (corresponding to
the victim entries).

• Execute phase: the short instructions I2 to In finish their
execution before I1 finishes. This means that during this
phase I2 to In rapidly finish their execution one after the
other. As soon as one of them finishes its execution, it
writes the produced result in the ROB. Immediately after,
the following instruction reads this value, enters execution,
and repeats the same operation. However, instructions I2
to In cannot immediately commit, since they wait for the
commit of I1. During this phase each ROB cell (apart from
the one associated to I1) undergoes a write, followed by a
read operation due to the data dependency between
consecutive instructions; with the exception of the ROB
cell corresponding to In, where the read is not performed.
When at last the execution of I1 finishes, I1 writes its
result to the associated ROB slot.

• Commit phase: when finally I1 completes its execution, it
commits. The value written in the corresponding ROB
entry is read and written in the target destination, thus
executing a new read operation. All other instructions (I2
to In) can now also commit. The values written in the
corresponding ROB slots are thus read and written in the
target destinations (i.e., n-1 registers).

The above code fragment can be exploited to force the
processor to perform on the ROB the operations mandated by
the Basic Building Block.

The resulting test program can be summarized as follows:

1. execute I1 to In to initialize the ROB (step 1 of the Basic
Building Block);

2. execute I1 to In to sensitize CFst and CFds that are
sensitized by operations on the aggressor cell (step 2 and 3
of the Basic Building Block);

3. execute n store instructions writing the n target registers
into memory and thus making the results of the previous
steps observable. According to the SimpleScalar model, in
the execution phase a store instruction writes into its ROB
entry the value to be moved to memory; thus, the ROB
entry value is not changed during the commit phase;

4. execute I1 to In to sensitize CFtr, CFwd, CFrd, CFir,
CFdrd that are sensitized by operations on the victim cells
(step 4 and 5 of the Basic Building Block);

5. execute n store instructions, moving the values of the n
target registers into memory;

6. repeat steps 0 to 4 six times with different values
A , A , V / V for instructions I1 to In

7. repeat steps 1 to 6 n times by allocating a different slot to
the “long” instruction I1 (which can be achieved by just
executing a “dummy” instruction before executing again
step 0). In this way we can test faults activated by each
possible aggressor cell.

The algorithm is completed by checking whether all the
values written into memory during the algorithm execution
comply with the expected ones. It is worth to note that the
above algorithm must not necessarily be executed as a whole,
but may be split in parts to be executed separately. In
particular, it is composed of small independent parts
(corresponding to steps 1 to 3 and 4 to 5) that can possibly be
executed at different times. This is an important characteristic
when functional test is executed in-field. In this situation, small
time slots are periodically allocated to execute test procedures
on the system. When a test slot begins, the current state of the
processor is saved and then the test procedure is executed. At
the end of the slot the original state of the processor is finally
restored. Being suitable to be split into small chunks is a
valuable property for a test procedure in order to execute the
test even when small time slots are required [2].

The presented algorithm corresponds to the execution of 5

× 6 × n
2
 instructions. Hence, the total complexity of the

proposed algorithm (in terms of number of instructions) is
O(n

2
). Given the fact that the size n of the ROB is limited

(typically in the order of some tens of entries) this complexity
still leads to relatively short and fast test programs.

The proposed algorithm still does not detect coupling faults
between bits in the same ROB entry. Following [12], to cover
also these faults we can simply add to the algorithm a few more
steps:

• in the first step n instructions are executed, writing a result
value corresponding to a given pattern X to the ROB, and
then reading and moving it to a register;

• in the second step the target register values are transferred
to observable memory locations resorting to n store
instructions;

• the two steps are repeated substituting X with its
complement pattern X ;

• these three steps are repeated 1+ log2 m times, being m the

size of the value field, each time using a different data
background pattern. At the first iteration X = 00 00 and

X =11 11 ; at the second iteration X = 00 11 (i.e., a word

composed of m/2 0 bits and m/2 1 bits) and X =11 00

(i.e., the opposite of X); at the last iteration X =10 10

(i.e., a word composed of m alternated 0 and 1 bits) and

X = 01 01 (i.e., the opposite of X).

It is worth mentioning here that the ROB is typically used
in processors supporting the issue, execution and completion of
multiple instructions at the same clock cycle. For this reason a
ROB is typically organized as a multiple port memory, to
which multiple instructions can access concurrently from
different stages. Multiple port memories introduce a set of
additional faulty behaviors related to the presence of more than
one port to those listed in Table I and Table II. Nevertheless,
several publications [13][14] proved that March-like test
sequences like the one proposed in this paper, designed to test
single port memories, can be easily adapted to cover multi-port
specific fault models by properly selecting the port on which
operations are performed. Therefore, extending the proposed
test method also to the multi-port scenario does not represent a
significant issue.

IV. EXPERIMENTAL RESULTS

In order to validate the proposed approach we resorted to
SimpleScalar [9], an open-source processor architectural
simulator widely used for computer architecture research and
teaching. SimpleScalar can implement a ROB of arbitrary size
(called Register Update Unit, or RUU), it can emulate several
instruction sets (Alpha, PISA, ARM, x86), it can be modified
to monitor and store the internal state of the processor, and its
ISA is easily expandable to include new instructions.

The PISA architecture has been selected for our
experiments, and SimpleScalar has been set to use a variable
length ROB. In order to check the correctness of the method,
the SimpleScalar C code has been modified to store some
additional data during the simulation, allowing to record each
time an access is performed to the ROB. We then wrote the
code of the proposed algorithm, and checked that it performs
the expected sequence of accesses to the ROB.

In Table III, we report the characteristics of the test
programs developed for ROBs of different sizes. The table
reports in the first column the number of ROB entries, the
second column contains the memory occupation in bytes
required by the test program, the third column shows the
number of instructions, and finally, the last column indicates
the number of clock cycles required to execute the test
program. It is important to mention that we suitably set the
Simplescalar parameters in order to minimize the impact of
cache and TLB misses in terms of clock cycles. This is possible
to reach by modifying the Simplescalar configuration
parameters e.g., data cache miss/hit latencies, through a
configuration file.

TABLE III. TEST CHARACTERISTICS FOR DIFFERENT ROB SIZES

ROB size
[# entries]

Memory occupation
[# bytes]

Executed
instructions

Time
[clock cycles]

8 6,32 K 1,575 2,137

16 24,9 K 6,623 5,682

As the reader can notice, the experimental results validate
what has been reported in the paper in terms of program
complexity for 8 and 16 entries ROBs. As expected, the
number of instructions and memory occupation grows
following a quadratic trend depending on the number of entries
in the ROB. However, the program execution time does not
follow the same pace, since it mainly depends on the long

execution time instructions (called in these experiments I1 and
requiring 20 clock cycles) that actually only doubles in the
cases reported in Table III.

Interestingly, for ROBs composed of more than 32 entries,
the number of available general purpose registers may
represent a limitation that prevents us from applying the
proposed approach in the form proposed here. However, this
obstacle may be circumvented by also exploiting the floating-
point registers available in the processor at the expense of
slightly more complex test programs.

The fault coverage of the proposed test program has been
evaluated by modeling all operations performed on the ROB by
the proposed test algorithm into the RASTA memory fault
simulator [16]. Table IV shows the outcome of the fault
analysis considering different dimensions of the ROB.

TABLE IV. FAULT COVERAGE

ROB size
[# entries]

Single-Cell
FPs

CFst, CFds, CFtr, CFwd,
CFrd, CFir

CFdrd

8 100% 100% 92.85%

16 100% 100% 96.66%

32 100% 100% 98.38%

As expected, regardless of the ROB dimension, we
obtained 100% fault coverage on all instances of single-cell
faults and double-cell faults with the exception of CFdrd that
was not fully covered. This confirms that all requested
coverage conditions have been respected during the
implementation of the algorithm. The not-full coverage of
CFdrd is due to the impossibility of performing two
consecutive read operations on all victim cells of the buffer. As
reported in Section III our test program first reads each entry of
the ROB with the exception of the last entry since each short
instruction uses as operand the outcome of the previous
instruction that is stored in the ROB. All entries (including the
last one) are then read again during the commit phase when the
content of the ROB is written in the target location. Therefore,
the CFdrd sensitizing condition (i.e., two consecutive reads) is
not respected for the last entry of the ROB, preventing a 100%
coverage of this type of faults. This coverage penalty is
mitigated when the ROB size increases, and, in general the
overall coverage figure can be considered satisfactory even for
the smaller ROB size.

V. CONCLUSIONS

The Reorder Buffer is a key component in modern
superscalar processors; testing the memory within this
component is therefore crucial for the correct behavior of the
processor. When resorting to DfT solutions (e.g., based on
BIST) is not possible (e.g., when the test has to be performed in
the field), the functional approach can be the only viable
alternative. This paper proposes an algorithm allowing to write
a functional program for the test of the ROB memory, to be
used for on-line test of a processor or a SoC including a
processor core.

Given the constraints in its access (a ROB is a FIFO buffer)
it is not possible to straightforwardly adopt a March algorithm.

Therefore, the proposed algorithm is based on a sequence of
operations, allowing to test both single- and double-cell faults.
The algorithm is particularly suitable for a test performed
during the operational phase, since it can be executed both as a
whole, or split in small independent pieces.

The algorithm correctness has been validated resorting to
the SimpleScalar simulator, while its fault coverage capabilities
with respect to the major fault types have been first evaluated
theoretically (working on the required fault primitives), and
then experimentally (resorting to a memory fault simulator).

The authors are now working towards removing the current
limitations of the proposed algorithm and extending it to the
test of the circuitry surrounding the ROB memory.

REFERENCES

[1] I. Bate, P. Conmy, T. Kelly and J. McDermid, «Use of Modern
Processors in Safety-Critical Applications», Computer Journal, vol. 44,
no. 6, pp. 531-543, 2001.

[2] A. Benso et al., «Software-Based Self-Test for Reliable Applications in
Railway Systems». In: Railway Safety, Reliability and Security:
Technologies and Systems Engineering / Francesco Flammini. IGI
Global, Hershey (PA), pp. 198-220. ISBN 9781466616431.

[3] L. Chen and S. Dey, «Software-Based Self-Testing Methodology for
Processor Cores», IEEE Trans. on Computer-Aided Design, vol. 20, n. 3,
pp. 369 - 380 , 2001.

[4] S.M. Thatte and J. A. Abraham, «Test Generation for Microprocessors»,
IEEE Trans. on Computers, vol. 29, n. 6, pp. 429-441, 1980.

[5] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Sonza Reorda,
«Microprocessor Software-Based Self-Testing», IEEE DESIGN & TEST
OF COMPUTERS, vol. 27, n. 3, pp. 4-19, 2010.

[6] E. Sanchez et al., «On the Functional Test of Branch Prediction Units
based on Branch History Table», in 19th IFIP/IFEE International
Conference on Very Large Scale Integration and SoC, 2011.

[7] S. Di Carlo, P. Prinetto and A. Savino, «Software-Based Self-Test of
Set-Associative Cache Memories», IEEE Transactions on Computers,
vol. 60, n. 7, pp. 1030 - 1044 , 2011.

[8] A. Apostolakis et al., «Test Program Generation for Communication
Peripherals in Processor-Based SoC Devices», IEEE Design & Test of
Computers, vol. 26, n. 2, pp. 52-63, 2009.

[9] J. L. Hennessy and D. A. Patterson, «Computer Architecture: A
Quantitative Approach», Morgan Kaufmann, 2011.

[10] S. Di Carlo e P. Prinetto, «Models in Memory Testing», Springer, 2010.

[11] M.F. Younis, T.J. Marlowe, A.D. Stoyen, G. Tsai, «Statically safe
speculative execution for real-time systems», IEEE. Trans. on Software
Engineering, vol. 25, no. 5, pp. 701-721, 1999.

[12] A.J. Van de Goor, I.B.S. Tlili, S. Hamdioui, «Converting March tests for
bit oriented memories into tests for word-oriented memories»,
International Workshop on Memory Technology, Design and Testing,
pp. 46-52, 1998.

[13] S. Hamdioui, «Testing Multiple Port Memories: Theory and Practice»,
PhD Dissertation, Delft University of Technology, Apr. 2001, ISBN 90-
9014986-4

[14] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto, «Automatic
March tests generation for multi-port SRAMs», 3rd IEEE International
Workshop on Electronic Design, Test and Applications, 2006.

[15] [Online]. Available: http://www.simplescalar.com/.

[16] A. Benso et al., «Specification and Design of a New Memory Fault
Simulator,» in IEEE 11th Asian Test Symposium, pp.92-97, 2002.

