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Abstract—In the classical compress-and-forward relay scheme

developed by Cover and El Gamal, the decoding process operates

in a successive way: the destination first decodes the compression
of the relay’s observation and then decodes the original message of

the source. Recently, several modified compress-and-forward relay

schemes were proposed, where the destination jointly decodes the
compression and the message, instead of successively. Such a mod-

ification on the decoding process was motivated by realizing that it

is generally easier to decode the compression jointly with the orig-
inal message, and more importantly, the original message can be

decoded even without completely decoding the compression. Thus,

joint decoding provides more freedom in choosing the compres-
sion at the relay. However, the question remains in these modi-

fied compress-and-forward relay schemes—whether this freedom

of selecting the compression necessarily improves the achievable
rate of the original message. It has been shown by El Gamal and

Kim in 2010 that the answer is negative in the single-relay case.

In this paper, it is further demonstrated that in the case of mul-
tiple relays, there is no improvement on the achievable rate by joint

decoding either. More interestingly, it is discovered that any com-

pressions not supporting successive decoding will actually lead to
strictly lower achievable rates for the original message. Therefore,

to maximize the achievable rate for the original message, the com-

pressions should always be chosen to support successive decoding.
Furthermore, it is shown that any compressions not completely de-

codable even with joint decoding will not provide any contribution

to the decoding of the original message. The above phenomenon
is also shown to exist under the repetitive encoding framework re-

cently proposed by Lim et al., which improved the achievable rate

in the case of multiple relays. Here, another interesting discovery is
that the improvement is not a result of repetitive encoding, but the

benefit of delayed decoding after all the blocks have been finished.

The same rate is shown to be achievable with the simpler classical
encoding process of Cover and El Gamal with a block-by-block

backward decoding process.

Index Terms—Backward decoding, compress-and-forward,

compression-message joint decoding, compression-message suc-

cessive decoding, multiple-relay channel.

I. INTRODUCTION

T HE relay channel, originally proposed in [1], models a

communication scenario where there is a relay node that

can help the information transmission between the source and

the destination. Two fundamentally different relay strategies

have been developed in [2] for such channels, which, depending
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Fig. 1. Single-relay channel.

on whether the relay decodes the information or not, are gener-

ally known as decode-and-forward and compress-and-forward,

respectively. The compress-and-forward relay strategy is used

when the relay cannot decode the message sent by the source,

but still can help by compressing and forwarding its observa-

tion to the destination. Specifically, consider the relay channel

depicted in Fig. 1. The relay compresses its observation into

and then forwards to the destination via . To reduce

the rate loss caused by the delay, block Markov coding was

used in [2], and more blocks lead to less loss.

In this paper, based on the differences in the detailed en-

coding/decoding processes, the following five different com-

press-and-forward relay schemes will be considered.

1) Cumulative encoding/block-by-block forward decoding/

compression-message successive decoding.

2) Cumulative encoding/block-by-block forward decoding/

compression-message joint decoding.

3) Repetitive encoding/all blocks united decoding/ compres-

sion-message joint decoding.

4) Cumulative encoding/block-by-block backward decoding/

compression-message successive decoding.

5) Cumulative encoding/block-by-block backward decoding/

compression-message joint decoding.

The cumulative encoding/block-by-block forward decoding/

compression-message successive decoding refers to the orig-

inal compress-and-forward scheme developed in [2]. The en-

coding is “cumulative” in the sense that in each new block, a

new piece of information is encoded at the source. This distin-

guishes from a “repetitive” encoding process recently proposed

in [3], where the same information is encoded in each block.

The decoding is named “block-by-block forward” to distinguish

from the other two choices, where the decoding starts only after

all the blocks have been finished, either by decoding with all

the blocks together or by decoding block-by-block backwardly.

The decoding is also called “compression-message successive”

in the sense that the destination first decodes the compression of

the relay’s observation and then decodes the original message.

The compression can be first recovered at the destination, as

long as the following constraint is satisfied:

(1)
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Fig. 2. Multiple-relay channel.

Then, based on and , the destination can decode the original

message if the rate of the original message satisfies

(2)

The above two-step compression-message successive de-

coding process requires to be decoded first. This facilitates

the decoding of , but is not a requirement of the original

problem. Recognizing this, a joint compression-message

decoding process was proposed in [4], where, instead of suc-

cessively, the destination decodes and together. It turns

out that the decoding of can be helped even if cannot be

decoded first. In fact, with joint decoding, constraint (1) is not

necessary, and instead of (2), the achievable rate is expressed as

(3)

Moreover, although is not even required to be decoded even-

tually, it can be more easily decoded by joint decoding, and in-

stead of (1), we need a less strict constraint:

(4)

where, it is clear to see the assistance provided by . Similar

formulas as (3) have been derived with different arguments in

[5]–[7].1

Therefore, compared to successive decoding, joint compres-

sion-message decoding provides more freedom in choosing the

compression . However, the question remains whether joint

decoding achieves strictly higher rates for the original message

than successive decoding. For the single relay case, it has been

proved in [7] that the answer is negative, and any rate achiev-

able by either of them can always be achieved by the other. In

this paper, we are going to further consider the case of multiple

relays as depicted in Fig. 2, and demonstrate that joint decoding

will not be able to achieve any higher rates either. More interest-

ingly, we will show that any compressions not supporting suc-

cessive decoding will actually result in strictly lower achiev-

able rates for the original message. Therefore, to optimize the

achievable rate, the compressions should always be chosen so

that successive decoding can be carried out.

Recently, a different encoding process was proposed in [3],

where instead of piece by piece, all the information is encoded

in each block, and different blocks use independent codebooks

to transmit the same information. Compared to cumulative

encoding, this repetitive encoding process appears to introduce

collaboration among all the blocks, so that all the blocks can

unitedly contribute to the decoding of the same message. This

repetitive encoding/all blocks united decoding process was

combined with joint compression-message decoding in [3],

1The formula and proof in [5] missed a and were later corrected in [7].

and although no improvement was shown in the single-relay

case, some interesting improvement on the achievable rate was

obtained in the case of multiple relays. In this paper, we will

show that actually it is not necessary to use repetitive encoding

to introduce such collaboration among the blocks. The same

rate can be achieved with cumulative encoding as long as

the decoding starts after all the blocks have been finished.

We will show that either by all blocks united decoding, or by

block-by-block backward decoding, the same achievable rate

can be obtained. Therefore, in terms of complexity, cumulative

encoding/block-by-block backward decoding provides the

simplest way to achieve the highest rate in the case of multiple

relays.

Similarly, for these new encoding/decoding schemes, we will

also show that the optimal compressions must be able to sup-

port successive compression-message decoding, and any com-

pressions not supporting successive decoding will necessarily

lead to strictly lower achievable rates than the optimal. There-

fore, for any of these compress-and-forward relay schemesmen-

tioned above, we can restrict our attention to successive com-

pression-message decoding in the search for the optimal com-

pressions of the relays’ observations. Of course, it should be

noted that any compressions supporting successive decoding

also support joint decoding.

Although the compressions supporting successive decoding

can be explicitly characterized as we will show later, it is also

of interest to consider other compressions not supporting suc-

cessive decoding. For example, in a network with multiple des-

tinations, when a relay is simultaneously helping more than one

destinations, it is very likely that different destinations require

different optimal compressions from the relay. In such a situa-

tion, the relay may have to find a tradeoff between these require-

ments, i.e., adopting a compression which may be too coarse for

some destinations, but too fine, thus not supporting successive

decoding, for the others. An example of this tradeoff to optimize

the sum rate was given for the two-way relay channel in [3]. An-

other possibility of using too coarse or too fine compressions is

when there is channel uncertainty, e.g., in wireless fading chan-

nels, so that it is impossible to accurately determine the optimal

compressions even with explicit formulas. Therefore, it is of in-

terest to study how coarser or finer compressions than the op-

timal affect the achievable rate of the original message [9].

It is not surprising that coarser compressions than the optimal

do not fully exploit the capability of the relay, thus leading to

lower achievable rates for the original message. However, it

may not be so obvious why finer compressions will also lead

to lower achievable rates. For this, one needs to realize that a

relay’s observation not only carries information about the orig-

inal message, but also reflects the dynamics of the source–relay

link, which is unrelated to the original message. Thus, compared

to the direct link between the source and the destination, the

support by the relay–destination link is not so pure. When the

compression is too fine so that only joint compression-message

decoding can be carried out, i.e., the direct source–destination

link has to sacrifice, the gain does not make up for the loss. Fur-

thermore, to the extreme, when the compression cannot be de-

coded even with joint decoding, the relay–destination link be-

comes useless, and the destination would rather simply treat the
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relay’s input as purely noise in the decoding, as we will demon-

strate in this paper.

The remainder of this paper is organized as the following. In

Section II, we formally state our problem setup and summarize

the main results. Then, in Sections III and IV, detailed proofs

of the achievability results as well as thorough discussions on

the optimal choice of the relays’ compressions are presented,

under the two different frameworks of block-by-block forward

decoding and decoding after all the blocks have been finished,

respectively. Finally, some concluding remarks are included in

Section V.

II. MAIN RESULTS

Consider the multiple-relay channel depicted in Fig. 2, which

can be denoted by

where are the transmitter alphabets of the

source and the relays, respectively, are the

receiver alphabets of the destination and the relays re-

spectively, and a collection of probability distributions

on , one for

each . The interpretation

is that is the input to the channel from the source, is the

output of the channel to the destination, and is the output

received by the th relay. The th relay sends an input based

on what it has received

(5)

where can be any causal function.

Before presenting the main results, we introduce some sim-

plified notations. Denote the set , and for

any subset , let , and use similar

notations for other variables. The main results of the paper are

presented in the following two different decoding frameworks:

1) block-by-block forward decoding; and 2) decoding after all

the blocks have been finished, which includes all blocks united

decoding and block-by-block backward decoding.

A. Block-by-Block Forward Decoding

Under the block-by-block forward decoding framework,

the achievable rate with successive compression-message de-

coding and the achievable rate with joint compression-message

decoding are presented in Theorems 2.1 and 2.2, respectively.

Then, the optimality of successive decoding is stated in The-

orem 2.3, and it is shown that the optimal rate can be achieved

only if the compressions at the relays are chosen such that

they can be first decoded at the destination, i.e., successive

compression-message decoding can be carried out. All the

related proofs are presented in Section III.

Theorem 2.1: For the multiple-relay channel depicted in

Fig. 2, by the cumulative encoding/block-by-block forward

decoding/compression-message successive decoding scheme,

a rate is achievable if for some

there exists a rate vector satisfying

(6)

for any subset , such that for any subset

(7)

and

(8)

Theorem 2.2: For the multiple-relay channel depicted in

Fig. 2, by the cumulative encoding/block-by-block forward

decoding/compression-message joint decoding scheme, a rate

is achievable if for some

there exists a rate vector satisfying

(9)

for any subset , such that for any subset

(10)

Let and be the supremum of the achievable

rates stated in Theorems 2.1 and 2.2, respectively.

Theorem 2.3: , and can be ob-

tained only when the distribution

is chosen such that there exists a rate vector

satisfying (6)–(7).

B. Decoding After all the Blocks Have Been Finished

It was shown in [3] that the original cumulative en-

coding/block-by-block forward decoding/compression-mes-

sage successive decoding scheme developed in [2] can be

improved to achieve higher rates in the case of multiple relays,

although no improvement was obtained in the case of a single

relay. In their new compress-and-forward relay scheme [3],

cumulative encoding was replaced by repetitive encoding, and

block-by-block forward decoding was replaced by all blocks

united decoding. They also used joint instead of successive

compression-message decoding. For the single-source mul-

tiple-relay channel depicted in Fig. 2, their Theorem 1 in [3]

can be restated as the following theorem.
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Theorem 2.4: For the multiple-relay channel depicted in

Fig. 2, a rate is achievable if there exists some

such that

(11)

In this paper, we will show that the improvement is not a

result of replacing cumulative encoding by repetitive encoding,

but, actually, is a benefit obtained when the decoding is delayed,

i.e., only starts after all the blocks have been finished. Besides

all blocks united decoding, we will show that block-by-block

backward decoding also achieves the same improvement since

it also starts the decoding after all the blocks have been finished.

Similar to the framework of block-by-block forward de-

coding, we will also show that for these new schemes with

decoding after all the blocks have been finished, the optimal

rate can be achieved only when the compressions at the re-

lays are chosen such that successive compression-message

decoding can be carried out. Thus, in terms of complexity,

cumulative encoding/block-by-block backward decoding/com-

pression-message successive decoding is the simplest choice

in achieving the highest rate in the case of multiple relays. The

corresponding achievable rate is presented in the following

theorem.

Theorem 2.5: For the multiple-relay channel depicted in

Fig. 2, a rate is achievable if there exists some

such that for any subset

(12)

and
(13)

Let and be the supremum of the achievable

rates stated in Theorems 2.4 and 2.5, respectively. The opti-

mality of successive decoding is demonstrated in the following

theorem.

Theorem 2.6: , and can be ob-

tained only when the distribution

is chosen such that (12) holds.

As mentioned in Section I, although the optimal rate is

achieved only when successive decoding can be supported,

there are situations where it is of interest to consider other com-

pressions not supporting successive decoding. Hence, more

generally, we will use the cumulative encoding/block-by-block

backward decoding/compression-message joint decoding.

The corresponding achievable rate is given in the following

theorem.

Theorem 2.7: For the multiple-relay channel depicted in

Fig. 2, with a given distribution

a rate is achievable if

(14)

where is the unique largest subset of satisfying

(15)

for any nonempty . In addition, can be decoded

jointly with .

There also exists a unique largest subset satisfying

(16)

for any . It will be clear from the proof of Theorem 2.7

that the compressions of the relays in are not decodable

even jointly with the message.

On the other hand, the achievable rate (11) can be more gen-

erally expressed as

(17)

if we only consider a subset of relays for the decoding,

while treating the other inputs as purely noise. Interestingly, the

following theorem implies that may not be the optimal

choice to maximize the R.H.S. (right-hand-side) of (17), i.e.,

sometimes, it is better to consider only a subset of relays.

Theorem 2.8: For any ,

among all the choices of , the R.H.S. of (17) is maxi-

mized when or , but is strictly less than the

maximum when . Here, and are defined as in

(15) and (16).

Therefore, not only the compressions of the relays in

are not decodable, but also including them in the formula (17),

i.e., choosing , will even strictly lower the achievable

rate.

By comparing (14) and (17) with , Theorem 2.8

also implies that for any compressions chosen at the relays, the

cumulative encoding/block-by-block backward decoding/com-

pression-message joint decoding scheme achieves the same rate

as the repetitive encoding/all blocks united decoding/compres-

sion-message joint decoding scheme.

The proofs of Theorems 2.5–2.8 are presented in Section IV.

III. BLOCK-BY-BLOCK FORWARD DECODING

We first prove the achievability results stated in Theorems 2.1

and 2.2 respectively. For simplicity of notation, we consider the
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case . Achievability for an arbitrary time-sharing random

variable can be obtained by using the standard technique of

time sharing [7], [12]. The same consideration on applies

throughout all the achievability proofs of this paper.

In both the cumulative encoding/block-by-block forward de-

coding/compression-message successive decoding and the cu-

mulative encoding/block-by-block forward decoding/compres-

sion-message joint decoding schemes, the codebook generation

and encoding processes are exactly the same as the classical

way, i.e., the way in the proof of Theorem 6 of [2]. The dif-

ference between these two schemes is only on the decoding

process at the destination: 1) In successive decoding, the des-

tination first finds, from the specific bins sent by the relays via

, the unique combination of se-

quences that is jointly typical with the sequence received, and

then finds the unique sequence that is jointly typical with

the sequence received, and also with the previously recov-

ered sequences. 2) In joint decoding, the desti-

nation finds the unique sequence that is jointly typical with

the sequence received, and also with some combination of

sequences from the specific bins sent by the re-

lays via .

A. Proof of Theorem 2.1

The basic idea of the compress-and-forward strategy is for the

relay to compress its observations into some approximations,

which can be represented by fewer number of bits and, thus, can

be forwarded to the destination. To deal with delay at the relay,

block Markov coding was used, where the total time is divided

into a sequence of blocks of equal length , and coding is per-

formed block by block. For example, each relay compresses its

observations of each block at the end of the block and forwards

the approximations in the next block. Therefore, to decode the

message sent by the source in any block, it is not until the end

of the next block, has the destination received the help from the

relay.

The encoding process is exactly the same as that in the proof

of Theorem 6 of [2]. We only emphasize that the th relay needs

to generate sequences of , and randomly

throws them into bins, where are

chosen such that for any nonempty subset ,

(18)

At the end of each block, the relay finds a sequence which

is jointly typical with the sequence it received and the

sequence it sent during the block, and, in the next block, informs

the destination the index of the bin that contains the sequence

via .

The decoding process operates in a successive way. At the

end of each block , the destination first finds, from

the bins forwarded by the relays during block , the unique

such that

(19)

where is the sequence received during block ,

are the sequences from

the bins forwarded by the relays during block , and

are the signals sent by the relays at block

which are known to the destination since the multiple-access

condition (18) is satisfied.

Error occurs if the true does not satisfy (19), or

a false satisfies (19). According to the properties of

typical sequences, the true satisfies (19) with high

probability.

The probability of a false with some false

but true being jointly typical

with and can be upper

bounded by

There are false from

the bins; thus, the probability of finding such a false

can be upper bounded by

which tends to zero for sufficiently small as , if

(20)

Letting , we have

Plugging this into (20), we have can be decoded at

the end of block if

(21)

Then, based on and , can be recovered

if

(22)

Combining (18) and (21)–(22), and using the standard technique

of time sharing, we conclude that the rate stated in Theorem 2.1

is achievable.2

B. Proof of Theorem 2.2

In cumulative encoding/block-by-block forward decoding/

compression-message joint decoding, the encoding part is

2The case of “ ” in (6)–(7) can be included since (8) does not include “ .”
The same consideration applies throughout the paper.
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exactly the same as that in the proof of Theorem 2.1, and the

decoding process operates as the following. At the end of each

block , the destination finds the unique and

some from the bins forwarded by

the relays during block such that

(23)

where , , and

have the same interpretations as in (19).

Error occurs if the true does not satisfy (23), or a false

satisfies (23). According to the properties of typical se-

quences, the true satisfies (23) with high probability.

The probability of a false being jointly typical with

, and some false

but true can be upper bounded

by

There are false , and

false

from the bins; thus, the probability of finding such a false

can be upper bounded by

which tends to zero for sufficiently small as , if

(24)

This combined with the technique of time sharing proves The-

orem 2.2.

C. Optimality of Successive Decoding in Block-by-Block

Forward Decoding

Before proceeding to the proof of Theorem 2.3, we first in-

troduce some useful notations and lemmas. For any

and , let

(25)

(26)

(27)

Also, in the following proof and the rest of the paper, for any

two sets and , or interchangeably denotes their

intersection while denotes their union. Then, we have the

following lemmas, whose proofs are given in Appendix A.

Lemma 3.1: 1) If , , and ,

, then , ) If ,

, and , , then ,

Lemma 3.2: For any and

, there exists a unique set , which is the

largest subset of satisfying

Lemma 3.3: If for some nonempty , then there

exists some nonempty such that .

Lemma 3.4: For any and with ,

We are now ready to prove Theorem 2.3. Still for simplicity

of notation, we only prove Theorem 2.3 for , while the

proof for an arbitrary can be obtained by simple analogy. The

same consideration on also applies to the proofs of Theorems

2.6 and 2.8.

Proof of Theorem 2.3: With , and

can be, respectively, written as

(28)

(29)

(30)

and

We show by showing that

and , respectively. For any

and satisfying

(29)—(30), we have

and thus .
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To show , it is sufficient to show that

can be achieved only with

and such that , . We

will show this by two steps as follows: i) We first show that

for any and , if

, then and ,

where is defined as in Lemma 3.2 and

. ii) We then argue that

under the optimal choice of and

, must be , i.e., must be , and thus

by the definition of , .

i) Assuming throughout Part i), we show

and .

1) We first show by using a contradiction ar-

gument. Suppose , i.e., . Then, by

Lemma 3.3, we have that there exists some nonempty

such that , . This will further imply, by

Part 2) of Lemma 3.1, that . This is

contradictory with the definition of , and thus .

2) We show that and , , and

thus . The proof is still by contradiction.

Suppose that there exists some and such that

. Then, , i.e.,

Again by Lemmas 3.3 and 3.1 successively, we can conclude

that there exists some nonempty , such that

, which is in contradiction. There-

fore, .

3) We prove that with and ,

. Let and . Then, we have,

by Lemma 3.4, that

Since by 2) and

we have .

4) We prove that with and ,

. Letting , we have

Combining 2)–4), we can conclude that

and .

ii) We now argue that under the optimal choice of

and that

achieves , if , then is not optimal; and

hence must be . The argument is extended from that in [7]

and the detailed analysis is as follows.

Suppose at the optimum. Then,

and . Therefore

(31)
and similarly

(32)

for any , .

We argue that higher rate can be achieved. Consider

, where for any , and with

probability and with probability for any .

When , the achievable rate with is .

As decreases from 1, it can be seen from (31) and (32) that

both and

will increase, where , . Thus, no

matter how will change as de-

creases for , it is certain that there exists a

such that the achievable rate by using is larger

than . This is in contradiction with the optimality of

, and thus at the optimum, must be , i.e., ,

. This completes the proof of Theorem 2.3.
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IV. DECODING AFTER ALL BLOCKS HAVE BEEN FINISHED

In this section, our discussion transfers to the compress-and-

forward schemes with decoding after all blocks have been fin-

ished. The focus here is on the cumulative encoding/block-by-

block backward decoding, since it is the simplest scheme to

achieve the highest rate in the general multiple-relay channel, as

mentioned before; for the repetitive encoding/all blocks united

decoding, see the proof of Theorem 1 in [3].

Cumulative encoding/block-by-block backward decoding

can be combined with either compression-message suc-

cessive decoding or compression-message joint decoding.

In the following, we will first present the cumulative en-

coding/block-by-block backward decoding/compression-mes-

sage successive decoding scheme to establish the achievable

rate in Theorem 2.5 and demonstrate the optimality of suc-

cessive decoding in the sense of Theorem 2.6. Then, the

cumulative encoding/block-by-block backward decoding/com-

pression-message joint decoding scheme will be used to

prove Theorem 2.7, and the necessity of joint decodability is

demonstrated in the sense that only those relay nodes, whose

compressions can be eventually decoded by joint decoding, are

helpful to the decoding of the original message.

A. Cumulative Encoding/Block-by-Block Backward

Decoding/Compression-Message Successive Decoding and

Optimality of Successive Decoding

In cumulative encoding/block-by-block backward decoding,

the encoding process is similar to that in the proof of Theorem 6

in [2] (except that the binning at the relay is not needed here), but

the decoding process operates backwardly. This scheme, com-

bined with compression-message successive decoding, proves

Theorem 2.5 as follows.

Proof of Theorem 2.5: Consider blocks, where

the source will transmit information in the first blocks and

keep silent in the last blocks, the relays will compress-and-

forward in all the blocks, and the destination will not

start decoding until all the blocks have been finished.

As we will see in the following proof, the added blocks are

used to ensure the relays’ compressions in the th block can

be decoded with the help of the subsequent blocks. Then,

backwardly, the relays’ compressions in blocks to 1 can

be decoded. Finally, using the recovered relays’ compressions in

all the first blocks, the original messages can be decoded. Of

course, the added blocks could introduce decoding delay and

thus rate loss, but note that we can always choose such

that the rate loss can be made arbitrarily small.

Codebook Generation: Fix . We

randomly and independently generate a codebook for each

block.

For each block , randomly and independently

generate sequences , ; for

each block and each relay node , ran-

domly and independently generate sequences ,

, where ; for each

relay node and each , ,

randomly and conditionally independently generate se-

quences , . This defines the

codebook for any block :

Encoding: Let be the mes-

sage vector to be sent and let be the dummy

message for any . For any block

, each relay node , upon re-

ceiving at the end of block , finds an index such

that ,

where by convention. The codewords and

are transmitted in block , .

Decoding: i) The destination first finds a unique combination

of the relays’ compression indices and some

, where ,

, such that for any

(33)

Specifically, this can be done backwards as follows:

a) The destination finds the unique such that there exists

some satisfying (33) for any

.

Assume the true , where is

an -dimensional all-ones vector. Then, error occurs if

does not satisfy (33) with any for any

, or a false satisfies (33) with some for any

. Since satisfies (33)

for any with high probability according

to the properties of typical sequences, we only need to bound

, where is defined as the event that sat-

isfies (33) with some for any .

For any , define as the event that

satisfies (33). Then, we have

(34)
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Let us first consider the second term in (34). For any ,

let . Note

only depends on , so we also write it as .

Define as ,

and similarly define and .

Then, is independent of

, and

can be upper bounded by

where

and

as . Then, we have inequality (36), given at the

bottom of the page, where as . Thus, as both

and go to infinity, the second term in (34) goes to 0, if for

any nonempty , get

(35)

Now consider the first term in (34). For any ,

we have

Note is the

probability that there exists a false satisfying (33) with

some for any block , where

is true. Below, we show that this probability goes to 0. The

underlying idea is backward decoding, which will also be used

in step b).

For any , , denote

(36)
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Then, we have

where

and especially

Iteratively, for any ,

For any , , with

, we have

and thus as if (35) holds. Therefore, if (35)

holds, the first term in (34) also goes to 0 as , and

can be decoded.

b) Given that has been recovered, the destination performs

the backward decoding as follows. That is, backwards and se-

quentially from block to block , the destination

finds the unique , such that satisfies (33), where

has already been recovered due to the backward property of

decoding. At each block , error occurs if

the true does not satisfy (33), or a false satisfies (33).

According to the properties of typical sequences, the true

satisfies (33) with high probability.

For a false with false but true

, is independent of

, and the probability that

satisfies (33) can be upper bounded by

Since the number of such false is upper bounded by

, with the union bound, it is easy to

check that the probability of finding such a false goes to

zero as , if (35) holds. This combined with a) proves

that can be decoded, if (35) holds.

ii) Then, based on the recovered , the destination finds the

unique such that for any ,

(37)

Note that after has been recovered, ,

,

and in (37) are known to the destination. Thus, from the

property of typical sequences, the probability of decoding error

will tend to zero if is less than ,

which is equal to noting the independence

between and .

We are now in a position to prove Theorem 2.6. To facilitate

the proof, we introduce some notations and lemmas. For any

, let

(38)

(39)

(40)

Then, we have the following lemmas, whose proofs will be pre-

sented in Appendix B.

Lemma 4.1: 1) If , , and ,

, then , ) If ,

, and , , then ,

Lemma 4.2: Under any , there

exists a unique set , which is the largest subset of satis-

fying
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Lemma 4.3: If for some nonempty , then there

exists some nonempty such that .

Lemma 4.4: For any and with ,

where

The proof of Theorem 2.6 is similar to the proof of Theorem

2.3, and the details are as follows.

Proof of Theorem 2.6: Again, we consider the case .

In this case, and can be, respectively, written

as

(41)

(42)

and

(43)

We show by showing that

and , respectively. Under any

such that , , we

have

and thus .

To show , it is sufficient to show

that can be achieved only with the distribution

such that , .

We will show this by two steps as follows: i) We first show

that under any , if , then

and , where

is defined as in Lemma 4.2 and

. ii) We then argue that, under the

optimal , must be , i.e., must

be , and thus by the definition of , .

i) Assuming throughout Part i), we show

and .

1) We first show by using a contradiction ar-

gument. Suppose , i.e., . Then, by

Lemma 4.3, we have that there exists some nonempty

such that , . This will further imply, by

Part 2) of Lemma 4.1, that . This is

contradictory with the definition of , and thus .

2) We show that and , , and

thus . The proof is still by contradiction.

Suppose that there exists some and such that

. Then, , i.e.,

Again by Lemmas 4.3 and 4.1 successively, we can conclude

that there exists some nonempty , such that

, which is in contradiction. There-

fore, .

3) We prove that with and ,

. Let and .

Then, we have, by Lemma 4.4, that

Since by 2), to show

, we only need to show

. Let . Then, we have

Thus, we have .
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4) We prove that with and ,

. Letting , we have

Thus, to show , we only need to show

. For this, we have

and thus .

Combining 2)–4), we can conclude that

and .

ii) We now argue that under the optimal

that achieves , if

, then is not optimal; hence, must be .

Suppose at the optimum. Then,

and . Therefore

(44)

(45)

for any , .

We argue that higher rate can be achieved. Consider

, where for any , and

with probability and with probability for any

. When , the achievable rate with

is . As decreases from 1, in (44) and (45), both

and

will increase, where , . Thus, no

matter how

will change as decreases for , it is cer-

tain that there exists a such that the achievable rate by using

is larger than . This is in contradiction

with the optimality of , and thus, at the optimum,

must be , i.e., , . This completes the proof

of Theorem 2.6.

B. Cumulative Encoding/Block-by-Block Backward Decoding/

Compression-Message Joint Decoding and Necessity of Joint

Decodability

Some notations and lemmas are introduced to facilitate the

later discussion. For any and any , let

(46)

(47)

(48)

Lemma 4.5: 1) If , for any nonempty ,

and , for any nonempty , then

, for any nonempty ) If , for any

nonempty , and , for any nonempty

, then , for any nonempty

Lemma 4.6: Under any , there

exists a unique set , which is the largest subset of sat-

isfying

Lemma 4.7: If for some nonempty , then

there exists some nonempty such that , for

any nonempty

Lemma 4.8: For any disjoint and , and any ,

let and . Then, we have the following:

1) .

2) Especially, when ,

Lemmas 4.5–4.7 can be proved along the same lines as the

proofs of Lemmas 4.1–4.3, respectively, while the proof of

Lemma 4.8 is given in Appendix C.

The cumulative encoding/block-by-block backward de-

coding/compression-message joint decoding scheme is pre-

sented in the following proof.

Proof of Theorem 2.7: The uniqueness of has been es-

tablished in Lemma 4.6. Below, we focus on showing that i) the

rate in (14) is achievable, and ii) the compressions in the set

can be decoded jointly with .

To make the presentation easier to follow, we first consider

the case when , i.e., the case when

(49)

for any nonempty and show that

(50)
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is achievable. The case of will follow immediately

after the case of is treated.

Fix . Assume (49) holds. The

codebook generation and encoding process here are ex-

actly the same as those in the proof of Theorem 2.5, and

hence omitted. For the decoding, the destination finds the

unique message vector and some

such that for any

(51)

where is dummy message for all .

Again, this can be done backwardly as follows.

a) The destination first finds the unique such that there

exists some satisfying (51) for any

. Through the similar lines as in the proof

of Theorem 2.5 with taken into

account and treated as known signals, it follows that can be

decoded if (49) holds.

b) Backwards and sequentially from block to block

, the destination finds the unique pair , such that

satisfies (51), where has already been recovered

due to the backward property of decoding.

At each block , error occurs with

if the true does not satisfy (51) with any , or a false

satisfies (51) with some . According to the properties

of typical sequences, the true satisfies (51) with high

probability.

For a false and a with false but

true , and and

are mutually independent, and the

probability that satisfies (51) can be upper bounded

by

Since the number of such false is upper bounded

by , with the union bound, it

is easy to check that the probability of finding a false goes

to zero as , if (50) holds.

Then, based on the recovered and , again from the proof

of Theorem 2.5 with taken into account and treated as

known signal, it follows that can be decoded if (49) holds.

Combining a) and b), we can conclude that both and

can be decoded if both (49) and (50) hold.

If under , , then through

the same line as above with replaced by , it readily follows

that

is achievable; and , or more strictly, , can be

decoded jointly with since

for any nonempty .

Now, we demonstrate that only those relay nodes whose com-

pressions can be eventually decoded are helpful to the decoding

of the original message.

Proof of Theorem 2.8: Still consider the case .

The uniqueness of has been treated in Lemma 4.6,

while the uniqueness of can be established along the

same lines. To prove Theorem 2.8, in terms of the nota-

tions defined in this section, we will sequentially prove that:

i) ; ii)

, for any ; iii)

.

i) We prove

by proving that: 1) For any ,

, . 2) For any

, ,

and thus by 1). The

details are as follows.

1) Assume , . We show

by showing that

for any , .

For any , by Part 2) of Lemma 4.8, we have

We argue by contradiction. Suppose

. Then, by Lemma 4.7, we have that

there exists some nonempty such that

, for any nonempty This will further imply, by Part 2) of

Lemma 4.5, that , for any nonempty

which is in contradiction with the definition of . Thus, we

must have , and

.

2) Assume . For any , let

and . By Part 1) of Lemma 4.8, we have

and then
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where the last inequality follows from the fact that

, for any nonempty .

ii) We can prove , for

any by two similar steps as follows.

1) Through the similar lines as in Step 1) of Part i), we can

prove , for any

, . The only difference is that here the in-

equality is strict, but it can be easily justified by noting that “ ”

is included in the definition of .

2) From Step 2) of Part i), it can be similarly proved

that for any ,

. Therefore, if, further, ,

then by 1) we have

iii) From Part ii), we have 1)

, for any ,

, and 2) for any ,

. Thus, it follows immediately

that . This

completes the proof of Theorem 2.8.

V. CONCLUSION

Joint compression-message decoding introduced more

freedom in selecting the compressions at the relays. Motivated

by it, we have investigated the problem of finding the optimal

compressions in maximizing the achievable rate of the original

message. We have studied several different compress-and-for-

ward relay schemes, and the unanimous conclusion is that the

optimal compressions should always support successive com-

pression-message decoding. In situations where compressions

not supporting successive decoding have to be used, we have

found that only those that can be jointly decoded are helpful to

the decoding of the original message.

We have also developed a backward block-by-block decoding

scheme. Compared to the repetitive encoding/all blocks united

decoding scheme recently proposed in [3], which improved the

achievable rate in the multiple-relay case, we have realized that

the key to the improvement comes from delaying the decoding

until all the blocks have been finished. In retrospect, the mul-

tiple-relay case is different from the single-relay case in that it

may take multiple blocks for the relays to help each other before

their compressions can finally reach the destination. Hence, the

block-by-block forward decoding scheme, which is sufficient

for the single-relay case, may not work satisfactorily for mul-

tiple relays in general.

Finally, we need to point out that our discussion of optimality

is restricted to the few selected compress-and-forward relay

schemes. In generalizing the classical compress-and-forward

relay scheme in [2] to the case of multiple relays, there could

be many other choices of coding considerations [10]. Even for

the single-relay case, the optimality of the original compression

method used in [2] remains an open question (see [6] and [11]).

APPENDIX A

PROOFS OF LEMMAS 3.1–3.4

Proof of Lemma 3.1: For any , let

and . Then

(52)

(53)

If , , and , , then

following (53), , If ,

, and , , then following (52),

, .

Proof of Lemma 3.2: Let

and .

Suppose there are more than one element in , say,

, where . Then based on 1) of Lemma

3.1, also satisfies that ,

which is in contradiction, and hence Lemma 3.2 is proved.

Proof of Lemma 3.3: If , , then this

lemma obviously holds. Otherwise, if there exists some ,

, such that , then we have

, i.e.,

Now, we arrive at the same situation as in the original assump-

tion with replaced by . Continue applying this argu-

ment, and we must be able to reach a nonempty , such

that , .

Proof of Lemma 3.4: For any disjoint and ,
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which proves the lemma.

APPENDIX B

PROOFS OF LEMMAS 4.1–4.4

Proof of Lemma 4.1: For any , let

and . Then

(54)

(55)

If , , and , , then

following (55), , If ,

, and , , then following (54),

, .

Proof of Lemma 4.2: Let

and .

Suppose there are more than one elements in , say,

, where . Then, based on 1) of Lemma

4.1, also satisfies that ,

which is in contradiction, and hence Lemma 4.2 is proved.

Proof of Lemma 4.3: If , , then this

lemma obviously holds. Otherwise, if there exists some ,

, such that , then we have

, i.e.,

Now, we arrive at the same situation as in the original assump-

tion with replaced by . Continue applying this argu-

ment, and we must be able to reach a nonempty , such

that , .

Proof of Lemma 4.4: For any disjoint and

which proves the lemma.
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APPENDIX C

PROOF OF LEMMA 4.8

For any disjoint and , and any , let

and . Then, we have

(56)

When , following (56), we have

Generally, for any , continuing (56), we have

This completes the proof of Lemma 4.8.
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