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Given a Poisson process on a bounded interval, its random geometric graph is the graph whose
vertices are the points of the Poisson process, and edges exist between two points if and only if their
distance is less than a fixed given threshold. We compute explicitly the distribution of the number
of connected components of this graph. The proof relies on inverting some Laplace transforms.

1. Motivation

As technology goes on [1–3], one can expect a wide expansion of the so-called sensor networks.
Such networks represent the next evolutionary step in building, utilities, industry, home,
agriculture, defense, and many other contexts [4].

These networks are built upon a multitude of small and cheap sensors which are
devices with limited transmission capabilities. Each sensor monitors a region around itself by
measuring some environmental quantities (e.g., temperature, humidity), detecting intrusion
and so forth, and broadcasts its collected information to other sensors or to a central node.
The question of whether information can be shared among the whole network is then of
crucial importance. Mathematically speaking, sensors can be abstracted as points in R2, R3,
or a manifold. The region a sensor monitors is represented by a circle centered at the location
of the sensor. In what follows, it is assumed that the broadcast radius, that is, the distance
at which a sensor can communicate with another sensor, is equal to the monitoring radius.
Two questions are then of interest: can any two sensors communicate using others as hopping
relays and is the whole region covered by all the sensors? The recent works of Ghrist and his
collaborators [5, 6] show how, in any dimension, algebraic topology can be used to answer
these questions. Their method consists in building the so-called simplicial complex associated
to the configuration of points and the radius of communication. Then, simple algebraic
computations yield the Betti numbers: the first Betti number, usually denoted as β0, is the
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number of connected components; the second number β1 is the number of coverage holes.
Thus, we have a satisfactory deployment whenever β0 = 1 and β1 = 0. Trying to pursue
their work for random settings, we quickly realized that the dimension of the ambient space
played a key role. We then first began by the analysis of dimension 1, which appeared to be
the simplest situation. In this case, there is no need of algebraic topology so we will not go
further in the description of this line of thought even if it was our first motivation.

In dimension 1, the only question of interest is that of the connexity but it can take
different forms. Imagine we are given [0, 1] as a domain in which n points {x1, . . . , xn} are
drawn. For a radius r, one can wonder whether [0, 1] ⊂ ∪i=1,...,n[xi − r, xi + r], or one can
investigate whether [xi − r, xi + r] ∩ [xi+1 − r, xi+1 + r]/= ∅ for all i = 1, . . . , n − 1. The second
situation is less restrictive since we do not impose that the frontier of the interval is to be
covered. Depending on the application, we have in mind, both questions are sensible. A
slightly different but somehow close problem is that of the circle: consider now that the points
are dispatched along a circle of unit perimeterC1 and ask again whetherC1 ⊂ ∪i=1, ..., nB(xi, r)
where B(x, r) is the 2-dimensional ball of center x and radius r. Several years ago, this
problem has been thoroughly analyzed ([7] and references therein) for a fixed number of
i.i.d. arcs over the circle. A closed form formula can be given for the probability of coverage
as a function of the number and of the common law of the arcs length. Some variations of
this problem have been investigated since then, see, for instance, [8]. More recently, in [9],
algorithms are devised to determine whether a domain can be protected from intrusion by
a “belt” of sensors (namely, a ring or the border of a rectangle). There is no performance
analysis in this work which is focused on algorithmic solutions for this special problem of
coverage. Still motivated by applications to sensor networks, [10] considers the situation
where sensors are actually placed in a plan, have a fixed radius of observation, and analyse
the connectivity of the trace of the covered region over a line. Some recent results of Kahle
[11, 12] are actually hardly linked to our results: the motivation is the same, studying the
Betti numbers of some random simplicial complexes, but the results are only asymptotic and
valid in dimension greater than 2.

Our main result is the distribution of the number of connected components for a
Poisson distribution of sensors in a bounded interval. We could not use the method of [7]
since the number of gaps does not determine the connectivity of the domain. For instance,
one may have only one gap at the “beginning” which means that all the points are pairwise
within the threshold distance and, thus, that the network is connected, or one may have only
one gap in the “middle” which means that there is a true hole of connectivity.

Actually, our method is very much related to the queueing theory. Indeed, clusters,
that is, sequence of neighboring points, are the strict analogous of busy periods—see
Section 2. As will appear below, our analysis turns down to be that of an M/D/1/1 queue
with a preemption: when a customer arrives during a service, it preempts the server, and,
since there is no buffer, the customer whowas in service is removed from the queuing system.
This analogy led us to use standard tools of queueing theory: Laplace transform and renewal
processes—see, for instance, [13, 14]. This works perfectly, and, with a bit of calculus, we can
compute all the characteristics we are interested in. It is worthwhile to note that a queueing
model (namely the M/G/∞) also appears in [10].

The paper is organized as follows: Section 2 presents the model and defines the
relevant quantities to be calculated. The calculations and analytical results are presented in
Section 3. For our situation, we find results analogous to that of [7]. In Section 4, two other
scenarios are presented, considering the number of incomplete clusters and clusters placed
in a circle. In Section 5, numerical examples are presented and analyzed.
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2. Problem Formulation

Let L > 0, we assume that we are given a Poisson process, denoted by N, of intensity λ
on [0, L]. Let (Xi, i ≥ 1) be the atoms of N. We, thus, know that the random variables,
ΔXi = Xi+1 − Xi are i.i.d. and exponentially distributed. We fix ǫ > 0. Two points, located,
respectively, at x and y, are said to be directly connected whenever |x − y| ≤ ǫ. For i < j, two
points of N, say Xi and Xj , are indirectly connected if Xl and Xl+1 are directly connected for
any l = i, . . . , j−1. A set of points directly or indirectly connected is called a cluster, a complete
cluster is a cluster which begins and endswithin [0, L]. The connectivity of thewhole network
is measured by the number of clusters.

The number of points in the interval [0, x] is denoted by Nx =
∑∞

n=0 1{Xn≤x}. The
random variable Ai given by

Ai =

⎧

⎪

⎨

⎪

⎩

X1 if i = 1,

inf
{

Xj : Xj > Ai−1, Xj −Xj−1 > ǫ
}

if i > 1,

(2.1)

represents the beginning of the ith cluster, denoted by Ci. In the same way, the end of this
same cluster, Ei, is defined by

Ei = inf
{

Xj + ǫ : Xj > Ai, Xj+1 −Xj > ǫ
}

. (2.2)

So, the ith cluster, Ci, has a number of points given by NEi
−NAi

. We define the length Bi of
Ci as Ei −Ai. The intercluster size,Di, is the distance between the end of Ci and the beginning
of Ci+1, which means that Di = Ai+1 − Ei, and ΔAi is the distance between the first points of
two consecutive clusters Ci, given by ΔAi = Ai+1 −Ai = Bi +Di.

Remark 2.1. With this set of assumptions and definitions, we can see our problem as an
M/D/1/1 preemptive queue, see Figure 1. In this nonconservative system, the service time is
deterministic and given by ǫ. When a customer arrives during a service, the served customer
is removed from the system and replaced by the arriving customer. Within this framework, a
cluster corresponds to what is called a busy period, the intercluster size is an idle time, and
Ai +Di is the length of the ith cycle.

The number of complete clusters in [0, L] corresponds to the number of connected
components β0(L) (since, in dimension 1, it coincides with the Euler characteristics of the
union of intervals, see [5]) of the network. The distance between the beginning of the first
cluster and the beginning of the (i + 1)th one is defined as Ui =

∑i
k=1 ΔAk. We also define

ΔX0 = D0 = X1. Figure 2 illustrates these definitions.

For the sake of completeness, we recall the essentials of Markov’s process theory
needed to go along, for further details we refer, for instance, to [13, 14]. In what follows,
for a process X, (FX

t , t ≥ 0) is the filtration generated by the sample-paths of X:

FX
t = σ{X(s), s ≥ t}. (2.3)
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Figure 1: Queueing representation of the model. A down arrow denotes that user i starts his service. An
up arrow indicates that user i leaves the system without having finished the service. A double up arrow
illustrates that the service of user i finishes. Beginning and end of the ith busy period, respectively, Ai and
Ei, are also shown.
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Figure 2: Definitions of the relevant quantities of the network. Distance between points, distance between
clusters, clusters size, interclusters size, beginning and ends of clusters.

Definition 2.2. A process (X(t), t ≥ 0) with values in a denumerable space E is said to be
Markov whenever

E

[

F(X(t + s)) | FX
t

]

= E[F(X(t + s)) | X(t)], (2.4)

for any bounded function F from E to R, any t ≥ 0 and s ≥ 0.
Equivalently, a process X is Markov if and only if, given the present (i.e., given X(t)),

the past (i.e., the sample-path of X before time t) and the future (i.e., the sample-path of X
after time t) of the process are independent.

Definition 2.3. A random variable τ with values in R+ ∪ {+∞} is an FX-stopping time
whenever, for any t ≥ 0, the event {τ ≤ t} belongs to FX

t .

The point is that (2.4) still holds when t is replaced by a stopping time τ : given X(τ),
the past and the future of X are independent. X is then said to be strong Markov. This
property always holds for the Markov processes with values in a denumerable space but
is not necessarily true for the Markov processes with values in an arbitrary space.
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From now on, the Markov process under consideration is N, the Poisson process of
intensity λ over [0, L].

Lemma 2.4. For any i ≥ 1, Ai and Ei are stopping times.

Proof. Let us consider the filtration FN
t = σ{Na, a ≤ t}. For i = 1, we have

{A1 ≤ t} ⇐⇒ {X1 ≤ t} ⇐⇒ {Nt ≥ 1} ∈ FN
t . (2.5)

Thus, A1 is a stopping time. For A2, we have

{A2 > t} ⇐⇒
⋃

n≥1

⎧

⎨

⎩

Nt = n,
n
⋃

j=1

⎧

⎨

⎩

ΔXj ≥ ǫ,
n
⋃

k=j+1

{ΔXk ≤ ǫ}

⎫

⎬

⎭

⎫

⎬

⎭

∈ FN
t , (2.6)

so A2 is also a stopping time. We proceed along the same line for others Ai and as well for Ei

to prove that they are stopping times.

Since N is a (strong) Markov’s process, the next corollary is immediate.

Corollary 2.5. The set {Bi, Di, i ≥ 1} is a set of independent random variables. Moreover, Di is
distributed as an exponential random variable with mean 1/λ, and the random variables {Bi, i ≥ 1}
are i.i.d.

3. Calculations

Theorem 3.1. The Laplace transform of the distribution of Bi is given by

E

[

e−sBi

]

=
λ + s

λ + se(λ+s)ǫ
· (3.1)

Proof. Since ΔXj is an exponentially distributed random variable,

E

[

e−sΔXj1{ΔXj≤ǫ}

]

=

∫ǫ

0

e−stλe−λtdt =
λ

s + λ

(

1 − e−(s+λ)ǫ
)

. (3.2)

Hence, the Laplace transform of the distribution of B1 is given by

E

[

e−sB1

]

=
∞
∑

n=1

E

[

e−sB1 ,NE1
= n
]

=
∞
∑

n=1

E

⎡

⎣e−s(
∑n−1

j=1 ΔXj+ǫ)1{ΔXn>ǫ}

n−1
∏

j=1

1{ΔXj≤ǫ}

⎤

⎦

=
∞
∑

n=1

(

E

[

e−sΔX11{ΔX1≤ǫ}

])n−1
E

[

e−sΔXn1{ΔXn>ǫ}

]

e−sǫ
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=
∞
∑

n=0

(

λ

s + λ

(

1 − e−(s+λ)ǫ
)

)n

e−sλe−sǫ

=
λ + s

seλǫesǫ + λ
.

(3.3)

Using Corollary 2.5, we have E[e−sB1] = E[e−sBi], which concludes the proof.

From this result, we can immediately calculate the Laplace transform of the distribu-
tion of ΔAi. Since ΔAi = Bi +Di, we have E[e−sΔAi] = E[e−s(Bi+Di)], and using Corollary 2.5:

E

[

e−sΔAi

]

= E

[

e−sBi

]

E

[

e−sDi

]

=
λ

λ + se(λ+s)ǫ
· (3.4)

Corollary 3.2. The Laplace transform of the distribution ofUn, for n ≥ 0, is given by

E

[

e−sUn

]

=
λn

(

λ + se(λ+s)ǫ
)n · (3.5)

Proof. We use Corollary 2.5 and Theorem 3.1 to calculate the Laplace transform of the
distribution of Un since Un =

∑n
i=1(Bi +Di):

E

[

e−sUn

]

=
n
∏

i=1

E

[

e−sBi

]

E

[

e−sDi

]

=

(

λ + s

λ + se(λ+s)ǫ

)n( λ

λ + s

)n

,

(3.6)

hence, the result.

Let us define the function pn as

pn : x ∈ R+ �−→ pn(x) = Pr
(

β0(x) = n
)

, (3.7)

that is, pn(x) is the probability of having n clusters in the interval [0, x]. Since, for all x ∈ R+,
0 ≤ pn(x) ≤ 1, the Laplace transform of pn with respect to x,

L
{

pn
}

(s) =

∫∞

0

e−sxpn(x)dx, (3.8)

is well defined.

Theorem 3.3. For any n ≥ 0, the Laplace transform of pn is given by

L
{

pn
}

(s) =
λn e(λ+s)ǫ

(

se(λ+s)ǫ + λ
)n · (3.9)
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Proof. We note that; see Figure 3,

{

β0(x) ≥ n
}

⇐⇒

⎧

⎨

⎩

{ΔX0 +Un−1 + Bn ≤ L} if n ≥ 1,

{ΔX0 < ∞} if n = 0.
(3.10)

Hence,

Pr
(

β0(x) = 0
)

= 1 − Pr(ΔX0 + B1 ≤ x), (3.11)

Pr
(

β0(x) = n
)

= Pr(ΔX0 +Un−1 + Bn ≤ x) − Pr(ΔX0 +Un + Bn+1 ≤ x). (3.12)

Let

Yn =

⎧

⎨

⎩

ΔX0 +Un−1 + Bn, if n ≥ 1,

0, if n = 0,
(3.13)

then we have

L{Pr(Yn ≤ ·)}(s) =

∫∞

0

Pr(Yn ≤ x)e−sxdx

=

∫∞

0

∫x

0

dPYn

(

y
)

e−sxdx

=
1

s
E

[

e−sYn

]

=
1

s
E

[

e−sΔX0

]

E

[

e−sUn−1

]

E

[

e−sBn

]

=
1

s

λn
(

eλǫsesǫ + λ
)n ,

(3.14)

for n ≥ 1, where we used Corollary 2.5 in the third line. For n = 0, the Laplace transform is
trivial and given by L{Pr(Y0 ≤ ·)}(s) = 1/s. Substituting (3.14) in the Laplace transform of
both sides of (3.12) yields

L
{

pn
}

(s) = L{Pr(Yn ≤ ·)}(s) − L{Pr(Yn+1 ≤ ·)}(s)

=
eǫλeǫsλn

(

eǫλseǫs + λ
)n+1

, n ≥ 0.
(3.15)

The proof is, thus, complete.

Lemma 3.4. Letm be an positive integer. For any x > 0, when ǫ → 0, E[βm0 ] → E[Nm
L ].
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Figure 3: Illustration of the condition equivalent to β0 ≥ n.

Proof. Since there is almost surely a finite number of points in [0, x], for almost all sample-
paths, there exists η > 0 such that ΔXj ≥ η for any j = 1, . . . ,Nx. Hence, for ǫ < η, β0(x) = Nx.
This implies that β0(x) tends almost surely to Nx as ǫ goes to 0. Moreover, it is immediate
by the very definition of β0(x) that β0(x) ≤ Nx. Since, for any m, E[Nm

x ] is finite, the proof
follows by dominated convergence.

Let Lit(z), z, t ∈ R, z < 1, be the polylogarithm function with parameter t, defined by

Lit(z) =
∞
∑

k=1

zk

kt
· (3.16)

For m a positive integer, consider the function of x

Mm
β0

: x �−→ E
[

βm0 (x)
]

=
∞
∑

i=0

impi(x). (3.17)

Its Laplace transform is given by

L
{

Mm
β0

}

(s) =

∫∞

0

E
[

β0(x)
m]e−sLdx. (3.18)

Corollary 3.5. Let α be defined as follows:

α =
eǫλ

λ
seǫs. (3.19)

The Laplace transform of themth moment of β0(L) is

L
{

Mm
β0

}

(s) =
α

s(α + 1)
Li−m

(

1

α + 1

)

, (3.20)

which converges, provided that α > 0.
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Proof. Applying the Laplace transform of both sides of (3.17), we get

L
{

Mm
β0

}

(s) =
∞
∑

i=1

imL
{

pi
}

(s )

=

((

eǫλ/λ
)

eǫs
)

((

eǫλ/λ
)

seǫs + 1
)

∞
∑

i=1

im
((

eǫλ/λ
)

seǫs + 1
)i

=
α

s(α + 1)
Li−m

(

1

α + 1

)

,

(3.21)

concluding the proof.

We define {m
k } as the Stirling number of second kind [15]; that is, {m

k } is the number of
ways to partition a set ofm objects into k groups. They are intimately related to polylogarithm
by the following identity (see [16]) valid for any positive integer m,

Li−m(z) =
m
∑

k=0

(−1)m+kk!
{

m+1
k+1

}

(1 − z)k+1
· (3.22)

Corollary 3.6. The mth moment of the number of clusters on the interval [0, L] is given by

Mm
β0
(L) =

m
∑

k=1

{

m
k

}(

L

ǫ
− k

)k
(

λǫe−ǫλ
)k

1{L/ǫ>k}. (3.23)

Proof. Using (3.22) in the result of Corollary 3.5, we get

L
{

Mm
β0

}

(s) =
α

s

m
∑

k=0

(−1)m+kk!
{

m+1
k+1

}

(1 + α)k

αk+1(α + 1)

=
1

s

m
∑

k=0

ck,m
1

αk
,

(3.24)

where the coefficients ck,m are integers given by

ck,m =
m
∑

j=k

(−1)jj!

{

m + 1
j + 1

}

(

j

k

)

. (3.25)

Using the following identity of the Stirling numbers [17],

m
∑

j=0

(−1)jj!

{

m + 1
j + 1

}

= 0, (3.26)
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we find that c0,m = 0 for m a positive integer. So, we can write the Laplace transform of the
moments as

L
{

Mm
β0

}

(s) =
m
∑

k=1

ck,m

(

λe−ǫλ
)k

sk+1eksǫ
, (3.27)

and apply the inverse of the Laplace transform in both sides of (3.12) to obtain

Mm
β0
(L) = L−1

⎧

⎨

⎩

m
∑

k=1

ck,m

(

λe−ǫλ
)k

sk+1eksǫ

⎫

⎬

⎭

(L)

=
m
∑

k=1

ck,m
(

λe−ǫλ
)k

L−1

{

1

sk+1eksǫ

}

(L)

=
m
∑

k=1

ck,m
k!

(L − kǫ)k
(

λe−ǫλ
)k

1{L>kǫ}.

(3.28)

According to Lemma 3.4, when ǫ → 0, we obtain

Mm
β0
(L) = E

[

Nm
L

]

=
m
∑

k=1

ck,m
k!

(Lλ)k1{L>0}. (3.29)

Hence, for any λ > 0,

m
∑

k=1

ck,m
k!

(Lλ)k1{L>0}=
m
∑

k=1

{

m
k

}

(Lλ)k1{L>0}, (3.30)

which shows that

ck,m =

{

m
k

}

k!. (3.31)

Thus, we have proved (3.23) for any positive integer m.

Theorem 3.7. For any n, L, λ, and ǫ, we have

Pr
(

β0(L) = n
)

=
1

n!

⌊L/ǫ⌋−n
∑

i=0

(−1)i

i!

(

(L − (n + i)ǫ)λe−λǫ
)n+i

. (3.32)

Proof. Since β0(L) ≤ NL and since E[esNL] is finite for any s ∈ R, we have, for any s ≥ 0,

E

[

e−sβ0(L)
]

=
∞
∑

k=0

(−1)k
sk

k!
E

[

βk0 (L)
]

. (3.33)
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Rearranging the terms of the right-hand side, and substitutingMm
β0
(L), by the result of (3.23),

we obtain

E

[

e−sβ0(L)
]

=
∞
∑

k=0

⎛

⎝(L − kǫ)k
(

λe−λǫ
)k

1{L>kǫ}

∞
∑

j=k

(−s)j

j!

{

j
k

}

⎞

⎠· (3.34)

Furthermore, it is known (see [17]) that

∞
∑

j=k

xj

j!

{

j
k

}

=
1

k!
(ex − 1)k. (3.35)

Hence,

E

[

e−sβ0(L)
]

=
∞
∑

k=0

(L − kǫ)k
(

λe−λǫ
)k

1{L>kǫ}
(e−s − 1)k

k!
· (3.36)

By inverting the Laplace transforms, we get

∞
∑

k=0

∞
∑

i=k

(−1)i

i!

(

i

n

)

δ(k−n)(kǫ − L)k
(

λe−λǫ
)k

1{L>kǫ}, (3.37)

where δa is the Dirac measure at point a. After some simple algebra, we find the expression
of the probability that an interval contains n complete clusters:

Pr
(

β0(L) = n
)

= pn(L) =
1

n!

⌊L/ǫ⌋−n
∑

i=0

(−1)i

i!

(

[L − (n + i)ǫ]λe−λǫ
)n+i

, (3.38)

concluding the proof.

Lemma 3.8. For x ≥ 0, pn(x) has the three following properties.

(i) pn(x) is differentiable.

(ii) limx→∞pn(x) = 0.

(iii) limx→∞dpn(x)/dx = 0.

Proof. Let j be a nonnegative integer. The function is obviously differentiable when x/ǫ /= j.
Besides, we have

lim
x→ ǫj+

pn(x) − lim
x→ ǫj−

pn(x) = lim
x→ ǫj+

(−1)j

j!

(

(

x −
(

n + j
)

ǫ
) 1

a

)n+j

· (3.39)

Since the right-hand term function of x is zero as well as its derivative for all j, the function
is also derivable when x/ǫ = j, which proves (i). Items (ii) and (iii) are direct consequences
of the Final Value theorem in the Laplace transform of pn and its derivative.
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The expression of pn gives us a Laplace pair between the x and s domains:

1{x≥0}

n!

⌊x/ǫ⌋−n
∑

i=0

(−1)i

i!

(

(x − (n + i)ǫ)
1

a

)n+i
L

⇐⇒
aeǫs

(aseǫs + 1)n+1
· (3.40)

We can use this relation to find the distributions of Bi and Un.

Theorem 3.9. The probability density functions of Bi and Un, denoted, respectively, by fBi
(x) and

fUn
(x), are given:

fBi(x) =

[

λe−ǫλp0(x − ǫ) + e−ǫλ
d

dx
p0(x − ǫ)

]

1{x>ǫ}, (3.41)

fUn(x) = λe−ǫλpn−1(x − ǫ)1{x>ǫ}, (3.42)

where the expressions of p0(x − ǫ) and (d/dx)p0(x − ǫ) are straightforwardly obtained from (3.32).

Proof. According to Theorem 3.1,

E

[

e−sBi

]

=
1

λ

(λ + s)
(

eλǫ/λ
)

sesǫ + 1

= λe−ǫλ
eǫλ

λ

eǫs
(

eǫλ/λ
)

seǫs + 1
e−ǫs + e−ǫλs

eǫλ

λ

eǫs
(

eǫλ/λ
)

seǫs + 1
e−ǫs

= λe−ǫλe−ǫsL
{

p0(·)
}

(s) + e−ǫλe−ǫssL
{

p0(·)
}

(s).

(3.43)

Here, using the inverse Laplace transform established in (3.40) and remembering that
p0(x

−) = 0, we get an analytical expression for fBi
(x), proving (3.41).

Proceeding in a similar fashion, we can find the distribution of Un by inverting its
Laplace transform given by Corollary 3.2 as follows:

E

[

e−sUn

]

=
1

((

eλǫ/λ
)

sesǫ + 1
)n

= λe−ǫλ
eǫλ

λ

eǫs
((

eǫλ/λ
)

seǫs + 1
)n e

−ǫs

= λe−ǫλe−ǫsL
{

pn−1(·)
}

(s).

(3.44)

We, thus, have (3.42).

We can also obtain the probability that the segment [0, L] is completely covered by the
sensors. To do this, we remember that the first point (if there is one) is capable to cover the
interval [X1 − ǫ,X1 + ǫ].
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Theorem 3.10. Let Rm,n(x) be defined as follows:

Rm,n(x) =
⌊x/ǫ⌋−1
∑

i=m

⎡

⎣

(

e−λǫ
)i+n i+n

∑

j=0

(λ[(1 − i)ǫ − x])j

j!

⎤

⎦· (3.45)

Then,

Pr([0, L] is covered) = R0,1(L) − e−λǫR0,1(L − ǫ) − e−λǫR1,0(L) + e−2λǫR1,0(L − ǫ). (3.46)

Proof. The condition of total coverage is the same as

{∀x ∈ [0, L], ∃Xi ∈ [0, L] | x ∈ [X1 − ǫ,X1 + ǫ]}, (3.47)

which means that

{[0, L] is covered} ⇐⇒ {B1 ≥ L −X1} ∩ {X1 ≤ ǫ}. (3.48)

Hence,

Pr([0, L] is covered) =

∫ǫ

0

Pr(B1 ≥ L −X1 | X1 = x)dPX1(x), (3.49)

and since B1 and X1 are independent

Pr([0, L] is covered) =

∫ ǫ

0

∫∞

L−x

fB1(u)λe
−xλdudx. (3.50)

The result then follows from Lemma 3.8 and some tedious but straightforward algebra.

4. Other Scenarios

The method can be used to calculate pn for other definitions of the number of clusters. We
consider two other definitions: the number of incomplete clusters and the number of clusters
in a circle.

4.1. Number of Incomplete Clusters

The major difference with Section 3 is that a cluster is now taken into account as soon as one
of the point of the cluster is inside the interval [0, L]. So, for instance, in Figure 3, we count
actually n + 1 incomplete clusters. We define β′0(L) as the number of incomplete clusters on
an interval [0, L].
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Theorem 4.1. Let G(k) be defined as

G(k) = (−1)k

⎛

⎝e−kλǫ
k
∑

j=0

[λ(kǫ − L)]j

j!
− e−λL

⎞

⎠1{T>kǫ}, (4.1)

for k ∈ N+ and G(−1) = e−λL. Then,

Pr
(

β′0(L) = n
)

=
⌊L/ǫ⌋+1
∑

i=n

(−1)i+n
(

i

n

)

(G(i − 1) +G(i)), for n ≥ 0. (4.2)

Proof. The condition of β′0(L) ≥ n is now given by

{

β′0 ≥ n
}

⇐⇒

⎧

⎨

⎩

{ΔX0 +Un−1 ≤ L} if n ≥ 1,

{ΔX0 < ∞} if n = 0.
(4.3)

We define Yn as

Yn =

⎧

⎨

⎩

ΔX0 +Un−1 if n ≥ 1,

0 if n = 0.
(4.4)

Repeating the same calculations, we find the Laplace transform of Pr(β′0(·) = n):

L
{

Pr
(

β′0(·) = n
)}

(s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ

s + λ

eǫλ

λ

eǫs
((

eǫλ/λ
)

seǫs + 1
)n if n ≥ 1,

1

λ + s
if n = 0.

(4.5)

With this expression, following the lines of Lemma 3.4, we obtain

L
{

E
[

β′0(·)
m]}(s) =

m+1
∑

k=1

{

m + 1
k

}

(k − 1)!
1

sk
λ

λ + s

(

λe−λǫ

esǫ

)k−1

. (4.6)

Then, we write

λ

λ + s

1

sk
=

(−1)k

λk−1
1

λ + s
+

k
∑

i=1

1

si

(

−1

λ

)k−i

, (4.7)

to find an expression with a well-known Laplace transform inverse, and, after inverting it,
we obtain

E

[

β
′m
0

]

=
m
∑

k=0

{

m + 1
k + 1

}

k!G(k). (4.8)
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Expanding the Laplace transform of the distribution of β′0(L) in a Taylor series and rearrang-
ing terms, we get

E

[

e−sβ
′
0(L)
]

= 1 +G(0)
∞
∑

j=1

(−s)j

j!

{

j
1

}

+

⎛

⎝

∞
∑

k=1

G(k)
∞
∑

j=k

(−s)j

j!

{

j + 1
k + 1

}

⎞

⎠. (4.9)

Now, we use another recurrence that the Stirling numbers obey [17],

{

j + 1
k + 1

}

=

{

j
k

}

+ (k + 1)

{

j
k + 1

}

, (4.10)

to get

∞
∑

j=k

xj

j!

{

j + 1
k + 1

}

=
∞
∑

j=k

xj

j!

({

j
k

}

+ (k + 1)

{

j
k + 1

})

=
1

k!
(ex − 1)k +

1

k!
(ex − 1)k+1.

(4.11)

Hence,

E

[

e−sβ
′
0(L)
]

= 1 +
∞
∑

k=1

(G(k − 1) +G(k))
(

e−s − 1
)k
. (4.12)

Inverting this expression for any nonnegative integer n, we have the searched distribution.

4.2. Number of Clusters in a Circle

We investigate now the case where the points of the process are deployed over a circumfer-
ence, and we want to count the number of complete clusters, which corresponds to calculate
the Euler’s Characteristic of the total coverage, so we call this quantity χ. Without loss of
generality, we can choose an arbitrary point to be the origin.

Theorem 4.2. The distribution of the Euler’s Characteristic, χ(L), when the points are deployed over
a circumference of length L is given by

Pr
(

χ(L) = n
)

= e−λL1{n=0} +
(

1 − e−λL
)λe−ǫλ

n!

×
⌊L/ǫ⌋−n
∑

i=0

[

(−1)i

i!

(

[L − (n + i)ǫ]λe−ǫλ
)n+i−1

(

L + (n + i)

(

1

λ
− ǫ

))

]

for n ≥ 0.

(4.13)
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Proof. If there is no points on the circle, χ(L) = 0. Otherwise, if there is at least one point, we
choose the origin at this point, and we have equivalence between the events:

{

χ(L) ≥ n
}

⇐⇒

⎧

⎨

⎩

{Un−1 + Bn ≤ L} ∩ {NL > 0} if n ≥ 1,

{ΔX0 < ∞} if n = 0.
(4.14)

In Figure 4, we present an example of this equivalence.
We can define Yn as

Yn =

⎧

⎨

⎩

Un−1 + Bn if n ≥ 1,

0 if n = 0,
(4.15)

to find the Laplace transform or Pr(χ(L) = n):

L
{

Pr
(

χ(·) = n
)}

(s) =
(

1 − e−λL
)λ + s

λ

eǫλ

λ

eǫs
((

eǫλ/λ
)

seǫs + 1
)n · (4.16)

The number of clusters is almost surely equal to the number of points when ǫ → 0, so

E
[

χ(L)m
]

=
(

1 − e−λL
)

λe−ǫλ
m
∑

k=1

[{

m
k

}

(

[L − kǫ]λe−ǫλ
)k−1

(

L + k

(

1

λ
− ǫ

))

1{L>kǫ}

]

. (4.17)

Expanding the Laplace transform in a Taylor series and rearranging terms, as we did previ-
ously, yields

E

[

e−sχ(L)
]

=
(

1 − e−λL
)

λe−ǫλ
∞
∑

k=0

⎡

⎣

(

[L − kǫ]λe−ǫλ
)k−1

(

L + k

(

1

λ
− ǫ

))

1{L>kǫ}

∞
∑

j=k

(−s)j

j!

{

j
k

}

⎤

⎦.

(4.18)

Since

∞
∑

j=k

(−s)j

j!

{

j
k

}

=
(e−s − 1)k

k!
, (4.19)

we can directly invert this Laplace transform, add the case where there are no points for
χ(L) = 0, and the theorem is proved.

5. Examples

We consider some examples to illustrate the results of the paper. Here, the behavior of the
mean and the variance of β0(L) as well as Pr(β0(L) = n) are presented.
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NL

NL

L0

0

Un−1

Un−1

B1

B1

B2

B2

Bn

Bn

Bn+1

D1

D1

Dn

Dn

ǫ

Figure 4: Illustration of the condition equivalent to χ(L) ≥ n. Since the coverage of the last point on [0, L]
overlaps the cluster with a point in zero, they are actually contained in the same cluster.

From (3.23), we have that E[β0(L)] is given by

E
[

β0(L)
]

= (L − ǫ)λe−ǫλ1{L>ǫ}. (5.1)

This expression agrees with the intuition in that there are three typical regions given a fixed
ǫ. When λ is much smaller than 1/ǫ, the number of clusters is approximatively the number
of sensors, since the connections with few sensors will unlikely happen, which can be seen
from the fact that E[β0(L)] → Lλ when λ → 0. As we increase λ, the mean number of direct
connections overcomes the mean number of sensors, and, at some value of λ, we expect that
E[β0(L)] decreases, when adding a point is likely to connect disconnected clusters.We remark
that the maximum occurs exactly for ǫ = 1/λ, that is, when the mean distance between two
sensors equals the threshold distance for them to be connected. At this maximum, E[β0(L)]
takes the value of (L/ǫ − 1) e−1. Finally, when λ is too large, all sensors tend to be connected,
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Figure 5: Variation of the mean number of clusters in function of λwhen L = 4 and ǫ = 1.

and there is only one cluster which even goes beyond L, so there are no complete clusters into
the interval [0, L]. This is trivial when we make λ → ∞ in the last equation. Figure 5 shows
this behavior when L = 4 and ǫ = 1.

The variance can be obtained also by (3.23) as follows:

Var
(

β0(L)
)

= (L − ǫ)λe−ǫλ1{L>ǫ} + (L − 2ǫ)λ2e−2ǫλ1{L>2ǫ} − (L − ǫ)2λ2e−2ǫλ1{L>ǫ}, (5.2)

and, under the condition that L > 2ǫ

Var
(

β0(L)
)

= (L − ǫ)λe−ǫλ + ǫ(3ǫ − 2L)λ2e−2ǫλ. (5.3)

Figure 6 shows a plot of Var(β0(L)) in function of λ for L = 4 and ǫ = 1. We can expect
that, when λ is small compared to ǫ, the plot should be approximatively linear, since there
would not be toomuch connections in the network, and the variance of the number of clusters
should be close to the variance of the number of sensors given by λL. Since β0(L) tends almost
surely to 0 when λ goes to infinity, Var(β0(L)) should also tend to 0 in this case. Those two
properties are observed in the plot. Besides, we find the critical points of this function, and
again, λ = 1/ǫ is one of them, and at this value Var(β0(L)) = (L/ǫ)e−1 + (3 − 2L/ǫ)e−1. The
other two are the ones satisfying the transcendent equation:

λe−λǫ =
L − ǫ

2ǫ(2L − 3ǫ)
· (5.4)

By using the second derivative, we realize that 1/ǫ is actually a minimum. Besides, if L ≤ 2ǫ,
there is just one critical point, a maximum, at λ = 1/ǫ.
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Figure 6: Behavior of the variance of the number of clusters in function of λ when L = 4 and ǫ = 1.
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Figure 7: Probabilities of connectiveness, Pr(β0(L) = n), for n = 0, 1, 2, 3, in function of λ when L = 4 and
ǫ = 1.

The last example in the section is performed with the result obtained in Theorem 3.7.
We consider again L = 4 and ǫ = 1 to obtain the following distributions:

Pr
(

β0(L) = 0
)

= 1 − 3λe−λ + 2λ2e−2λ − 1/6λ3e−3λ,

Pr
(

β0(L) = 1
)

= 3λe−λ − 4λ2e−2λ + 1/2λ3e−3λ,

Pr
(

β0(L) = 2
)

= 2λ2e−2λ − 1/2λ3e−3λ,

Pr
(

β0(L) = 3
)

= 1/6λ3e−3λ,

Pr
(

β0(L) > 3
)

= 0.

(5.5)
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Those expressions are simple, and they have at most four terms, since L = 4ǫ. We plot these
functions in Figure 7. The critical points on those plots at λ = 1/ǫ are confirmed for the fact
that, in function of λ for every n, Pr(χ(L) = n) can be represented as a sum:

j
∑

i=0

qi,j
(

λe−λǫ
)i
, (5.6)

where the coefficients qi,j are constant in relation to λ. However, (λe−λǫ)
i
has a critical point

at λ = 1/ǫ for all i > 0, so this should be also a critical point of Pr(χ(L) = n). If λ is small,
we should expect that Pr(χ(L) = 0) is close to one, since it is likely to N have no points. For
this reason, in this region, Pr(χ(L) = n) for n > 0 is small. When λ is large, we expect to have
very large clusters, likely to be larger than L, so it is unlikely to have a complete cluster in
the interval, and, again, Pr(χ(L) = 0) approaches to the unity, while Pr(χ(L) = n) for n > 0
become again small.
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