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The minimization control problem of quadratic functionals for the class of affine non-
linear systems with the hypothesis of nilpotent associated Lie algebra is analyzed. The
optimal control corresponding to the first-, second-, and third-order nilpotent opera-
tors is determined. In this paper, we have considered the minimum fuel problem for the
multi-input nilpotent control and for a scalar input bilinear system for such systems. For
the multi-input system, usually an analytic closed-form solution for the optimal control
u�i (t) is not possible and it is necessary to use numerical integration for the set of m
nonlinear coupled second-order differential equations. The optimal control of bilinear
systems is obtained by considering the Lie algebra generated by the system matrices. It
should be noted that we have obtained an open-loop control depending on the initial
value of the state x0.

1. Introduction

Optimal control theory offers modern methods regarding the control of systems, and
plays a significant role in the analysis of the linear control characterizing quadratic lin-
ear regulators and also the Gaussian quadratic linear control [9, 11]. The use of optimal
control in the class of linear systems permits a substantial reduction of the computations
determining the laws of optimal control. Moreover, it is an efficient method for solv-
ing nonlinear optimal control problems [3]. The Lie brackets generated by the fields of
vectors defining the nonlinear system represent a remarkable mathematical tool for the
control of affine systems [7, 8, 9, 10, 11].

Optimal control of bilinear systems has been considered by Tzafestas et al. (1984) and
by Banks and Yew (1985)—in the latter case the linear quadratic regulator problem is
extended to the bilinear quadratic regulator problem.

Bourdache-Siguerdindjane [2] applied the method of Lie algebras to the study of the
optimal control regulation of satellites. In [1], Banks and Yew studied the optimal control
of energy consumption minimization for a class of bilinear systems and Liu et al. [6]
generalized this result to the class of affine nonlinear systems.
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The objective of this paper is to obtain optimal controls for the general class of qua-
dratic functionals with applications in minimum fuel control for affine nonlinear systems
and bilinear systems.

2. The problem of optimal control

We consider the class of affine nonlinear dynamic systems

ẋ = f (x) +
m∑
i=1

gi(x)ui, x
(
t0
)= x0,

= f (x) + g(x)u,

(2.1)

where x ∈Rn, ui ∈R1, i= 1, . . . ,m, f (x),gi(x) :Rn →Rn. The control problem is to find
the optimal control functions u�i , i= 1,2, . . . ,m, which minimize the quadratic function-
als

J = 1
2

∫ t f

t0

(
xTQx+uTRu

)
dt+Φ

(
x
(
t f
))

(2.2)

subject to differential restrictions represented by the dynamic systems (2.1), in which
Q = (qi j) and R = (ri j) are constant symmetric positive definite (n× n) and (m×m)
matrices, respectively, and the final time t f is specified. The system vectors f , g, Φ(x(t f ))
are all smooth.

We associate to the nonlinear systems (2.1) the Lie L algebra generated by the systems
of the field of vectors

{
f ,g1, . . . ,gm

}
. (2.3)

We will use the notations

ad0
L := L,

adL L= [L,L]= {[X ,Y]; X ∈ L, Y ∈ L
}

,

adk+1
L L= adL adk

L L,

(2.4)

where [X ,Y] is the Lie bracket defined by

[X ,Y]= ∂Y

∂x
X − ∂X

∂x
Y. (2.5)

The Lie algebra is nilpotent if there exists a positive integer k such that

adk
L L= 0. (2.6)

The complex structure of the systems (2.1) creates difficulties in solving the optimal
control problems and makes mandatory their approximation by systems with a simple
structure. Hermes [5] and Bressan [4] show that, under certain conditions, the affine
system (2.1) with, or without the passivity of the f (x) term, may be approximated locally
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by a nilpotent system of the same form. The nonlinear system considered here is nilpotent
if the associated Lie algebra L is nilpotent.

The Hamiltonian associated to the optimal problem is

H = pT[ f (x) + g(x)u
]− 1

2

(
xTQx+uTRu

)
, (2.7)

where p ∈Rn is the adjoint (n× 1) vector.
The Hamiltonian system associated is

ẋ = f (x) + g(x)u, x
(
t0
)= x0,

ṗ =− ∂

∂x
( f + gu)Tp+Qx, p

(
t f
)=−∂Φ

(
x
(
t f
))

∂x
,

(2.8)

with the (m× 1) vector added to (2.8):

y = ∂H

∂u
=



pTg1− (Ru)1

pTg2− (Ru)2

···
pTgm− (Ru)m


 , (2.9)

where (Ru)i, for i= 1, . . . ,m, represents the rows of the (n× 1) matrix (Ru).
The optimal control problem (2.1) and (2.2) is a nondegenerate problem because

∂2H

∂u2
=−R (2.10)

is nonsingular for any (x, p,u).
The necessary conditions for the optimal control u� are given by

y = ∂H

∂u

∣∣∣∣
u�
= 0. (2.11)

From (2.11), one obtains

yi = pTgi− (Ru)i, i= 1, . . . ,m. (2.12)

By derivation of (2.12), one has

ẏi = ṗTgi + pTġi−
(
uTR

)′
i

= pT[ f + gu,gi
]

+ xTQgi−
(
uTR

)′
i , i= 1, . . . ,m.

(2.13)

Let

F := f + gu. (2.14)

Equation (2.13) becomes

d

dt
(Ru)i = pT[F,gi

]
+ xTQgi− ẏi, i= 1, . . . ,m. (2.15)
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Since

[
F,gi

]= adF gi, (2.16)

(2.13) becomes

d

dt
(Ru)i = pT adF gi + xTQgi− ẏi, i= 1, . . . ,m. (2.17)

The derivation will be made utilizing the following.

Lemma 2.1. Let Y be a vector and let p be the adjoint optimal vector. Then,

d

dt

(
pTY

)= pT adF Y +
(
xTQ

)
Y. (2.18)

The time derivative is calculated along the trajectory of the system.

Lemma 2.1, Proposition 2.2, and Corollary 3.1 have been proved by Popescu [9].
Substituting the optimal control u� in (2.7), the optimal Hamiltonian is H�(x, p) =

H(x, p,u�).
Using the optimality condition y(k) = 0, k = 0,1,2, . . . , we obtain the following result.

Proposition 2.2. The necessary conditions of optimality for u�i are that along the optimal
Hamiltonian H�

[(
Ru�

)
i

](k) =
{
pT adk

F gi +
(
xTQ

)
adk−1

F gi +
d

dt

[(
xTQ

)
adk−2

F gi
]

+
d2

dt2

[(
xTQ

)
adk−3

F gi
]

+ ···+
dk−2

dtk−2

[(
xTQ

)
adF gi

]}
u=u�

,

k = 0,1,2, . . . , i= 1,2, . . . ,m.

(2.19)

Hence, the properties of the optimal control can be expressed as

(
Ru�

)
i = pTgi,

d

dt

(
Ru�

)
i = pT[ f + gu�,gi

]
+
(
xTQ

)
gi.

(2.20)

In the following we consider affine nonlinear systems with a nilpotent structure.

3. Optimal control for nilpotent operators

Corollary 3.1. If L satisfies the nilpotent conditions,

adk
L = 0, (3.1)

for some positive integer k, then it results that for any vector field Y ∈ adk−1
L L,

d

dt

[
pTY(x)

]= (xTQ
)
Y. (3.2)
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The following three cases are important.

Case 1 (commutative, k = 1). In this case one has

adL L=
{

[X ,Y], X ,Y ∈ L
}= 0. (3.3)

As the field of vectors is { f ,g1, . . . ,gm}, by (3.3) we obtain

[
f ,gi

]= 0, i= 1,2, . . . ,m,[
gi,gj

]= 0, i, j = 1,2, . . . ,m.
(3.4)

The relations (3.4) express the commutativity of the operations defining the Lie alge-
bras.

From relation (2.17), and by property adF gi = 0, one obtains

u�i =
∆i

det(R)
+Ci

1, i= 1,2, . . . ,m, (3.5)

where ∆i are the determinants resulting from the substitution in det(R) of the column∫
xTQgidt, i= 1,2, . . . ,m, for the column (i), and Ci

1 are integrating constants.
Let αi be the minors of the terms

∫
xTQgidt from ∆i.

Using Corollary 3.1, the expression of the optimal control becomes

u�i =
1

det(R)

m∑
k=1

αk
(
pTgk

)
+Ci

1, i= 1,2, . . . ,m. (3.6)

The constants for which the functional J� is optimal result from the conditions

dJ�

dCi
1
= 0, i= 1,2, . . . ,m. (3.7)

Case 2 (k = 2). In this case ad2
F gi = 0, then (2.19) becomes

d2

dt2

(
Ru�

)
i =
{(

xTQ
)

adF gi +
d

dt

[(
xTQ

)
gi
]}

u�
. (3.8)

After some calculations, (3.8) becomes

Rü� = (xTQ
)[
A(x)u� +B(x)

]
+

d

dt

(
xTQg

)
, (3.9)
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where

R= (ri j)= (r ji), i �= j, for i, j = 1,2, . . . ,m,

ai j(x)= [gi,gj]=−[gj ,gi], i > j, i, j = 1,2, . . . ,m,

bk(x)= [ f ,gk
]
, k = 1,2, . . . ,m,

A(x)=




0 a21 a31 a41 ··· am1

−a21 0 a32 a42 ··· am2

−a31 −a32 0 a43 ··· am3

−a41 −a42 −a43 0 ··· am4
...

...
...

...
. . .

...
−am1 −am2 −am3 ··· −am,m−1 0




,

B(x)= (b1,b2, . . . ,bm
)T

,

u� = (u�1 ,u�2 , . . . ,u�m
)T
.

(3.10)

Using Corollary 3.1, we get the following result:

Rü� = d

dt

(
pTA(x)

)
u� +

d

dt

(
pTB(x)

)
+

d

dt

(
xTQg

)
. (3.11)

The optimal control u�j ( j = 1,2, . . . ,m) is represented by the solution of the differen-
tial system (3.11).

Case 3 (k = 3). The optimality conditions (2.19) becomes

d3

dt3

(
Ru�

)
i =
{(

xTQ
)

ad2
F gi +

d

dt

[(
xTQ

)
adF gi

]
+

d2

dt2

[(
xTQ

)
gi
]}

u�
. (3.12)

We have

ad2
F gi =

[
F,
[
F,gi

]]=
[
F,
[
f ,gi

]
+

m∑
k=1

uk
[
gk,gi

]]
. (3.13)

Therefore

ad2
F gi =

[
f ,
[
f ,gi

]]
+

m∑
k=1

[
gk
[
f ,gi

]]
uk +

∑
j=1

[
f ,
[
gj ,gi

]]
uj

+
m∑
j=1

m∑
k=1

[
gk,
[
gj ,gi

]]
ujuk.

(3.14)

From Corollary 3.1, we can write

d3

dt3

(
Ru�

)
i =
{
d

dt

(
pT ad2

F gi
)

+
d

dt

[(
xTQ

)
adF gi

]
+

d2

dt2

[(
xTQ

)
gi
]}

u�
. (3.15)
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The optimal control u�i (i= 1,2, . . . ,m) can be calculated by numerical integration of
the nonlinear differential system

m∑
j=1

ri j ü j = pT

{[
f ,
[
f ,gi

]]
+

m∑
k=1

[
gk,
[
f ,gi

]]
u�k

+
m∑
j=1

[
f ,
[
gj ,gi

]]
u�j +

m∑
j=1

m∑
k=1

[
gk,
[
gj ,gi

]]
u�j u

�
k

}

+
(
xTQ

){[
f ,gi

]
+

m∑
k=1

[
gk,gi

]
u�k

}
+

d

dt

[(
xTQgi

)]
.

(3.16)

The third, fourth, and sixth terms from the right-side of (3.16) characterize the nilpo-
tent structure of the nonlinear systems considered.

For m= 1, the optimal control u� is the solution of the equation

Rü� = pT[g, [ f ,g]
]
u� + pT[ f , [ f ,g]

]
+
(
xTQ

)
[ f ,g] +

d

dt

[(
xTQ

)
g
]
. (3.17)

The results regarding the minimization of the quadratic functionals are used in solving
some problems of optimum representing the minimum energy criterion in the regulator
design. These cases correspond to the L2[t0, t f ] norm (resp., norm for the product space
U ×X).

4. On minimum energy control of affine nonlinear systems with a nilpotent structure

Next we consider the following performance index:

J
(
x0,u

)= 1
2

∫ t1

0
uTu dt+uT

(
t1
)
Θ0x(t) + xT

(
t1
)
ϕ0, (4.1)

where Θ0 and ϕ0 are constant (n×n) matrix and (n× 1) vector, respectively.
The performance index has to fulfill the following restrictions:

ẋ = f (x) +
m∑
i=1

gi(x)ui, x(0)= x0. (4.2)

We analyze the cases corresponding to the first, second, and third degree nilpotent
operators.

Case 1 (commutative, k = 1). In this case

pTY(x)= const where Y ∈ adk−1
L L, (4.3)

therefore

u̇∗i = pT adF gi = 0. (4.4)
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Consequently, the minimum fuel control for the nilpotent system, with adF = 0 is the
constant vector

u∗ = C1. (4.5)

In this case, the minimum performance index is given by

J∗
(
x0)= J

(
x0,u∗

)= 1
2

∫ t1

0
u∗Tu∗dt+ xT

(
t1
)
Θ0x

(
t1
)

+ xT
(
t1
)
ϕ0

= t1
2

m∑
i=1

(
Ci

1

)2
+ xT

(
t1
)
Θ0x

(
t1
)

+ xT
(
t1
)
ϕ0,

(4.6)

and the associated dynamic system becomes

ẋ = f (x) + g(x)C1, x(0)= x0. (4.7)

The system can be solved for x(t1) and thus J∗ is a function of Ci
1. For optimality of

Ci
1, we require that

dJ∗

dCi
1
= TCi

1 +ΘT
0 x
(
t1
)

+ϕ0 = 0, i= 1,2, . . . ,m. (4.8)

These constitute a set of m algebraic equations.

Case 2 (k = 2 or ad2
F = 0). In this case the optimal control is given by

ü∗i (t)= pT ad2
F gi = 0. (4.9)

This system admits the solution

u∗i (t)= C1
2 +C2

2t, (4.10)

where Ck
2 (k = 1,2) are constants.

Case 3 (k = 3 or ad3
F = 0). Here ad3

F gi = 0 and we obtain

u∗(3)
i = 0, i= 1,2, . . . ,m. (4.11)

Using Corollary 3.1, we have

ü∗i = ai +
m∑
j=1

biju
∗
j +

m∑
k=1

ciku
∗
k +

m∑
j=1

m∑
k=1

dijku
∗
j u
∗
k , (4.12)

where ai, bij , c
i
k, dijk are constants defined by

ai = pT
[
f , [ f ,g]

]
,

bij = pT
[
f ,
[
gj ,gi

]]
,

cik = pT
[
gk,
[
f ,gi

]]
,

dijk = pT
[
gj ,
[
gk,gi

]]
.

(4.13)
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This set of m nonlinear coupled second-order differential equations may be solved for
u∗i using numerical integration techniques.

For m= 1 we have bij = dkjk = 0, then the optimal control is given by

u� = C1 exp
(
C3t
)

+C2 exp
(−C3t

)
+C4, (4.14)

with Ci (i= 1, . . . ,4) constants.

5. Application to bilinear systems

We consider the bilinear system

ẋ = Ax+uBx, x
(
t0
)= x0, (5.1)

where x ∈ Rn and u is a scalar control, A, B are (n× n) constant matrices. The perfor-
mance index is given by

J = 1
2

∫ t1

0
u2dt+ xT

(
t1
)
Θ0x

(
t1
)

+ xT
(
t1
)
ϕ0, (5.2)

where final time t1 is specified.
By considering the Lie algebra M(A,B) generated by A and B, when M(A,B) is a nilpo-

tent, we can obtain a simple method to determine the optimal control.

Case 1. If [A,B]= AB−BA= 0 (i.e., if A and B commute), then the optimal control u�

is constant. By Corollary 3.1 we have

u̇� = 0. (5.3)

Then

J
(
u�
)= 1

2
u�2t1 + xT

(
t1
)
Θ0x

(
t1
)

+ xT
(
t1
)
ϕ0. (5.4)

By

ẋ = (A+u�B
)
x,

x
(
t1
)= exp

((
A+u�B

)
t1
)
x0,

(5.5)

we have

J
(
u�
)= 1

2
u�2t1 + xT0 exp

((
AT +u�BT

)
t1
)
Θ0 exp

((
A+u�B

)
t1
)
x0

+ xT0 exp
((
AT +u�BT

)
t1
)
ϕ0.

(5.6)

From here, by condition

dJ
(
u�
)

du�
= 0, (5.7)

one can determine the optimal control u�.
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Case 2. In this case if M(A,B) is nilpotent with (adM(A,B))2 = 0 (i.e., [[A,B],A]= [[A,
B],B]= 0), then the optimal control of the problem takes the form (see (4.1))

u� = c1 + c2t, ci = const (i= 1,2). (5.8)

For the optimality of ci we require

dJ�

dci
= 0, i= 1,2. (5.9)

Case 3. If (adM(A,B))3 = 0 (i.e., [[[A,B],A],A] = [[[A,B],B],A] = [[[A,B],A],B] =
[[[A,B],B],B]= 0), the optimal control u� is the solution of the equation

ü� = c1 + c2u
�, (5.10)

where

c1 = pT
[
A, [A,B]

]
, c2 = pT

[
B, [A,B]

]
. (5.11)

The general solution of (5.10) is

u�(t)=



k1

(
ek2t − e−k2t − c1

c2

)
if c2 �= 0,

1
2
c1t

2 + c3t+ c4 if c2 = 0,

(5.12)

where k2 is the solution of the characteristic equation k2
2 = c2.

6. Conclusions

We have considered the optimal control problem for the class of affine nonlinear sys-
tems under investigation such that the Lie algebra generated by the system vector fields is
nilpotent. The key for optimal control u� are (2.19) representing a hierarchy for the nec-
essary conditions of u�. These equations play an important role in obtaining the open-
loop optimal control u�(t) at least for k = 1,2,3 which were studied. The optimal control
determination of nonlinear system with a nilpotent structure minimizing the quadratic
functionals generalizes the results of Liu et al. [6] and Banks and Yew [1], respectively,
regarding the energy minimization of the affine nonlinear and bilinear systems.

Acknowledgment

This work was partially supported by the PNCDI Grant 31032, Romanian Space Agency.

References

[1] S. P. Banks and M. K. Yew, On the optimal control of bilinear systems and its relation to lie
algebras, Internat. J. Control 43 (1986), no. 3, 891–900.

[2] H. Bourdache-Siguerdidjane, On applications of a new method for computing optimal nonlinear
feedback controls, Optimal Control Appl. Methods 8 (1987), no. 4, 397–409.



M. Popescu and A. Dumitrache 475

[3] H. Bourdache-Siguerdidjane and M. Fliess, Optimal feedback control of nonlinear systems, Au-
tomatica J. IFAC 23 (1987), no. 3, 365–372.

[4] A. Bressan, Local asymptotic approximation of nonlinear control systems, Internat. J. Control 41
(1985), no. 5, 1331–1336.

[5] H. Hermes, Nilpotent approximations of control systems and distributions, SIAM J. Control Op-
tim. 24 (1986), no. 4, 731–736.

[6] J.-S. Liu, K. Yuan, and W.-S. Lin, On minimum-fuel control of affine nonlinear systems, IEEE
Trans. Automat. Control 34 (1989), no. 7, 767–770.
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