# ON THE OPERATOR EQUATION $T X-X V=A$ 

CONSTANTIN APOSTOL ${ }^{1}$

Abstract. A characterization of the operators $A$ for which the equation $T X-X V=A$ is solvable is given, where $T$ is a fixed right invertible operator and $V$ is a fixed unilateral shift.

The aim of this note is to give a characterization of the solutions of the equation

$$
T X-X V=A
$$

where $T, V, A$ are given operators acting in a Hilbert space, and $V$ is a unilateral shift. As a by-product we also give a sufficient condition for $A$ to be expressed in the form

$$
A=V X-X V=V^{*} Y-Y V^{*}=V^{*} Z-Z V
$$

with $V$ a unilateral shift.
The problems studied throughout the paper originate from a question of C . Foiaş.

The author expresses his gratitude to Bernard Morrel for pointing out some errors in the manuscript.

Let $H$ be a complex Hilbert space and denote by $L(H)$ the algebra of all bounded linear operators acting in $H$. For any $T, S, A \in \mathscr{E}(H)$ put

$$
d_{n}(A ; T, S)=\sum_{j+k=n} T^{j} A S^{k}, \quad n \geqslant 0
$$

It is easy to see what we have

$$
\begin{gathered}
T d_{n}(A ; T, S)-d_{n}(A ; T, S) S=d_{n}(T A-A S ; T, S)=T^{n+1} A-A S^{n+1} \\
d_{n+1}(A ; T, S)=T d_{n}(A ; T, S)+A S^{n+1}=d_{n}(A ; T, S) S+T^{n+1} A
\end{gathered}
$$

1. Proposition. Let $B \in \mathbb{E}(H)$ and let $V$ be a unilateral shift such that $T B-B V=0, B\left(I-V V^{*}\right)=0$. Then we have $B=0$.

Proof. By induction we derive $B V^{n}=T^{n} B$, so $B V^{n}\left(I-V V^{*}\right)=0, n$ $\geqslant 0$, and this implies $B=0$.

[^0]2. Lemma. Let $T, A \in \mathbb{E}(H)$ be given and let $V$ be a unilateral shift. Then the following conditions are equivalent:
(i) there exists $B \in \mathbb{E}(H)$ such that $T B-B V=A, B\left(I-V V^{*}\right)=0$,
(ii) there exists $c>0$, such that for any sequence $\left\{x_{k}\right\}_{k=0}^{\infty} \subset \operatorname{Ker} V^{*}$ and for any $n \geqslant 0$, we have
$$
\left\|\sum_{k=0}^{n} d_{k}(A ; T, V) x_{k}\right\| \leqslant c\left(\sum_{k=0}^{n}\left\|x_{k}\right\|^{2}\right)^{1 / 2}
$$
(iii) the series $\sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k}$ is strongly convergent.

Proof. (i) $\Rightarrow$ (ii). Let $\left\{x_{k}\right\}_{k=0}^{\infty} \subset \operatorname{Ker} V^{*}$ and take $c=\|B\|$. We have

$$
\begin{aligned}
& \left\|\sum_{k=0}^{n} d_{k}(A ; T, V) x_{k}\right\|^{2}=\left\|\sum_{k=0}^{n} d_{k}(T B-B V ; T, V) x_{k}\right\|^{2} \\
& =\left\|\sum_{k=0}^{n}\left(T^{k+1} B-B V^{k+1}\right) x_{k}\right\|^{2}=\left\|-B \sum_{k=0}^{n} V^{k+1} x_{k}\right\|^{2} \\
& \leqslant\|B\|^{2}\left\|\sum_{k=0}^{n} V^{k+1} x_{k}\right\|^{2}=c^{2} \sum_{k=0}^{n}\left\|x_{k}\right\|^{2}
\end{aligned}
$$

(ii) $\Rightarrow$ (iii). For any $x \in H$ we have

$$
\begin{aligned}
& \left\|\sum_{k=m}^{m+n} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k} x\right\|^{2} \leqslant c^{2} \sum_{k=m}^{m+n}\left\|\left(I-V V^{*}\right) V^{* k} x\right\|^{2} \\
& \quad=c^{2} \sum_{k=m}^{m+n}\left\|V^{k}\left(I-V V^{*}\right) V^{* k} x\right\|^{2}=c^{2}\left\|V^{m+n} V^{* m+n} x-V^{m+1} V^{* m+1} x\right\|^{2}
\end{aligned}
$$

and because $\left\{V^{* k}\right\}_{k=0}^{\infty}$ tends strongly to 0 , the strong convergence of the series $\sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k}$, follows.
(iii) $\Rightarrow$ (i). If we take $B=-\left(\sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k}\right) V^{*}$, we have

$$
\begin{aligned}
T B-B V= & \sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k} \\
& -T \sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k+1} \\
= & \sum_{k=0}^{\infty} d_{k}(A ; T, V)\left(I-V V^{*}\right) V^{* k}+A \sum_{k=0}^{\infty} V^{k+1}\left(I-V V^{*}\right) V^{* k+1} \\
& -\sum_{k=0}^{\infty} d_{k+1}(A ; T, V)\left(I-V V^{*}\right) V^{* k+1} \\
= & d_{0}(A ; T, V)\left(I-V V^{*}\right)+A \sum_{k=0}^{\infty} V^{k+1}\left(I-V V^{*}\right) V^{* k+1}=A
\end{aligned}
$$

3. Theorem. Let $T, A \in \mathscr{E}(H)$ be given and let $V$ be a unilateral shift. Then the equations

$$
\underset{\text { to redistribution: see }}{T-} B V=A, \quad B\left(1-V V^{*}\right)=0
$$

have a simultaneous solution $B$ if and only if there exists $c>0$ as in Lemma 2(ii); the solution B is unique.

Proof. Existence follows from Lemma 2, and uniqueness from Proposition 1.
4. Theorem. Let $T, A^{\prime} \in \mathcal{E}(H)$ and let $V$ be a unilateral shift. Suppose that $T$ is right invertible. Then the equation $T B^{\prime}-B^{\prime} V=A^{\prime}$ has a solution $B^{\prime}$ if and only if $A^{\prime}$ is of the form $A^{\prime}=A+A_{0}$, with $A$ fulfilling condition (ii) of Lemma 2 and $A_{0}\left(1-V V^{*}\right)=A_{0}$.

Proof. Suppose that there exists $B^{\prime} \in \mathcal{E}(H)$ such that $T B^{\prime}-B^{\prime} V=A^{\prime}$. Taking $A=T B^{\prime} V V^{*}-B^{\prime} V, A_{0}=T B^{\prime}\left(I-V V^{*}\right)$, the properties of $A$ and $A_{0}$ stated in our theorem can be easily checked (see also Theorem 3). Conversely, if $A^{\prime}=A+A_{0}$ and $A, A_{0}$ have the properties stated in our theorem, then taking $B_{0}$ such that $T B_{0}=A_{0}, B_{0} V=0$ (this is possible because $T$ is right invertible) and taking $B$ given by Theorem 3, the operator $B^{\prime}=B+B_{0}$ will be a solution of the equation $T^{\prime} B^{\prime}-B^{\prime} V=A^{\prime}$. Recall now that the essential reducing spectrum of $A \in \mathcal{L}(H)$ is the set of all complex numbers $\lambda$ for which there exists an orthonormal sequence $\left\{e_{n}\right\} \subset H$ such that (see [2])

$$
\varlimsup_{n \rightarrow \infty}\left\|(A-\lambda) e_{n}\right\|=\varlimsup_{n \rightarrow \infty}\left\|(A-\lambda)^{*} e_{n}\right\|=0
$$

5. Theorem. Let $A \in \mathscr{E}(H)$ have 0 in its essentially reducing spectrum. Then there exists a unilateral shift $V$ such that the equations

$$
V X-X V=V^{*} Y-Y V^{*}=V^{*} Z-Z V=A
$$

are solvable.
Proof. Let $V$ be a unilateral shift and denote by $P_{n}$ the orthogonal projection of $H$ onto $V^{n} H$. Because 0 belongs to the essential reducing spectrum of $A$, we may choose $V$ such that

$$
\max \left\{\left\|P_{n} A\right\|,\left\|A P_{n}\right\|\right\} \leqslant\|A\| / 2^{n}
$$

Let us put $Q_{n}=P_{n}-P_{n+1}$. Then we have $\sum_{j+k=0}^{\infty}\left\|Q_{j} A Q_{k}\right\|<\infty$ and the existence of $X$ and $Y$ follows from [1, Lemmas 1.1 and 1.3]. On the other hand, we have

$$
\left\|d_{n}\left(A ; V^{*}, V\right)\right\| \leqslant \sum_{j+k=0}^{n}\left\|P_{j} A P_{k}\right\| \leqslant(n+1)\|A\| / 2^{n}
$$

thus if $\left\{x_{k}\right\}_{k=0}^{\infty} \subset \operatorname{Ker} V^{*}$ is given, we obtain

$$
\begin{aligned}
&\left\|\sum_{k=0}^{n} d_{k}\left(A ; V^{*}, V\right) x_{k}\right\| \leqslant \sum_{k=0}^{n}\left\|d_{k}\left(A ; V^{*}, V\right)\right\|\left\|x_{k}\right\| \\
& \leqslant\|A\|\left(\sum_{k=0}^{\infty} \frac{(k+1)^{2}}{2^{k}}\right)^{1 / 2}\left(\sum_{k=0}^{n}\left\|x_{k}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

Applying Lemma 2, we derive the existence of $Z$.

## References

1. C. Apostol, Commutators on Hilbert space, Rev. Roumaine Math. Pures Appl. 18 (1973), 1013-1024. MR 49 \# 1208.
2. N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580.

Mathematics Institute, Academiei 14, Bucharest, Romania


[^0]:    Received by the editors November 6, 1974 and, in revised form, August 20, 1975.
    AMS (MOS) subject classifications (1970). Primary 47A50; Secondary 47B47.
    Key words and phrases. Operator equation, shift.
    ${ }^{1}$ This research was done while the author was a visiting scholar at Indiana University, by an agreement between the Roumanian Academy of Sciences and the National Academy of Sciences.
    © American Mathematical Society 1976

