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Abstract – We establish existence, derive necessary conditions, and construct and test
an algorithm for the maximization of a column’s Euler buckling load under a variety
of boundary conditions over a general class of admissible designs. We prove that sym-
metric clamped–clamped columns possess a positive first eigenfunction and introduce a
symmetric rearrangement that does not decrease the column’s buckling load. Our neces-
sary conditions, expressed in the language of Clarke’s generalized gradient [10], subsume
those proposed by Olhoff and Rasmussen [25], Masur [22], and Seiranian [34]. The work
of [25], [22], and [34] sought to correct the necessary conditions of Tadjbakhsh and Keller
[37] who had not foreseen the presence of a multiple least eigenvalue. This remedy has
been hampered by Tadjbakhsh and Keller’s miscalculation of the buckling loads of their
clamped-clamped and clamped–hinged columns. We resolve this issue in the appendix.

In our numerical treatment of the associated finite dimensional optimization problem
we build on the work of Overton [26] in devising an efficient means of extracting an ascent
direction from the column’s least eigenvalue. Owing to its possible multiplicity this is
indeed a nonsmooth problem and again the ideas of Clarke [10] are exploited.

1. Introduction

We recall Todhunter’s formulation [38, p. 66] of the following problem of Lagrange,

“To find the curve which by its revolution about an axis in
its plane determines the column of greatest efficiency.”

For columns of unit length and volume, efficiency here denotes the structure’s resistance
to buckling under axial compression. When λ is the magnitude of the axial load and u the
resulting transverse displacement we postulate the potential energy

∫ 1

0

EI|u′′|2 dx − λ

∫ 1

0

|u′|2 dx

with the two terms measuring bending and elongation respectively. Here I is the second
moment of area of the column’s cross section and E is its Young’s modulus. For sufficiently
small λ, the minimum of this potential energy, over all admissible displacements, is zero.
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The (Euler) buckling load of the column is the greatest λ, call it λ1, for which this minimum
is zero. That is,

λ1 = inf
u∈V

∫ 1

0
EI|u′′|2 dx

∫ 1

0
|u′|2 dx

(1.1)

where V is a closed subspace of H2, the space of L2 functions on the interval (0, 1) with
first and second distributional derivatives in L2, distinguished by the choice of boundary
conditions. The choice that has generated the greatest interest is the clamped-clamped
condition u(0) = u′(0) = u(1) = u′(1) = 0. With the corresponding V denoted by H2

0 it
is not difficult to show that the infimum in (1.1) is attained at some u1 ∈ H2

0 . First order
necessary conditions then require that u1 satisfy

∫ 1

0

EIu′′
1v′′ dx = λ1

∫ 1

0

u′
1v

′ dx, ∀ v ∈ H2
0 . (1.2)

When I and E are smooth it follows from (1.2) that

−(EIu′′
1)′′ = λ1u

′′
1 , u1(0) = u′

1(0) = u1(1) = u′
1(1) = 0. (1.3)

With this we recognize (1.1) as Rayleigh’s principle for the least eigenvalue of (1.3) and u1

as an associated first eigenfunction. For the problem of Lagrange the Young’s modulus is
assumed constant and, as the column is a solid of revolution, each cross section’s second
moment of area is simply a constant multiple of the square of its area, A, i.e., I(x) = cA2(x).
Fixing our attention on columns of unit volume, we require

∫ 1

0

A dx = 1. (1.4)

We have reduced the problem of Lagrange to the search for that A which, subject to (1.4),
maximizes the λ1 of (1.1). This problem, with clamped-clamped boundary conditions, was
first attacked in 1962 by Tadjbakhsh and Keller [37] in the continuation of work Keller [20]
had begun at the suggestion of Clifford Truesdell. The work of [37] hinges on the necessary
condition that the best A, and its corresponding eigenfunction u, satisfy

A4|u′′|2 = A3 (1.5)

along the entire column. This was obtained on formally differentiating a second order
analog (see equation (2.5)) of (1.3) with respect to A subject to the integral constraint.
Upon reconciling (1.3) and (1.5), Tadjbakhsh and Keller arrived at the representation

A(x) = 4
3

sin2 θ(x), −π/2 ≤ θ ≤ 3π/2, (1.6)

θ(x) − 1
2 sin 2θ(x) + π/2 = 2πx, 0 ≤ x ≤ 1.

The most striking aspect of this claim is that it requires the cross sectional area to vanish
at 1/4 and 3/4. This result should however come as no surprise, for implicit in (1.5) is
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the assumption that the optimal buckling load is simple, i.e., that the corresponding space
of buckled configurations is one dimensional. This requires the optimal column to buckle
in much the same way as the uniform column (A ≡ 1), the first eigenfunction of which
is U(x) = 1 − cos(2πx). The fact that A vanishes at the inflection points of U agrees
then with the heuristic (suggested by (1.1)) that the optimal column need be thick only in
regions where it bends, i.e., where the magnitude of the linearized curvature |u′′| is large.

Tadjbakhsh and Keller claimed 16π2/3 as the buckling load of the resulting column.
It was not until 1977 that Olhoff and Rasmussen [25], observing that (1.3) does not exclude
multiple eigenvalues, noted that as the least eigenvalue does not vary smoothly with A at
points where its multiplicity exceeds one, the formal differentiation in [37] would be hard
to justify. As evidence that Tadjbakhsh and Keller had indeed taken the wrong course,
Olhoff and Rasmussen claimed, on the basis of numerical work, 30.51 for the buckling load
of the column constructed according to (1.6). Unfortunately, they neglected to describe
the means by which this value was arrived at. Indeed the fact that A vanishes at 1/4 and
3/4 introduces computational difficulties. Although they did go on to suggest how 16π2/3
was incorrectly obtained, a number of workers have remained unconvinced, e.g., Myers
and Spillers [24] and Barnes [4]. Upon fleshing out the relevant remarks of Olhoff and
Rasmussen we shall see, in work relegated to an appendix, that the buckling load for the
column proposed by Tadjbakhsh and Keller does not exceed π2/3. These same arguments
will serve to demonstrate that Tadjbakhsh and Keller’s best clamped-hinged column also
has a much lower buckling load than thought previously.

Having concluded that differentiating (1.3) would lead to less than optimal columns,
Olhoff and Rasmussen presented a ‘bimodal formulation’ of the problem of Lagrange, i.e.,
one which would accommodate double eigenvalues. Their subsequent necessary condition
paired the best A with two corresponding linearly independent eigenfunctions u, v and a
scalar t ∈ [0, 1] so that

A
(

t|u′′|2 + (1 − t)|v′′|2
)

= 1, (1.7)

along the entire column. On implementing an algorithm that enforced this optimality con-
dition, Olhoff and Rasmussen arrived at a column whose cross sectional area was positive
throughout and which could withstand loads up to 52.3563. Their methods were however
no more rigorous than those of Tadjbakhsh and Keller, and moreover, solely on the basis
of claims, the latter still had the stronger column, for 52.3563 < 16π2/3. Those persuaded
by Olhoff and Rasmussen’s criticism of the work of Tadjbakhsh and Keller then set out to
put (1.7) on a solid foundation. Actually, they joined the discussion of the more general
problem: What conditions are necessary for a multiple eigenvalue to attain its extremum?
The greatest advances on this question have come in finite dimensions and lie in the ap-
parently little known work of Bratus and Seiranian [6]. These conditions, later discovered
independently in a more general form by Overton [26], will be discussed in detail in §5. For
now, we note that Bratus and Seiranian, upon applying their finite dimensional arguments
to the problem of Lagrange arrived at the conclusion that the best A, must, with two
corresponding orthogonal eigenfunctions u, v, satisfy

A(δ1|u′′|2 + δ2|v′′|2 + δ3u
′′v′′) = 1, where δ1δ2 ≥ δ2

3/4. (1.8)

This condition was also proposed by Masur [22] who, like Seiranian [34], went on to rep-
resent the best A via a system of transcendental equations. Their approximate solutions

3



to these systems are in good agreement, with respective buckling loads of 52.3564 and
52.3565, with that proposed by Olhoff and Rasmussen [25]. Note that (1.7) and (1.8),
with the introduction of a second buckling mode, possess mechanisms which, at least in
principle, rule out the possibility of columns with vanishing cross sectional area.

Our main contribution to the problem of Lagrange is essentially twofold. We employ
the generalized gradient of Clarke in (i) a rigorous derivation of the necessary conditions
(1.8) and (ii) the construction of an efficient algorithm to solve the associated finite di-
mensional optimization problem. Our initial focus on the clamped-clamped case will be
extended in §5 to each of the boundary conditions considered by Tadjbakhsh and Keller.

In our discussion of the various optimality criteria something has been conspicuously
lacking: the literature contains no proof of the existence of a best A for the problem of
Lagrange. Before filling this gap we establish a number of preliminary results and look to
a more general problem formulation.

2. The Optimal Design Problem

The moment I is more precisely the second moment of area of the cross section about
a line through its centroid normal to the plane of buckling. That is, denoting the cross
section by Ω(x) with centroid at the origin, if η is a unit normal to the plane of buckling
then

I(x) =

∫

Ω(x)

|ηT y|2 dy. (2.1)

When Ω is a circle, in fact when Ω is a regular polygon, this integral does not depend on
η, and one finds that I varies as the square of the cross-sectional area, A. On considering
so–called thin-walled columns we shall now see that I varies as an affine function of A.
On the lateral surface of a cylinder with circular cross section of constant radius R we
add a layer of variable thickness ρ(x) with ρ(x) ≤ εR, ε ≪ 1. Neglecting powers of
ρ greater than one we find I(x) = πR3ρ(x) + πR4 and A(x) = 2πRρ(x) + πR2. Taking
Ã(x) = A(x)−πR2/2 for our design variable we find I(x) = (R2/2)Ã(x). The effect of this
choice on the integral constraint is trivial. Of greater interest is that Ã, by construction,
must satisfy the pointwise bounds

πR2/2 ≤ Ã(x) ≤ πR2/2 + 2επR2. (2.2)

It is not difficult to continue this line of reasoning and collect a number of examples where
I varies as some power of A. We proceed then to consider the case where EI = σp for
some p > 0. Compelled by our examination of the previous special cases we admit those
σ in

ad = {σ ∈ L∞ : 0 < α ≤ σ(x) ≤ β,

∫ 1

0

σ(x) dx = 1}.

The weak formulation of the buckled column equation for σ ∈ ad is

∫ 1

0

σpu′′v′′ dx = λ

∫ 1

0

u′v′ dx, ∀ v ∈ H2
0 . (2.3)
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As σ ∈ L∞ and α > 0, (2.3) possesses the sequence of eigenvalues

0 < λ1(σ) ≤ λ2(σ) ≤ · · · ↑ ∞,

repeated according to their finite multiplicities and a corresponding sequence of eigenfunc-
tions {uk(σ)}∞k=1 ⊂ H2

0 , orthonormal in terms of the bilinear form associated with the right
side of (2.3). As H2

0 (0, 1) ⊂ C1([0, 1]) we find uk ∈ C1([0, 1]). Upon integrating by parts
on the right side of (2.3) we find that σpu′′

k differs from −λk(σ)uk by an affine function of
x. Hence, σpu′′

k ∈ C1([0, 1]), and, in fact

(σpu′′
k)(x) = (σpu′′

k)′(0)x + (σpu′′
k)(0) − λk(σ)uk(x), (2.4)

We collect those eigenfunctions corresponding to λ1(σ) in

E(σ) = span {uk(σ); λk(σ) = λ1(σ)},
a subspace of H2

0 with dimension equal to the multiplicity of λ1(σ). Implicit in Olhoff and
Rasmussen’s bimodal formulation is the assumption that this multiplicity is at most two.
Seiranian [34], has confirmed this through Kamke’s analysis of the second order problem
with nonseparated boundary conditions

w′′ + λσ−pw = 0, w(1) = w(0) + w′(0), w′(1) = w′(0). (2.5)

This is the strong version of (2.3) with w = σpu′′ and was first considered in our context by
Tadjbakhsh and Keller. Kamke, in [19, §4], proves that the multiplicity of each eigenvalue
of (2.5) is no greater than two. Equation (2.4) however, suggests an approach that applies
directly to the weak formulation.

If corresponding to λk(σ) there existed three linearly independent eigenfunctions
u1, u2, u3 then one could choose scalars a, b, c not all zero such that v = au1 + bu2 + cu3

satisfies, in addition to v(0) = v′(0) = v(1) = v′(1) = 0, the two conditions (σpv′′)′(0) = 0
and (σpv′′)(0) = 0. From (2.4) we conclude that v satisfies the homogeneous linear second
order equation with zero initial conditions

σp(x)v′′(x) + λk(σ)v(x) = 0, v(0) = v′(0) = 0.

As the only solution to this equation is the identically zero function we have established

Lemma 2.1. If σ ∈ ad then the multiplicity of λk(σ) is at most two.

As the least eigenvalue of the uniform column is 4π2 we find, as a consequence of the
monotonicity of the Rayleigh quotient, that

4π2αp ≤ λ1(σ) ≤ 4π2βp, ∀σ ∈ ad. (2.6)

Corresponding to the least eigenvalue λ1(σ) one expects a positive eigenfunction.
Indeed, this is the only type that Tadjbakhsh and Keller expected. To our knowledge
however, there is no proof that a positive first eigenfunction need exist. We remark that
on this point the oscillation theory of Kamke is insufficient, for it concludes only that
eigenfunctions corresponding to the least nonzero eigenvalue of (2.5) possess either three
or two zeros. This translates into either one or no zero(s) for eigenfunctions corresponding
to λ1(σ). We now improve on this situation in the case where σ is even (about 1/2), i.e.,
σ(x) = σ(1 − x).
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Theorem 2.2. If σ ∈ L∞ is even and admits a positive lower bound then there exists a
positive even eigenfunction corresponding to λ1(σ).

Proof: We exploit the essential idea in inverse iteration, a popular technique for comput-
ing the least eigenvalue and eigenvector of a symmetric matrix. In our context this idea
amounts to approximating the least eigenfunction by the solution of a related nonhomoge-
neous boundary value problem. Given v0 ∈ H2

0 we consider its expansion in the complete
set of eigenfunctions {uk(σ)},

v0(x) = v(x) +

∞
∑

k=m+1

akuk(x),

where m is the least integer for which λm(σ) < λm+1(σ) and v is an eigenfunction corre-
sponding to λ1(σ). From v0 we construct the sequence {vj} ⊂ H2

0 according to

∫ 1

0

σpv′′
j φ′′ dx = λ1(σ)

∫ 1

0

v′
j−1φ

′ dx, ∀φ ∈ H2
0 .

On expanding vj in {uk(σ)} one finds

vj(x) = v(x) +

∞
∑

k=m+1

ak

(

λ1(σ)

λk(σ)

)j

uk(x).

As λ1(σ) < λk(σ) for all k > m we find that vj converges pointwise to v as j → ∞. It
remains then to produce a v0 whose corresponding v is even and positive.

Our choice for v0 is the first eigenfunction of the uniform column, i.e., 1 − cos(2πx),
a positive even function with exactly two inflection points.

Lemma 2.3. Let f be an even member of L∞ with a positive lower bound and v be a
positive, even member of H2

0 with precisely two inflection points. If u ∈ H2
0 satisfies

∫ 1

0

fu′′φ′′ dx =

∫ 1

0

v′φ′ dx, ∀φ ∈ H2
0 (2.7)

then u is positive, even, and possesses precisely two inflection points.

Proof of Lemma 2.3: Upon integrating by parts on the right of (2.7) we find that fu′′

differs from v by an affine function. Dividing by f and integrating twice gives

u(x) =

∫ x

0

(x − y)(ay + b − v(y))g(y) dy (2.8)

where g = 1/f and a and b are determined by u(1) = 0 and u′(1) = 0, i.e., by

a

∫ 1

0

xg(x) dx + b

∫ 1

0

g(x) dx =

∫ 1

0

v(x)g(x) dx (2.9)

a

∫ 1

0

x2g(x) dx + b

∫ 1

0

xg(x) dx =

∫ 1

0

xv(x)g(x) dx (2.10)
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That these equations uniquely determine a and b follows from Hölder’s inequality

(
∫ 1

0

xg(x) dx

)2

<

∫ 1

0

g(x) dx

∫ 1

0

x2g(x) dx.

Our hypotheses in fact allow us to conclude that

a = 0, b =

∫ 1

0
v(x)g(x) dx

∫ 1

0
g(x) dx

.

This obviously satisfies (2.9). Regarding (2.10), recall that every even function satisfies
∫ 1

0
φ(x) dx = 2

∫ 1

0
xφ(x) dx. Consequently,

b =

∫ 1

0
v(x)g(x) dx

∫ 1

0
g(x) dx

=
2

∫ 1

0
xv(x)g(x) dx

2
∫ 1

0
xg(x) dx

=

∫ 1

0
xv(x)g(x) dx

∫ 1

0
xg(x) dx

satisfies (2.10) as well. Labeling s(x) = (b − v(x))g(x), equation (2.8), u(1) = 0, and
u′(1) = 0 take the form

u(x) =

∫ x

0

(x − y)s(y) dy,

∫ 1

0

s(y) dy = 0,

∫ 1

0

ys(y) = 0.

With this and the fact that s is even we find

u(1 − x) =

∫ 1−x

0

(1 − x − y)s(y) dy

=

∫ 1

0

(1 − x − y)s(y) dy −
∫ 1

1−x

(1 − x − y)s(y) dy

=

∫ x

0

(x − y)s(y) dy = u(x).

Regarding the convexity/concavity of u we observe that f(x)u′′(x) = b − v(x). That
b − v(x) has at least two zeros follows from b > 0, v(0) = v(1) = 0, and 0 < b < ‖v‖∞.
For b − v(x) to possess more than two zeros v must admit a local minimum, a condition
that requires of v no less then four inflection points. These zeros, say x0 and 1 − x0, are
the inflection points of u. As u vanishes at 0 and is convex on (0, x0) it must be positive
there, and, by symmetry, positive on (1 − x0, 1) as well. As u is positive at x0 and 1 − x0

while concave between these points it must be positive on this interval as well.

It now follows that {vj} is a sequence of positive even functions. The convergence of
vj to v being pointwise we conclude that v is itself a positive even function.

When σ is even and λ1(σ) is simple we now have, up to a scalar multiple, a unique
positive even first eigenfunction, call it u1. When λ1(σ) is double, in addition to u1, there

exists a first eigenfunction u2 for which
∫ 1

0
u′

1u
′
2 dx = 0. Consequently, u2 is not even, and
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as u1 and u2 span E(σ) we may conclude that when σ is even, there exists, up to a scalar
multiple, a unique positive even first eigenfunction.

Though Theorem 2.2 applies only to even functions we shall see in the next re-
sult that this suffices for our purposes. Note that Lemma 2.3 states that the operator
(d2/dx2(f d2/dx2))−1(−d2/dx2) leaves a subcone of the positive H2

0 functions invariant
when f is even. This cone is however too ‘thin’ to allow one to invoke Krein-Rutman
arguments. Regarding possible improvements of Lemma 2.3 we note that even the con-
stant coefficient operator (d4/dx4)−1(−d2/dx2) does not leave the positive H2

0 functions
invariant. To see this we solve for b in (2.9-10) with g = 1,

b = 4

∫ 1

0

v dx − 6

∫ 1

0

xv dx.

Taking for v any smooth positive function supported in (2/3, 1) produces b < 0. As
u(0) = u′(0) = 0 and u′′(0) = b we conclude that u is not positive.

Theorem 2.4. Given σ ∈ ad there exists an even σ∗ ∈ ad for which λ1(σ) ≤ λ1(σ∗).

Proof: There is a very simple argument when 0 < p ≤ 1. Given a function φ on (0, 1)
we denote its even part by φs(x) = 1

2 (φ(x) + φ(1 − x)). Consider the even function

σ̃ ≡ ((σp)s)
1/p and its corresponding even first eigenfunction ũ. With the normalization

‖ũ′‖ = 1 we find

λ1(σ) ≤
∫ 1

0

σp|ũ′′|2 dx =

∫ 1

0

(σp)s|ũ′′|2 dx =

∫ 1

0

σ̃p|ũ′′|2 dx = λ1(σ̃). (2.11)

As t 7→ t1/p is convex we observe that

σ̃(x) =

(

σp(x)

2
+

σp(1 − x)

2

)1/p

≤ σ(x)

2
+

σ(1 − x)

2
= σs(x). (2.12)

Now σs ∈ ad and (2.11-12) imply that λ1(σ) ≤ λ1(σs). Our attempts to argue in a similar
fashion for p > 1 with σ̃ ≡ ((σ−p)s)

−1/p and (2.5) have been thwarted by the fact that
λ1(σ) corresponds to the third eigenvalue of (2.5). What is needed is a rearrangement of
σ that echoes the curvature of its corresponding first eigenfunction. To make this precise
we first need the following extension of Lemma 2.3.

Recall that a function φ is said to be odd about the point (x0, φ(x0)) on some interval
containing x0 when

φ(x0) − φ(x0 − x) = φ(x0 − x) − φ(x0)

for each x on the given interval. If, in addition to the original hypotheses of Lemma 2.3,
we assume that f and v when restricted to (0, 1/2) are even about 1/4 and odd about
(1/4, v(1/4)) respectively, we conclude that u, when restricted to (0, 1/2), is odd about
(1/4, u(1/4)).

To see this we recall that
∫ 1

0
u′′ dx = 0 and u′′ is even about 1/2, hence

∫ 1/2

0
u′′ dx = 0.

For the remainder of this paragraph all functions will be restricted to (0, 1/2). Recall as
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well that u′′ = (b − v)/f , the quotient of a function odd about (1/4, b − v(1/4)) and
a function even about 1/4. Hence u′′ is odd about (1/4, b − v(1/4)). The condition that
∫ 1/2

0
u′′ dx = 0 now forces b = v(1/4). As u′′ is now odd about (1/4, 0) and u(0) = u′(0) = 0

we easily conclude that u is indeed odd about (1/4, u(1/4)).
If σ∗ is now even about 1/2 and even about 1/4 when restricted to (0, 1/2) then

beginning the iteration of Theorem 2.2 with a v0 that is even about 1/2 and odd about
(1/4, v0(1/4)), e.g., 1 − cos(2πx), will produce u∗, a positive eigenfunction corresponding
to λ1(σ∗) that is even about 1/2 and odd about (1/4, u∗(1/4)) on (0, 1/2). We immediately
note that σp

∗ and |u′′
∗ |2 are similarly ordered, i.e.,

(σp
∗(x1) − σp

∗(x2))(|u′′
∗(x1)|2 − |u′′

∗(x2)|2) ≥ 0 ∀x1, x2 ∈ (0, 1). (2.13)

Given σ ∈ ad we now define its rearrangement σ∗.

ℓc = {x ∈ (0, 1) : σ(x) ≥ c}

ℓ∗c =

{

{x ∈ R : |x − 1/2| ≤ 1/4|ℓc|} if ℓc 6= ∅
∅ otherwise

σ∗(x) =







σ∗(1/2 − x), if 0 ≤ x ≤ 1/4
sup {c ∈ R : x ∈ ℓ∗c}, if 1/4 ≤ x ≤ 3/4
σ∗(1 − x), if 3/4 ≤ x ≤ 1.

In essence, this distributes half of σ’s mass in a symmetrically decreasing fashion about
1/2 on (1/4, 3/4), completing the rest via symmetry. By construction these two functions
are equimeasurable, i.e.,

|{x ∈ (0, 1) : σ(x) ≥ c}| = |{x ∈ (0, 1) : σ∗(x) ≥ c}|, ∀ c ∈ R,

and consequently, σ∗ ∈ ad. We are now in position to apply the following result of Hardy,
Littlewood and Pólya, see Pólya and Szegö [31, p. 153].

If f and f1 are equimeasurable, g and g1 are equimeasurable, f ∈ Lq, g ∈ Lq′

, and f1

and g1 are similarly ordered, then

∫ 1

0

fg dx ≤
∫ 1

0

f1g1 dx. (2.14)

Given σ ∈ ad we now rearrange it as above into σ∗ and consider its corresponding u∗ ∈
E(σ∗). Upon normalizing ‖u′

∗‖ = 1 we find

λ1(σ) ≤
∫ 1

0

σp|u′′
∗ |2 dx ≤

∫ 1

0

σp
∗ |u′′

∗ |2 dx = λ1(σ∗).

The first inequality is a consequence of Rayleigh’s principle, the second, of (2.13-14).

The stage now set, we address, in the next two sections, existence and necessary
conditions for the generalized problem of Lagrange

sup
σ∈ad

λ1(σ). (2.15)
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3. Existence

We adopt the direct method of the calculus of variations and neglect to relabel sub-
sequences. Denote by λ̂1 the value of (2.15) and by {σn} ⊂ ad an associated maximizing

sequence, i.e., λ1(σn) ↑ λ̂1. Without loss we may assume that each σn is even about 1/2.
We abbreviate λ1(σn) to λ1,n and denote by u1,n a corresponding positive eigenfunction

for which ‖u′
1,n‖ = 1 and

∫ 1

0
σp

n|u′′
1,n|2 dx = λ1,n where ‖ · ‖ denotes the L2 norm. These

normalizations, in light of (2.6), impose a uniform H2 bound on the sequence {u1,n}. As
a result, there exists a subsequence with weak H2 limit u ∈ H2

0 . The imbedding of H2

in H1 being compact, we find ‖u′‖ = 1, and so u is not identically zero. The natural

question is whether λ̂1 and u are indeed an eigenvalue and eigenfunction for some column
with corresponding σ ∈ ad. If so, then σ is necessarily the desired optimal design. This
question was first addressed by Senatorov [35] in the context of a second order problem. He
discovered that one must consider weak convergence of the reciprocals of the coefficients
of the highest order term. This observation continues to hold for fourth order problems,
the details of which we now sketch.

Consider the weak formulation
∫ 1

0

σp
nu′′

1,nv′′ dx = λ1,n

∫ 1

0

u′
1,nv′ dx ∀ v ∈ H2

0 . (3.1)

Our previous remarks reveal that the right hand side converges to λ̂1

∫ 1

0
u′v′ dx for each

such v. Regarding the left side we define ξn = σp
nu′′

1,n, and, as in (2.4), deduce from (3.1)

ξn(x) = (σp
nu′′

1,n)(0) − λ1,nu1,n(x),

As the sequences {ξn} and {u1,n} are uniformly bounded in L2 so to must be {(σp
nu′′

1,n)(0)}.
Consequently, ξn converges strongly in L2 to some function ξ. The left side of (3.1)

therefore converges to
∫ 1

0
ξv′′ dx. It remains to characterize this ξ. Recalling the pointwise

bounds on the σn we may assume that σ−p
n converges in the weak* topology of L∞ to some

function µ. Thus, ξnσ−p
n converges weakly in L2 to µξ. But ξnσ−p

n = u′′
1,n, whose weak L2

limit is u′′. Hence, ξ = u′′µ−1. Defining σ = µ−1/p we may pass to the limit in (3.1) and
obtain

∫ 1

0

σpu′′v′′ dx = λ̂1

∫ 1

0

u′v′ dx ∀ v ∈ H2
0 . (3.2)

As symmetry is preserved under weak ∗ convergence we find σ to be even. In addition,
the pointwise convergence of u1,n to u leaves u positive and even. Now (3.2) implies that

λ̂1 = λj(σ) for some j. That j = 1 follows from the existence of a positive even first
eigenfunction for σ and the fact that u is itself positive and even. We need only determine
whether σ ∈ ad. One may verify the pointwise bounds without trouble. With respect to
the integral constraint we consider the convex function f : R → R, f(t) = t−1/p. The

integral functional ϕ 7→
∫ 1

0
f(ϕ(x)) dx is then weak* lower semicontinuous on L∞, see e.g.,

Dacorogna [12, Theorem 1.1]. As 1/σp
n converges weak* to 1/σp, this allows us to conclude

that
∫ 1

0

σ dx =

∫ 1

0

f(1/σp) dx ≤ lim inf

∫ 1

0

f(1/σp
n) dx = lim

∫ 1

0

σn dx = 1. (3.3)
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If indeed equality does not hold in (3.3) then there exists an even σ̂ ∈ ad such that
σ̂(x) ≥ σ(x) for almost every x ∈ (0, 1). From Rayleigh’s principle we then easily deduce
λ1(σ̂) ≥ λ1(σ). We have now proven

Theorem 3.1. There exists an even σ̂ ∈ ad for which λ1(σ) ≤ λ1(σ̂) for every σ ∈ ad.

Our choice of ad was motivated by our interest in the “shape” of the strongest column.
Theorem 3.1 however, may also be applied in the search for the “composition” of the
strongest column. For example, consider the design problem where one must combine two
materials in fixed proportion so as to maximize the buckling load of the resulting column.
The set of admissible designs is then

adE = {αχ(x) + β(1 − χ(x)) : χ is the characteristic

function of a subset of (0,1) with measure γ},

where α and β are the Youngs moduli of the respective materials with γ the volume fraction
of the first. In this context, Theorem 3.1 states that λ1 attains its maximum on the weak*
closure of adE , i.e., on

ad∗
E = {αθ(x) + β(1 − θ(x)) : 0 ≤ θ(x) ≤ 1,

∫ 1

0

θ dx = γ}.

4. Necessary Conditions

We search now for a characterization of our optimal design, σ̂. Typical of many
such problems, two distinct approaches are possible. Taking advantage of the variational
structure, the so–called direct approach attempts to swap the order of the limits in

λ̂1 = λ1(σ̂) = sup
σ∈ad

inf
u∈H2

0

∫ 1

0
σp|u′′|2 dx

∫ 1

0
|u′|2 dx

,

inferring necessary conditions from the resulting saddle point. The indirect approach
strives to determine σ̂ through knowledge of the tangents to the graph of σ 7→ λ1(σ) and the
normals to ad. Our implementation of these two approaches intersect in their reliance on
(i) recent work of Auchmuty [2] on dual variational principles and (ii) a lopsided minimax
principle.

Proposition 4.1. λ−1
1 (σ) = sup

u∈H2

0

A(σ, u), A(σ, u) =
√

2‖u′‖ − 1
2

∫ 1

0

σp|u′′|2 dx.

u 7→ A(σ, u) attains its maximum only on those u ∈ E(σ) for which ‖u′‖ =
√

2λ−1
1 (σ).

Proof: In addition to being bounded above by 2λ−1
1 (σ), the map u 7→ A(σ, u) is coercive and

weakly upper semicontinuous on H2
0 and therefore attains its maximum at some u ∈ H2

0 .
Necessarily, D2A(σ, u), the Gâteaux derivative of u 7→ A(σ, u) at u, must vanish. That is,

∫ 1

0

σpu′′v′′ dx =
√

2‖u′‖−1

∫ 1

0

u′v′ dx ∀ v ∈ H2
0 .
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As a result, u is an eigenfunction corresponding to the eigenvalue
√

2‖u′‖−1. As u maxi-
mizes u 7→ A(σ, u), this must be the least eigenvalue, λ1(σ).

Proposition 4.2. Consider F : X×Y → R where X and Y are topological vector spaces
and assume that x 7→ F (x, y) is concave and upper semicontinuous while y 7→ F (x, y)
is convex and lower semicontinuous. If there exists a yo ∈ Y and co ∈ R such that
{x ∈ X ; F (x, yo) ≥ co} is compact and co < inf

y∈Y
sup
x∈X

F (x, y) then

sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

sup
x∈X

F (x, y).

Proof: This is a weakening of Theorem 3.7, Chapter 2, in Barbu and Precupanu [3].

It is with the indirect approach that we shall meet with the greatest success. For
prior attempts in this context see Haug and Rousselet [18] and Choi and Haug [7]. Our
principal tool is the generalized gradient of Clarke [10].

For a real valued Lipschitz function F on a Banach space X we consider the generalized
directional derivative of F at x in the direction v,

F o(x; v) ≡ lim sup
y → x
t ↓ 0

F (y + tv) − F (y)

t
.

Denoting the dual of X by X∗ and x∗(x) by 〈x∗, x〉 when x∗ ∈ X∗ and x ∈ X , Clarke’s
generalized gradient of F at x is the nonempty, convex, weak* compact set

∂F (x) ≡ {ξ ∈ X∗; F o(x; v) ≥ 〈ξ, v〉 ∀v ∈ X}.
We demonstrate that σ 7→ λ−1

1 (σ) is Lipschitz on Σ = {σ ∈ L∞; ‖σ̂ − σ‖∞ < α/2}.
Choose σ1, σ2 ∈ Σ such that λ−1

1 (σ1) > λ−1
1 (σ2) and note that for u1 ∈ ArgmaxA(σ1, ·),

the set on which u 7→ A(σ1, u) attains its maximum,

|λ−1
1 (σ1) − λ−1

1 (σ2)| ≤ |A(σ1, u1) −A(σ2, u1)|

≤
∫ 1

0

|σp
1 − σp

2 ||u′′
1 |2 dx

≤ ‖u′′
1‖2‖σp

1 − σp
2‖∞ ≤ α−2pp|2β|p−1‖σ1 − σ2‖∞.

Without loss we assume that λ1(σ̂) is a double eigenvalue. Then E(σ̂) is two dimen-

sional and ArgmaxA(σ̂, ·) is the intersection of E(σ̂) with the sphere ‖u′‖ =
√

2λ̂−1
1 . It

will be convenient to choose a basis {û1, û2} for E(σ̂) for which
∫ 1

0
û′

iû
′
j dx = 2δij λ̂

−2
1 . For

then,
ArgmaxA(σ̂, ·) = {aû1 + bû2; a2 + b2 = 1}. (4.1)

Regarding the Gâteaux derivative of σ 7→ A(σ, u) at σ̂ in the direction η we have

〈D1A(σ̂, u), η〉 = −p
2

∫ 1

0

ησ̂p−1|u′′|2 dx. (4.2)

Denoting convex hull by ‘co’, the sense in which the gradient of a maximum is the maximum
of the gradients is
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Theorem 4.3. ∂λ−1
1 (σ̂) = co {−p

2 σ̂p−1(aû′′
1 + bû′′

2)2; a2 + b2 = 1}.
Proof: From (4.1) and (4.2) this set is precisely

co {D1A(σ̂, u); u ∈ ArgmaxA(σ̂, ·)}. (4.3)

Our claim does not fit neatly into Clarke’s result [10, Theorem 2.8.2] on the generalized
gradient of a pointwise maximum. The contortions involved in fitting our problem to
Clarke’s hypotheses are no less difficult, and far less instructive, than an independent
proof.

Let us denote the set in (4.3) by Ξ. We show that Ξ ⊂ ∂λ−1
1 (σ̂). For ξ ∈ Ξ and

η ∈ L∞

〈ξ, η〉 =

n
∑

i=1

µi〈D1A(σ̂, ui), η〉

=
n

∑

i=1

µi lim
t↓0

A(σ̂ + tη, ui) −A(σ̂, ui)

t

≤
n

∑

i=1

µi lim sup
t↓0

λ−1
1 (σ̂ + tη) − λ−1

1 (σ̂)

t

≤ (λ−1
1 )o(σ̂; η),

hence ξ ∈ ∂λ−1
1 (σ̂).

Regarding the reverse inclusion we define

g(σ; η) = max
ξ∈Ξ

〈ξ, η〉, σ ∈ Σ, η ∈ L∞

and prove
(λ−1

1 )o(σ; η) ≤ g(σ; η).

Select σn → σ in L∞ and tn ↓ 0 in R such that

qn ≡ λ−1
1 (σn + tnη) − λ−1

1 (σn)

tn

converges to (λ−1
1 )o(σ; η). Select un ∈ ArgmaxA(σn + tnη, ·) and note that

qn ≤ A(σn + tnη, un) −A(σn, un)

tn

with the right side equal to 〈D1A(σn + tnη, un), η〉, for some tn ∈ (0, tn), by the Mean
Value Theorem. As σn + tnη → σ in L∞ and un ∈ ArgmaxA(σn + tnη, ·) we recall from
our work in Theorem 3.1 that un ⇀ u ∈ ArgmaxA(σ, ·) in H2 and (σn + tnη)pu′′

n → σpu′′

in L2, and hence u′′
n → u′′ in L2, i.e., un → u in H2. Recalling (4.2) this establishes

〈D1A(σn + tnη, un), η〉 → 〈D1A(σ, u), η〉
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with u ∈ ArgmaxA(σ, ·). As a result,

(λ−1
1 )o(σ; η) = lim

n→∞
qn ≤ 〈D1A(σ, u), η〉 ≤ g(σ; η).

If ζ is now an element of ∂λ−1
1 (σ̂) then g(σ̂; η) ≥ 〈ζ, η〉 for each η ∈ L∞. Consequently,

0 = min
η∈L∞

max
ξ∈Ξ

〈ξ − ζ, η〉.

Noting that Ξ is closed and bounded in L1 and finite dimensional (it lies in the span of

{|û′′
1 |2, û′′

1 û′′
2 , |û′′

2 |2}) we find it compact in (L∞)∗. Invoking Proposition 4.2 yields a ξ̂ ∈ Ξ
for which

〈ξ̂ − ζ, η〉 = 0 ∀ η ∈ L∞.

It follows that ζ = ξ̂ and so ∂λ−1
1 (σ̂) ⊂ Ξ.

This proof, though identical in outline to Clarke [10, Theorem 2.8.2], has exploited
additional properties of λ1 and A to make up for the missing hypotheses. Observe that
when λ1(σ̂) is simple the generalized gradient reduces to the singleton

∂λ−1
1 (σ̂) = {D1A(σ̂, û1)}.

As zero is not a tangent direction to λ−1
1 at σ̂, i.e., 0 6= ∂λ−1

1 (σ̂), we are compelled to
investigate the constraint set ad. Separating the equality from the inequality constraints
brings

C ≡ {σ ∈ L∞; α ≤ σ(x) ≤ β} and V (σ) ≡
∫ 1

0

σ dx.

As σ̂ minimizes σ 7→ λ−1
1 (σ) subject to σ ∈ C and V (σ) = 1 we deduce from the Lagrange

Multiplier Rule, [10, Theorem 6.1.1], that a nontrivial linear combination of elements in
∂λ−1

1 (σ̂) and ∂V (σ̂) is normal to C at σ̂. In particular,

(

ν1∂λ−1
1 (σ̂) + ν2∂V (σ̂)

)

∩ NC(σ̂) 6= ∅,

where ν1 ≤ 0, ν2
1 + ν2

2 > 0, and

NC(σ̂) = {ζ ∈ (L∞)∗;

∫ 1

0

(σ̂ − σ) dζ ≥ 0, ∀σ ∈ C}

is the cone of normals to C at σ̂. In light of our previous calculations, and the fact that
∂V (σ̂) = 1 ∈ L1, there exists a ξ̂ ∈ ∂λ−1

1 (σ̂) for which

∫ 1

0

(σ̂ − σ)(ν1ξ̂ + ν2) dx ≥ 0, ∀σ ∈ C. (4.4)
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Observing that ν1ξ̂ ≥ 0 we find that ν2 ≥ 0 requires, through (4.4), that σ̂ ≡ β, an
impossibility. Likewise, should ν1 = 0, (4.4) would require σ̂ ≡ α (since ν2 < 0). Taking
ℓ2 = ν2/ν1 we arrive at

∫ 1

0

(σ̂ − σ)(ξ̂ + ℓ2) dx ≤ 0, ∀σ ∈ C.

The subsequent reduction to pointwise optimality conditions follows a well known course,
see e.g., Cea and Malanowski [8]. In particular,

σ̂(x) = α ⇒ −ξ̂(x) ≤ ℓ2 (4.5)

α < σ̂(x) < β ⇒ −ξ̂(x) = ℓ2 (4.6)

σ̂(x) = β ⇒ −ξ̂(x) ≥ ℓ2 (4.7)

for almost every x ∈ (0, 1). To appreciate this result we must recall that ξ̂ ∈ ∂λ−1
1 (σ̂)

means

−ξ̂(x) = p
2

n
∑

i=1

tiσ̂
p−1(x)(aiû

′′
1(x) + biû

′′
2(x))2, where

ti ≥ 0,

n
∑

i=1

ti = 1, and a2
i + b2

i = 1.

On expanding this sum of squares, (4.6) becomes

σ̂p−1
(

δ1|û′′
1 |2 + δ2|û′′

2 |2 + δ3û
′′
1 û′′

2

)

= 1, where (4.8)

δ1 = p
2

n
∑

i=1

tia
2
i /ℓ2, δ2 = p

2

n
∑

i=1

tib
2
i /ℓ2, δ3 = p

n
∑

i=1

tiaibi/ℓ2.

Observing that δ1δ2 indeed dominates δ2
3/4, we have recovered (1.8), the necessary con-

dition of Bratus and Seiranian [6] and Masur [22]. If in fact δ1δ2 = δ2
3/4 then for

û ≡
√

δ1û1 +
√

δ2û2, equation (4.8) yields σ̂p−1|û′′|2 = 1, the optimality condition of
Tadjbakhsh and Keller. As û is an eigenfunction and therefore admits at least two inflec-
tion points the pointwise bounds must become active, i.e., σ̂p−1|û′′|2 = 1 can not hold on
the entire interval. Ignoring any bound constraints, Masur [22] and Seiranian [34] found
a σ and two orthogonal elements of E(σ) for which (4.8) holds with p = 2. This appears
to be the design obtained by Olhoff and Rasmussen [25] and, by all indications, the one
preferred by our algorithm as well (see §7 Fig. 1). It appears likely that in this case the
bound constraints are inactive due to the fact that where σ̂ is less than one, σ̂2 is much
less than one. As σ̂2 is the quantity that appears in the Rayleigh quotient we expect it
to be as large as possible. This suggests that σ̂ is bounded away from zero, independent
of α. This lower bound with the integral constraint together support the conjecture that
σ̂ is in fact bounded above as well. Hence, when α and β are respectively chosen below
and above these ‘natural’ bounds, condition (4.8) is free to stand on its own. Clearly these
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natural bounds must depend on p. In fact, we shall provide numerical evidence in §7 in
favor of the argument that the natural lower (upper) bound is an increasing (decreasing)
function of p for p > 1.

Unfortunately, it is not known whether (4.8) is a sufficient condition for optimality.
The proof of sufficiency offered by Tadjbakhsh and Keller [37] is incorrect. They proceed as
if λ1(σ) corresponds to the least eigenvalue of (2.5) and accordingly admit all functions that
satisfy the boundary conditions as test functions in a Rayleigh principle argument. In fact,
(2.5) possesses a double zero eigenvalue, hence only those functions that are orthogonal
to the first two eigenfunctions can be admitted. We remark that Ramm’s claim [32], that
Tadjbakhsh and Keller mistakenly applied Hölders inequality in their sufficiency proof, is
incorrect, though [37, §6 (25)] is only valid for n < 0.

Though (4.8) need not hold over the entire length of the column, we now show that
where it does hold it requires that σ̂ be smooth.

Theorem 4.4. If α < σ̂(x) < β for each x ∈ (a, b) ⊂ (0, 1) then σ̂ ∈ C∞(a, b).

Proof: We observed in (2.4) that

σ̂pû′′
i = li − λ̂1ûi, (4.9)

where li is an affine function of x. Now multiply (4.8) by σ̂p+1,

δ1(σ̂
pû′′

1)2 + δ2(σ̂
pû′′

2)2 + δ3(σ̂
pû′′

1)(σ̂pû′′
2) = σ̂p+1. (4.10)

¿From (4.9) we find, on recalling H2
0 ⊂ C1, that each term on the left of (4.10) is C1, and

hence that σ̂ ∈ C1. Writing (4.9) in the form

û′′
i =

li − λ̂1ûi

σ̂p
,

we conclude û′′
i ∈ C1, that is ûi ∈ C3. Repeating this exact argument leads to σ̂ ∈ C3 and

ûi ∈ C5. The result then follows from continued repetitions.

Having succeeded in pursuing the indirect approach we now look to the possibility
(and the implications) of exchanging the limits in the characterization

λ̂−1
1 = A(σ̂, û) = inf

σ∈ad
sup

u∈H2

0

A(σ, u).

Recalling Proposition 4.2, this will require convexity and lower semicontinuity of σ 7→
A(σ, u), and concavity and upper semicontinuity of u 7→ A(σ, u) as well as compactness of
one of its upper level sets.

Remark 4.5. We noted the weak H2 upper semicontinuity of u 7→ A(σ, u) in Proposition
4.1. As {u ∈ H2

0 ; A(σ, u) ≥ c} is bounded it is also weakly compact (independent of c ∈ R

and σ ∈ ad). Convexity of σ 7→ A(σ, u) follows on restricting p ≤ 1.

The two remaining properties will require more work. Note that u ∈ ArgmaxA(σ, ·) implies
A(σ, u) = A(σ,−u) = λ−1

1 (σ) while A(σ, 0) = 0. Hence, u 7→ A(σ, u) is not concave on any
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set that contains ArgmaxA(σ, ·). This suggests that we examine the half-spaces exterior
to {u ∈ H2

0 ; ‖u′‖ ≤
√

2λ−1
1 (σ)}. Unfortunately this ball, and hence its support planes,

depend on σ. Consequently, if we expect these half-spaces to vary continuously with σ
we must be careful in our choosing. This choice is greatly facilitated by the assumption
that σ lies in ads, those functions in ad that are even about 1/2. For in this case one may
speak unambiguously of u1, the positive even eigenfunction corresponding to λ1(σ). We
normalize ‖u′

1‖ =
√

2λ−1
1 (σ), and consider the associated half-space

Πσ = {v ∈ H2
0 ; λ2

1(σ)

∫ 1

0

u′
1v

′ dx > 2}.

Proposition 4.6. For σ ∈ ads, u 7→ A(σ, u) is concave on Πσ.

Proof: The quadratic form associated with the second Gâteaux derivative of u 7→ A(σ, u)
at u ∈ Πσ satisfies

〈D2
2A(σ, u)v, v〉 =

√
2‖u′‖−1

∫ 1

0

|v′|2 dx −
∫ 1

0

σp|v′′|2 dx −
√

2
−1‖u′‖−3

(
∫ 1

0

u′v′ dx

)2

≤ (
√

2‖u′‖−1 − λ1(σ))

∫ 1

0

|v′|2 dx

≤ 0, ∀ v ∈ H2
0 .

This suggests that we penalize A with the indicator function of Πσ,

π(σ, u) =

{

0, if u ∈ Πσ;
∞, otherwise.

This not only guarantees concavity but also respects lower semicontinuity.

Proposition 4.7. σ 7→ A(σ, u)−π(σ, u) is lower semicontinuous for the strong L∞ topol-
ogy on ads.

Proof: Now σn → σ in L∞ clearly implies A(σn, u) → A(σ, u) for each u ∈ H2
0 . Regarding

lim sup π(σn, u) ≤ π(σ, u), it suffices to show that

π(σn, u) → 0, ∀u ∈ Πσ.

¿From the proof of Theorem 3.1 it is clear that λ1(σn) → λ1(σ) and u1(σn) ⇀ u1(σ) in
H2

0 . Hence

λ2
1(σn)

∫ 1

0

u′
1(σn)u′ dx → λ2

1(σ)

∫ 1

0

u1(σ)u′ dx > 2.

¿From this we conclude that u is eventually in each Πσn
, i.e., π(σn, u) = 0.

One may now modify Proposition 4.2 (see Cox and McLaughlin [11, §7]), and conclude
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Theorem 4.8. If p ≤ 1 then (σ̂, u1(σ̂)) is a saddle point for A over ads × H2
0 . That is,

denoting u1(σ̂) by û,

A(σ̂, u) ≤ A(σ̂, û) ≤ A(σ, û) ∀ (σ, u) ∈ ads × H2
0 .

The latter inequality yields the following maximum principle

∫ 1

0

σp|û′′|2 dx ≤
∫ 1

0

σ̂p|û′′|2 dx ∀σ ∈ ads.

The subsequent pointwise conditions call for an ℓ2 > 0 such that

σ̂(x) = α ⇒ σ̂p−1(x)|û′′(x)|2 ≤ ℓ2 (4.11)

α < σ̂(x) < β ⇒ σ̂p−1(x)|û′′(x)|2 = ℓ2 (4.12)

σ̂(x) = β ⇒ σ̂p−1(x)|û′′(x)|2 ≥ ℓ2 (4.13)

for almost every x ∈ (0, 1). As σ 7→ λ−1
1 (σ) is convex when p ≤ 1 these conditions

are also sufficient. Hence, we see that where the direct method applies it gives more
information. In particular, the necessary conditions (4.11-13) involve only a single buckling
mode. Comparing these to the more general conditions in (4.5-7) suggests that λ1(σ̂) is
indeed a simple eigenvalue when p ≤ 1. We shall see numerical evidence of this in §7. The
critical case, p = 1, where the optimal buckling load changes multiplicity, has received
considerable attention. In this case, the right side of (4.11-13) is independent of σ̂. In
particular, a number of workers have claimed that

|û′′(x)| = ℓ. (4.14)

We remark however that in the absence of a second buckling mode the bound constraints
must become active near the inflection points of û, making (4.11) and (4.13) indeed neces-
sary. Nonetheless, Seiranian [34], who deduced (4.14) from (1.8), proceeded to solve (4.14)
in conjunction with (2.3), yielding

σ̂(x) =







3/2(1 − 16x2), if 0 ≤ x ≤ 1/4
3/2(16x − 16x2 − 3), if 1/4 ≤ x ≤ 3/4
3/2(32x − 16x2 − 15), if 3/4 ≤ x ≤ 1.

(4.15)

On evaluating the Rayleigh quotient with this σ̂ and a specific C1 test function Seiranian
arrived at a buckling load of 48. This design, like that of Tadjbakhsh and Keller for p = 2,
vanishes at 1/4 and 3/4. Unlike the design of Tadjbakhsh and Keller however, we are
not able to show it to be suboptimal. We can only stress that lacking an existence proof
for α = 0, p = 1, there is no reason to believe that (4.14) is a necessary condition for
optimality.
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5. Other Boundary Conditions

Intent on a clean exposition we have to this point concentrated solely on the clamped-
clamped boundary conditions u(0) = u′(0) = u(1) = u′(1) = 0. We now apply the work
of the previous sections to the other standard sets of boundary conditions, in particular,
hinged and free. A column is said to be free at a point when no conditions are prescribed,
while it is hinged, or simply supported, when one requires its displacement to vanish there.
As a matter of notation, the weak formulation of the buckled column equation will read

∫ 1

0

σpu′′v′′ dx = µ

∫ 1

0

u′v′ dx, ∀ v ∈ Vi,j (5.1)

where Vi,j is a subspace of H2, with i and j chosen from {0, 1, 2} according to whether the
respective end is either free, hinged, or clamped. For example,

V1,2 = {u ∈ H2; u(0) = 0, u(1) = u′(1) = 0}

specifies the hinged-clamped column. We denote the least eigenvalue of (5.1) by µi,j(σ),
and the corresponding space of eigenfunctions by Ei,j(σ). As before, u ∈ Ei,j(σ) implies
that both u and σpu′′ are elements of C1([0, 1]). In addition, such functions satisfy so
called natural boundary conditions. In particular, if i = 1 then, in addition to u(0) = 0
we find

σpu′′(0) = 0, (5.2)

while if i = 0 we have, in addition to (5.2),

(σpu′′)′(0) + µ0,j(σ)u′(0) = 0. (5.3)

We shall consider only those µi,j(σ) for which i + j ≥ 2, as otherwise µi,j(σ) = 0. For
comparison purposes we record these eigenvalues in the case of the uniform column.

µ0,2(1) = π2/4, µ1,1(1) = π2, µ1,2(1) ≈ 2.046π2, µ2,2(1) = 4π2. (5.4)

Clearly, µi,j(1) = µj,i(1). Analogous to (2.5), for i+ j ≥ 2, (5.4) gives the uniform bounds

π2αp/4 ≤ µi,j(σ) ≤ 4π2βp, ∀σ ∈ ad. (5.5)

As in §2 we address the multiplicity of µi,j(σ) and the presence of positive eigenfunctions.

Lemma 5.1. For σ ∈ ad,
(a) If 2 ≤ i + j < 4, then µi,j(σ) is simple and there exists a corresponding positive

eigenfunction.
(b) µ0,2(σ) < µ1,2(σ) and µ1,1(σ) < µ1,2(σ) < µ2,2(σ).

Proof: (a) Seiranian noted for these boundary conditions that (5.1) is equivalent, except
for the presence of a simple zero eigenvalue when the product ij equals 2, to a second order
problem with separated boundary conditions. It now follows from the oscillation theory of
Stürm, see, e.g., Atkinson [1], that each µi,j(σ) is simple and that for ij 6= 2, σpu′′ is of
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one sign for each u ∈ Ei,j(σ). In case ij equals 0 or 1 this yields respectively a positive
convex or concave element of Ei,j(σ). When ij = 2 we find that σpu′′ vanishes exactly
once on (0, 1) for each u ∈ Ei,j(σ). Here we find an eigenfunction that is convex on (0, x0)
and concave on (x0, 1) for some x0. As this function must vanish at 0 and 1 we conclude
that it must be positive on (0, 1).
(b) As Vi+1,j ⊂ Vi,j we find µi,j(σ) ≤ µi+1,j . Should equality hold, we conclude Ei+1,j(σ) ⊂
Ei,j(σ). As in (2.4), for u ∈ Ei,j(σ) we deduce from (5.1) that

(σpu′′)(x) = ((σpu′′)′(0) + µi,j(σ)u′(0))x + σpu′′(0) + µi,j(σ)u(0) − µi,j(σ)u(x). (5.6)

If µ0,2(σ) = µ1,2(σ) then for each u ∈ E1,2(σ) ⊂ E0,2(σ) equation (5.6), in view of
(5.3), reads

(σpu′′)(x) = −µi,ju(x). (5.7)

On recalling that u(1) = u′(1) = 0 we see that u satisfies a linear homogeneous equation
with zero terminal data, and hence, u ≡ 0.

If µ1,1(σ) = µ1,2(σ) then for each u ∈ E1,2(σ) ⊂ E1,1(σ) (5.6), in view of (5.2), reads

(σpu′′)(x) = ((σpu′′)′(0) + µi,j(σ)u′(0))x − µi,j(σ)u(x). (5.8)

So (σpu′′)(1) = (σpu′′)′(0) + µi,j(σ)u′(0). But (σpu′′)(1) = 0 so (5.8) reduces to (5.7) and
again the clamped conditions at 1 imply that u ≡ 0.

If µ1,2(σ) = µ2,2(σ) then for each u ∈ E2,2(σ) ⊂ E1,2(σ) equation (5.6), in view of
(5.2), reads

(σpu′′)(x) = (σpu′′)′(0)x − µi,j(σ)u(x).

Hence (σpu′′)(1) = (σpu′′)′(0), from which we conclude that u is either identically zero or
not of one sign. This excludes the positive element of E1,2(σ) established in part (a).

Thanks to the presence of positive first eigenfunctions, the existence theory of §3
applies directly to the problem of Lagrange

sup
σ∈ad

µi,j(σ), 2 ≤ i + j ≤ 4. (5.9)

We note that only for symmetric boundary conditions, i.e., i = j, should one expect an
even optimal design. As µi,j(σ) is simple when i+ j < 4 we deduce from Theorem 4.3 and
conditions (4.5-7) that

σ̂i,j(x) = α ⇒ σ̂p−1
i,j (x)|û′′(x)|2 ≤ ℓ2 (5.10)

α < σ̂i,j(x) < β ⇒ σ̂p−1
i,j (x)|û′′(x)|2 = ℓ2 (5.11)

σ̂i,j(x) = β ⇒ σ̂p−1
i,j (x)|û′′(x)|2 ≥ ℓ2, (5.12)

for almost every x ∈ (0, 1), where û ∈ Ei,j(σ̂i,j). As before, σ̂i,j is smooth where (5.11)
holds.

The right side of (5.11) is the sole necessary condition offered by Keller [20] and
Tadjbakhsh and Keller [37]. We now investigate the extent to which their claim is valid.
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Recall that their analysis of the clamped–clamped column erred in neglecting (a) double
eigenvalues, and (b) bounds on σ. As the previous lemma precludes the former phenomenon
we need only consider the latter. The observation to be made is that (5.10) and (5.12)
are only needed near the zeros of û′′. As noted above, members of E1,1(σ) and E2,0(σ)
have second derivatives of one sign. As such, in these cases, (5.11) stands on its own (with
the minor adjustment that σ be allowed to vanish at 0 and/or 1). In addition, as the
related second order problems are fully equivalent, i.e., there are no spurious eigenvalues,
Tadjbakhsh and Keller’s sufficiency proof is correct. In summary, Keller [20] has the correct
necessary condition for the hinged–hinged column, Tadjbakhsh and Keller [37] have the
correct necessary condition for the clamped–free column, and the proof of sufficiency in
[37] holds for both. We now recall their analytical solutions to these problems.

Keller, in [20], with p = 2 and i = j = 1 reconciled (5.11) and (5.1) and found

σ̂1,1(x) = 4
3 sin2 θ(x), 0 ≤ θ ≤ π, (5.13)

θ(x) − 1
2

sin 2θ(x) = πx, 0 ≤ x ≤ 1.

We have observed that this is a shortened cycloid with parametrization

x(t) = 3
4π

(

2
3(t − sin t)

)

y(t) = 2
3 (1 − cos t)

0 ≤ t ≤ 2π.

This column buckles under an axial load of 4π2/3. In [37], Tadjbakhsh and Keller with
p = 2 and i = 2, j = 0 reconciled (5.11) and (5.1) and found

σ̂2,0(x) = 4
3 sin2 θ(x), −π/2 ≤ θ ≤ 0, (5.14)

θ(x) − 1
2

sin 2θ(x) + π/2 = πx/2, 0 ≤ x ≤ 1,

our parametrization being,

x(t) = 3
2π

(

2
3(t − sin t)

)

+ 1

y(t) = 2
3
(1 − cos t)

− π ≤ t ≤ 0.

This column buckles under an axial load of π2/3. Having argued in favor of the existing
solutions to the clamped–free and hinged–hinged problems we now turn to the clamped–
hinged problem.

We saw in Lemma 5.1 that the second derivative of each function in E2,1(σ) must
change sign. The effect of this is that (5.11) forces σ̂2,1 to vanish at an interior point. In
particular, when Tadjbakhsh and Keller reconciled (5.1) and (5.11) they found

σ̂2,1(x) =
4 sin2 θ(x)

3 sin2 θ(0)
, θ(0) ≤ θ ≤ π, (5.15)

θ(x) − 1
2 sin 2θ(x) + 1

2 sin 2θ(0) − θ(0) = x(π + 1
2 sin 2θ(0) − θ(0)), 0 ≤ x ≤ 1,

1
2 sin 2θ(0) − θ(0) = − 2

3 sin3 θ(0) cos−1 θ(0) − π.
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Taking a = 1
2 sin 2θ(0)− θ(0) note that this σ̂2,1(x) vanishes at a/(π +a). Tadjbakhsh and

Keller assert that the column built according to (5.15) will not buckle under loads less than
approximately 27.22 in magnitude. We show in the appendix that this column can not
withstand loads exceeding π2/3 – and so, in fact, is much weaker than the uniform column.
In addition, as µ2,1(σ) corresponds to the second eigenvalue of its associated second order
problem, the sufficiency proof of [37] is invalid. Hence, (5.15) is not an optimal design. In
summary, (5.11) can not stand alone in the clamped–hinged case, σ(x) ≥ α is is indeed an
active constraint, so rendering (5.10) absolutely necessary. We suspect that there exists
no solution to (5.9) when ij = 2 and α = 0.

6. The Finite Dimensional Problem

We discretize the interval [0, h, 2h, . . . , (N−1)h = 1] and approximate Vi,j by the finite
dimensional space V h

i,j , the subspace of Vi,j whose elements, when restricted to [kh, (k+1)h],

are cubic polynomials (see Strang and Fix [36]). As each member of V h
i,j is completely

determined by the value of it and its derivative at each of the N mesh points, we identify
V h

i,j with R2N−i−j . We next approximate ad with the class of piecewise constant functions

adh ≡ {σ ∈ RN−1 : α ≤ σk ≤ β,
N−1
∑

k=1

σk = N − 1}.

We have refrained from labeling elements of adh by σh to avoid confusion with powers of σ.
In this context, the infinite dimensional eigenvalue problem of (5.1) is now approximated
by

Bh(σ)qh = µKhqh, σ ∈ adh, qh ∈ R2N−i−j . (6.1)

Bh(σ) and Kh, the so–called bending and stiffness matrices, are each real, (2N − i− j) ×
(2N − i − j), symmetric, positive definite, and banded with half bandwidth of four. Our
interest is, of course, in µh

i,j(σ), the least eigenvalue of (6.1). For, as h → 0, one finds e.g.,

in [36], that µh
i,j(σ) → µi,j(σ). The connection between the finite and infinite dimensional

problems now understood, we concentrate solely on (6.1). It should cause no confusion
if, in our presentation of the finite dimensional optimization problem, we suppress most
dependence on h, i, and j. With this, (6.1) becomes

B(σ)q = λKq, σ ∈ adh, q ∈ Rn, (6.2)

and we denote its least eigenvalue by λ1(σ). Our finite dimensional problem of Lagrange
is now

max
σ∈adh

λ1(σ). (6.3)

The care that was taken in differentiating σ 7→ λ1(σ) in §4 must also be exercised here.
The occurrence of multiple eigenvalues is still possible. Clarke [10, Proposition 2.8.8]
specifies the generalized gradient of the largest eigenvalue of a symmetric matrix in terms
of a convex hull; see also [28] and [29]. Though such a characterization may suffice for an
analytical description, as in §4, for computational purposes we have found it more useful
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to specify first order conditions in terms of, less well known, “dual matrices”. We state
the result in general terms. We shall need Sn, the class of n × n real symmetric matrices,
and the Frobenius matrix inner product, 〈A, B〉 = trAT B.

Theorem 6.1. Let B : RN−1 → Sn be (Fréchet) differentiable with Bk(σ) = ∂B(σ)/∂σk

and let K be a fixed symmetric positive semidefinite matrix of the same order n. Assume
σ ∈ adh is such that λ1(σ) has multiplicity t, with corresponding eigenvectors given by
the columns of a matrix Q1 ∈ Rn×t, normalized so that QT

1 KQ1 = I. Then a necessary
condition for σ to solve (6.3) is that there exist a symmetric positive semidefinite matrix
U of order t, with trace equal to one, and Lagrange multipliers ν and γk, k = 1, . . . , N −1,
such that

〈U, QT
1 Bk(σ)Q1〉 = ν + γk, and (6.4)

σk = α ⇒ γk ≤ 0 (6.5)

α < σk < β ⇒ γk = 0 (6.6)

σk = β ⇒ γk ≥ 0 (6.7)

for each k. Furthermore, this condition is also sufficient for optimality in the case that
σ 7→ B(σ) is affine.

Proof: In the following we use the notation U ≥ 0 to mean that a symmetric matrix U is
positive semidefinite. Regarding λ1 : Sn → R, we invoke Rayleigh’s principle in

λ1 = min {〈q, Bq〉; q ∈ Rn, 〈q, Kq〉 = 1}
= min {〈qqT , B〉; q ∈ Rn, 〈q, Kq〉 = 1}

Let Q ∈ Rn×n be any matrix satisfying

QT KQ = I. (6.8)

It is easily shown that

co {qqT ; q ∈ Rn, 〈q, Kq〉 = 1} = {QÛQT ; Û ∈ Sn, tr Û = 1, Û ≥ 0},

by using the spectral decomposition of Û , which by assumption has nonnegative eigenvalues
adding to one, to obtain the requisite convex combination showing that the second set is
contained in the first. It follows that

λ1 = min {〈QÛQT , B〉; Û ∈ Sn, tr Û = 1, Û ≥ 0}. (6.9)

Now take Q to be a matrix whose columns are eigenvectors of (6.2), normalized so that
(6.8) holds. The first t columns of Q are the columns of Q1 and

QT BQ = Diag(λi),
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where λ1 ≤ λ2 ≤ . . . are the eigenvalues of (6.2), repeated according to multiplicity.
Therefore, the matrices achieving the minimization in (6.9) are those defined by

Û = Q

(

U 0
0 0

)

QT = Q1UQT
1

where U ∈ St, with trU = 1 and U ≥ 0. Consequently, the generalized gradient of
B 7→ −λ1(B) is the set of such matrices Û (see Rockafellar [33, pages 29 and 35] or Clarke
[10, §2.8]), no convex hull operation being required since the set of such Û is convex.

With λ1(σ) = (λ1 ◦ B)(σ), the desired necessary conditions now follow from (i) the
chain rule for generalized gradients [10, Theorem 2.3.10], (ii) the standard Lagrange mul-
tiplier rule [10, Theorem 6.1.1], and (iii) properties of the inner product. In particular,

∂(−λ1(σ)) = {v ∈ RN−1; vk = 〈U, QT
1 Bk(σ)Q1〉, U ∈ St, U ≥ 0, tr U = 1}. (6.10)

These necessary conditions are also sufficient in the case that σ 7→ B(σ) is affine because
the composition of a concave function with an affine function is concave.

Our attention to ∂(−λ1) in (6.10) and ∂λ−1
1 in Theorem 4.3 rather than simply ∂λ1 is

merely an artifact of Clarke’s concern with functions defined as pointwise maxima rather
minima. Here, it was convenient to characterize −λ1 as the maximum of a Rayleigh quo-
tient where, in §4, we found it more advantageous to maximize a functional of Auchmuty,
and hence to consider λ−1

1 .
A different proof of the unconstrained version of this theorem was given (when K = I)

by Overton [26], following work of Fletcher [14]. The n × n matrix Û is known as a “dual
matrix” by analogy with “dual variables” (Lagrange multipliers) familiar from mathemat-
ical programming. The t × t matrix U may be called a “reduced dual matrix”, but since
it is the one we shall need as a computational tool we shall also refer to it as simply the
dual matrix. The distinction between Û and U is analogous to the notational question
of whether inactive constraints in a nonlinear program should be assigned zero Lagrange
multipliers.

In the case that t = 1 and the bound constraints are inactive, the necessary condition
reduces to the requirement that the gradient of λ1(σ), whose elements are qT

1 Bk(σ)q1, has
the constant value ν. (Here q1 is the only column in Q1, and U is the scalar one.) In the
case that t = 2, let

U =

(

δ1 δ3/2
δ3/2 δ2

)

, (6.11)

let the two columns of Q1 be q1 and q2 and again assume that all bound constraints are
inactive. The necessary condition then becomes

δ1q
T
1 Bk(σ)q1 + δ2q

T
1 Bk(σ)q2 + δ3q

T
1 Bk(σ)q2 = ν

together with the trace and positive semidefinite constraints on U . Without loss of gener-
ality, δ1 and δ2 may be taken to have nonnegative sign, and the normalizing trace condition
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may be replaced by the assumption that ν = 1. The positive semidefinite constraint is
then simply

δ1δ2 ≥ δ2
3/4.

This is the same necessary condition given by Bratus and Seiranian [6] and Masur [22]. We
note that the derivation given here not only applies for t > 2, but is much simpler than that
given by [6] and [22] for the case t = 2. In a footnote, Masur conjectured that the positive
semidefinite condition on U would also be the correct necessary condition for t > 2. Bratus
[7] gave a discussion of necessary and sufficient conditions for general multiplicity t, but
the given necessary condition concerns the necessary sign of the directional derivative of
λ1 for all feasible directions; the positive semidefinite condition on U was apparently not
obtained.

Before discussing the algorithm that springs from Theorem 6.1 we investigate the
extent to which it suggests a new tack on the infinite dimensional problem. Regarding
the variational principle of (6.9) we consider K+(X), the space of positive compact linear
operators on a real separable Hilbert space X . Each T ∈ K+(X) possesses a countable
sequence of eigenvalues λ1(T ) ≥ λ2(T ) ≥ · · · ↓ 0 repeated according to multiplicity and
a (possibly infinite) trace trT =

∑∞
i=1 λi. In this context it is not difficult to show for

symmetric T ∈ K+(X) that

λ1(T ) = max {trTU ; U ∈ K+(X), tr U = 1}.

Recall that u 7→ (σpu′′)′′ and u 7→ −u′′ are positive symmetric isomorphisms of H2
0 onto

H−2 and H1
0 onto H−1 respectively. We denote these maps by A and B, remark that B1/2

is a positive isomorphism of H1
0 onto L2, and denote by I the compact imbedding of H2

0

in H1
0 . With φ = B1/2Ju, and ∗ denoting adjoint, the buckled column equation receives

the formulation

(1/λ)φ = B1/2IA−1(B1/2I)∗φ.

By construction, B1/2IA−1(B1/2I)∗ is a symmetric member of K+(L2). Although we
may now proceed to compute ∂λ−1

1 as in the previous theorem, this representation suffers
from its dependence on the unknown A−1 and B1/2 in contrast to Theorem 4.3 that works
directly with A and B.

We now turn to the question of how to solve the finite dimensional optimization prob-
lem. Although there is a substantial literature on the generalization of gradient methods to
nonsmooth problems (see the survey [28] by Polak), little attention has been given to ap-
plying nonsmooth optimization techniques to (6.3). One exception is [29], which describes
an algorithm for maximizing the least eigenvalue of a variety of important structures,
accounting for the presence of multiple eigenvalues. It focuses however on the clamped
vibrating column, (σpu′′)′′ = λu, u ∈ H2

0 , a problem which has long been known to admit
only simple eigenvalues (see e.g., Leighton and Nehari [21, Lemma 4.1]). Our algorithm
differs from that of [29] in our attention to the added structure of the generalized gradient
of λ1 as revealed in the theorem above. We use an algorithm specifically designed to ex-
ploit this structure, which is based on Overton [26], but modified to be far more efficient
for moderate to large mesh size N .
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Given σ ∈ adh with λ1(σ) and λ2(σ) the two least eigenvalues of (6.2) we normalize
the corresponding eigenvectors q1 and q2 so that Q1 = [q1 q2] satisfies QT

1 KQ1 = I,
the 2 × 2 identity matrix. These eigenvalues and eigenvectors are computed by subspace
iteration with a block size of two, with the necessary linear systems solved directly using
the Cholesky factors of B(σ) (see Bathe and Wilson [5] for details).

Define the approximate multiplicity t of λ1 by t = 2 if

λ2(σ) − λ1(σ) ≤ τλ1(σ)

and t = 1 otherwise. Here τ is a positive tolerance which may be adjusted during the
optimization process. A multiplicity higher than two is excluded (for sufficiently small h)
by Lemmas 2.1 and 5.1. Now consider the following linear program (LP):

max
d∈RN

dN (LP0)

subject to
Ed = e (LP1)

Fd ≤ f (LP2)

dk = 0, k ∈ J (LP3)

α − σk ≤ dk ≤ β − σk, k = 1, . . .N − 1 (LP4)

|dk| ≤ ρ, k = 1, . . . , N (LP5)

where
(i) The first N − 1 components of d represent proposed changes to σ, while the last
component approximates the corresponding change in λ1(σ). Let us write d = [ηT ω]T ,
with η ∈ RN−1, ω ∈ R;
(ii) ρ is a positive scalar, whose purpose is to ensure ‖d‖ is not too large;
(iii) J is an index set, which effectively removes the corresponding variables from the linear
program;
(iv) The first row of the matrix E is [1, . . . , 1, 0], and the first element of the right-hand
side vector e is 0. This ensures that the changes to σ respect the integral constraint;
(v) The second row of E is

[−qT
1 B1(σ)q1, . . . ,−qT

1 BN−1(σ)q1, 1]

and the corresponding element of e is 0. If t = 2, then E contains an additional two rows,

[−qT
2 B1(σ)q2, . . . ,−qT

2 BN−1(σ)q2, 1] and [−qT
1 B1(σ)q2, . . . ,−qT

1 BN−1(σ)q2, 0]

with corresponding elements of e set to λ2(σ) − λ1(σ) and 0 respectively;
(vi) If t = 1, F contains the single row

[−qT
2 B1(σ)q2, . . . ,−qT

2 BN−1(σ)q2, 1]
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and f is the scalar λ2(σ)−λ1(σ). If t = 2, F and f are empty, i.e. (LP2) may be removed.
We note that the given rows may be computed very efficiently, since the derivative

matrices Bk(σ) are extremely sparse.
The justification for (v) and (vi) is as follows. If t = 1, the second row of E imposes

a linearization of the nonlinear equation λ1(σ + η) = λ1(σ) + ω, while the only row in F
imposes a linearization of the inequality λ2(σ+η) ≥ λ1(σ)+ω. Since ω is being maximized,
the solution to the linear program yields the steepest ascent direction for λ1(σ), projected
to satisfy the integral and bound constraints, with steplength required to be short enough
that the linearized value for λ2(σ + η) does not drop below that for λ1(σ + η), and that
the various bounds are satisfied. If t = 2, the second through fourth rows of E give a
linearization of the appropriate set of three nonlinear equations imposing the coalescence
of λ1(σ+η) and λ2(σ+η), see [16]. The common linearized value, λ1(σ)+ω, is maximized,
subject to the given constraints.

Theorem 6.2. Suppose that τ = 0 so that the multiplicity estimate t is exact, and
suppose that ρ > 0 and J is the empty set. Then d = 0 is a (nonunique) solution to the
linear program given above if and only if (6.4) holds for some U ∈ St with tr U = 1, some
ν ∈ R and some γ ∈ RN−1 satisfying (6.5-7).

Proof: By the usual Lagrange multiplier rule, the linear program admits the solution d = 0
if and only if there exist multipliers ν ∈ R, δ ∈ Rt(t+1)/2 and γ ∈ RN−1 satisfying

ET

(

ν
δ

)

+

(

γ
0

)

=

(

0
1

)

with γ subject to the standard sign condition. Setting U = δ1(= 1) if t = 1 and defining U
by (6.11) if t = 2, we have (6.4-7) with tr U = 1. The same argument holds in the reverse
direction.

Note two points: there is no positive semidefinite condition obtained on U , and the
solution d = 0 is generally not at a vertex of the feasible region, so is not unique.

Our algorithm for solving (6.3) generates a sequence in adh. Each successive approxi-
mation is obtained from the previous one by consideration of a linear program (LP) of the
form given above. We first define a simple version of the algorithm, but one which is too
costly for practical use. In this version, we obtain σ + η, a candidate replacement for σ,
by solving the LP for d = [ηT ω]T . If λ1(σ + η) > λ1(σ), σ is replaced by σ + η and the
process repeated. Otherwise, σ remains unchanged, the trust region radius ρ is decreased
by a factor of two, and the revised LP is considered. This kind of trust region approach
can be made very effective by modifying the size of ρ according to how well the actual
increase in λ1(σ) agrees with the linear prediction ω, as discussed in Fletcher [14] in the
context of general nonlinear programming. As recommended by Fletcher, we double ρ if
the ratio of actual to predicted increase exceeds 0.75 and halve ρ if the ratio is less than
0.25. The process is terminated when ‖d‖ ≤ ǫ, a convergence tolerance.

However, the expense of obtaining the optimal solution of each linear program is not
justified. Although the “limit” LP defined by σ equal to a solution of (6.2-4) has an
optimal solution which is not a vertex, generically, any LP solved during the successive
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approximation process can be expected to have a unique solution which must be at a vertex.
Since only a few constraints involve all the variables, most of the constraints defining a
vertex are simple bounds, and most of these may be trust radius bounds of the form (LP5).
Since the only purpose of the trust radius bounds is to avoid taking steps too large for
the linearizations to be accurate, there is little to be gained by finding the exact set of
active bounds. We therefore partially solve the LP as follows. We first attempt to obtain a
feasible point for the LP by setting d to the least norm solution of (LP1,LP3), contracting
this step if necessary to satisfy the various inequalities. This contraction effectively scales
the right-hand side of the only possible inhomogeneous equality constraint in the LP, that
corresponding to the third row of E in the case t = 2. The rationale here is that if the least
norm step satisfying the equality constraints is not feasible, the underlying approximations
are probably not good enough to justify the solution of the unmodified LP. We then start
the LP solution process as in a projected gradient method, augmenting d by projected
gradient steps with steplengths determined by the inequality constraints and bounds. The
gradient being projected is that of the LP objective, i.e. the vector [0, . . . , 0, 1], while
the constraints determining the projection are the equality constraints and any inequality
constraint and bounds encountered during the process. This continues until either (a)
a trust radius bound of the form (LP5) is encountered, or (b) the norm of the current
projected gradient increment drops below the tolerance ǫ (unlikely to happen first). At
this point the process of partially solving the LP is terminated. Anywhere from zero to
many active bounds of the form (LP4) may be encountered by this process, as well as,
possibly, the inequality (LP2) (in the case t = 1). By adding any active bounds encountered
to the set J , we avoid having to process these bounds again during the (partial) solution of
subsequent LP’s. However, the signs of the associated bound multipliers must be checked
after the partial LP solution and bounds with the wrong sign removed from J if necessary.
The entire process is very efficient, requiring QR factorizations of matrices with only two
to four columns, with rows removed corresponding to active bounds. For complete details
of the process, see [27].

In the case t = 2, the LP partial solution process generates four multipliers corre-
sponding to the rows of E, namely ν, δ1, δ2, and δ3. If the corresponding dual matrix U ,
defined by (6.11), is not positive semidefinite, this is a clear indication that the multiplicity
estimate t is incorrect, and so τ is reduced by a factor of ten. In principle, it might be
necessary to use a more sophisticated technique to recover from a multiplicity estimate
which is too large. For example, if the algorithm was started at a point where all the op-
timality conditions except U ≥ 0 were satisfied, it would be necessary to split the multiple
eigenvalue to obtain an ascent direction; this is explained further in [26] and [27]. However,
this technique has not been required in our computational experiments for the Lagrange
problem.

This completes our outline of the algorithm used to generate the numerical results
given in the next section. For more algorithmic details, see [27]. We do not have any proof
that the given algorithm will converge to a solution of (6.3), but given any approximate
solution we may verify the required signs of γ and the eigenvalues of the dual matrix U ,
and compute the residual of the approximate equation (6.4). We have found the algorithm
to be very effective in practice as the numerical results attest.
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7. Computational Results

The algorithm outlined in the previous section has been implemented in Fortran 77
and tested extensively. Subroutines from the Linpack [13] and Eispack [17] libraries were
used to (a) perform the QR factorizations required during the partial LP solution process
(for matrices with at most four columns), (b) obtain the Cholesky factorizations of B(σ)
needed for subspace iteration (these matrices have only seven nonzero diagonals) and (c)
solve the reduced generalized eigenvalue problems required for subspace iteration (these
have order two). Parameters were set as follows: τ , the relative multiplicity tolerance, was
initialized to 0.1; ρ, the trust radius, was initialized to 5.0; ǫ, the convergence tolerance,
was set to 10−3. The initial σ was set to the constant one, corresponding to the uniform
column. Runs were made for various values of N , the number of mesh points; p, the power
of σ in the differential equation; α and β, the lower and upper bounds on σ, and the various
homogeneous boundary conditions: clamped–clamped, clamped–hinged, clamped–free and
hinged–hinged.

The algorithm was found to be very efficient, typically invoking subspace iteration, in
the computation of the two least eigenvalues of (6.2), about 50 times prior to reaching the
convergence tolerance. At the final iterate the residual of the approximate equation (6.4)
was typically found to have norm about 10−3. Smaller choices of ǫ required significantly
more computation but did not produce a qualitatively improved solution. Other initial
choices of ρ affected only the initial efficiency of the algorithm. The results were relatively
insensitive to the initial choice of the multiplicity tolerance τ , although smaller choices de-
layed identification of the final multiplicity. There was usually no difficulty in determining
the correct final multiplicity t, with corresponding positive semidefinite dual matrix U . In
the cases where the final multiplicity t was two the gap between λ1 and λ2 was typically
reduced to 10−6. The subspace iteration was itself very efficient, requiring only one or two
steps on all but the first few steps of the optimization, reflecting the good separation of λ2

from λ3 and the availability of an excellent initial two-dimensional subspace, namely the
span of the eigenvectors q1 and q2 computed at the previous optimization step. (The first
subspace iteration was initialized using the first two columns of the identity matrix.) The
initial σ in each case was that of the uniform column, σ ≡ 1. Symmetry was not imposed
on the algorithm’s subsequent choices of σ. A typical run for N = 513 required 1.5 hours
on a Sparc station.

We begin our summary of the results with p = 2. Under the assumption that each
transverse cross–section of the column is circular we recall that σ is proportional to the
square of the cross–section’s radius. Plotting both ±√

σ then gives a lengthwise cross-
section of the associated column. With this representation one may then view the corre-
sponding buckling mode(s) simultaneously. Our figures, generated by Matlab [23], portray
the column in the piecewise fashion produced by the algorithm of §6 while using dashed
curves(s) to indicate the buckling mode(s). We remark that for those optimal designs with
double buckling loads the corresponding buckling modes depend on our initial choice of
subspace, in subspace iteration, and σ.

Figure 1 gives our strongest clamped–clamped column and its first two buckling modes.
Here p = 2, α = 0, β = 10, with a double buckling load of 52.3533. This value agrees to
four figures with that obtained by Olhoff and Rasmussen [25], Masur [22], and Seiranian
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[34].

On increasing α or decreasing β these bound(s) will eventually become active. Figure
2 gives our strongest clamped–clamped column and its first two buckling modes when
p = 2, α = 0.25, and β = 10. The least eigenvalue is still double, though now reduced to
52.3467.

As the uniform column has a simple first eigenvalue one expects that a sufficient
increase in α would produce an optimal design with a simple first eigenvalue. Figure
3 gives our best strongest clamped–clamped column and its first buckling mode when
p = 2, α = 0.5, and β = 10. In this case the first two eigenvalues are 51.07086 and
62.3479.

Clearly there must exist (at least) one value of α between 1/4 and 1/2 at which the
optimal buckling load switches multiplicity. Olhoff and Rasmussen [25] declare 0.28 to be
the only such value. Our algorithm also indicates the presence of such a critical α in the
vicinity of 0.28. We note that in addition to being able to approach 0.28 from above – pro-
ceeding until the gap between the least two eigenvalues vanishes, we have also approached
from below, in this case proceeding until the least eigenvalue of the corresponding 2 by 2
dual matrix vanishes.

Figure 4 gives our strongest clamped-hinged column and its first buckling mode when
p = 2, α = 0.25, and β = 10. The buckling load of 27.0762 is, as expected, simple.
Although decreasing α increases the buckling load, our designs converge, as α → 0, to the
Tadjbakhsh and Keller solution, (5.13). As shown in the appendix, this column buckles at
π2/3, and so can not possibly be optimal. The convergence of our algorithm to (5.13) only
strengthens our belief that the problem, as stated by Tadjbakhsh and Keller, is without
a solution. That is, σ 7→ µ2,1(σ) with p = 2, does not attain its maximum on ad when
α = 0.

Our numerical results also agree with Tadjbakhsh and Keller in the cases for which we
have argued that they are correct. In particular, Figure 5 gives our strongest clamped–free
column and first buckling mode when p = 2, α = 0, β = 10. The buckling load, again
simple, is 3.2897. Figure 6 gives our strongest hinged–hinged column and first buckling
mode when p = 2, α = 0, β = 10. Its simple buckling load is 13.1579.

We return to the clamped–clamped case and consider its dependence on p. Our
analysis of (4.5-7) led us to believe that, for p > 1, the minimum (maximum) of the
optimal design increases (decreases) with p. This is reinforced by Figure 7, whose lower
(upper) curve traces the minimum (maximum) of the optimal design as a function of p.
As the buckling load is double for each of these designs there must exist a curve, between
the lower one and the curve that is constantly one, across which the optimal buckling load
changes multiplicity. We have seen that (2, 0.28) lies near such a curve. With respect to
the range of p considered in Figure 7 we have found that both the optimal buckling load
and the least eigenvalue of its corresponding dual matrix increase with p. Regarding the
behavior as p tends to 1 from above we have found that the minimum of the optimal design
tends to zero, and, though the optimal buckling load remains double, the least eigenvalue
of the corresponding dual matrix tends to zero. Below p = 1 we found optimal designs
with simple buckling loads regardless of our choice of α. Figure 8 gives our strongest
clamped–clamped column when p = 1, α = 0, and β = 10. The buckling load of 47.9898
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and the design itself are very close to the analytical result of (4.15). Refining the mesh in
neighborhoods of 1/4 and 3/4, and perhaps using piecewise linear elements for σ, would
presumably bring us even closer to (4.15). We have not pursued this for two reasons. First,
we argued in §4 that in the absence of an existence proof one can not fully trust (4.15), and
second, in both of the physical contexts that p = 1 has arisen there is an a priori strictly
positive lower bound on the admissible σ. Regarding the latter, we present in Figure 9
our strongest clamped–clamped column when p = 1, α = 0.8, and β = 1.2. Its simple
buckling load is 43.4921.

Having addressed dependence on p and α at a particular level of discretization we now
fix p = 2, α = 0, β = 10 and with clamped–clamped boundary conditions demonstrate
the convergence of several relevant parameters as N , the number of mesh points, becomes
large. In particular, Table 1 lists µ̂2,2 (the optimal buckling load), the least eigenvalue
of the associated dual matrix U , and ‖σ̂N − σ̂1025‖∞ (the greatest difference between the
optimal design on a mesh of N points and the optimal design on a mesh of 1025 points)
for values of N from 65 to 1025.

N µ̂2,2 min ev(U) ‖σ̂N − σ̂1025‖∞
65 52.14944 0.023859 0.1066
129 52.31027 0.043317 0.0415
257 52.33615 0.047034 0.0424
513 52.35332 0.046435 0.0059
1025 52.35548 0.046607 0.0000

We close our study with a glance at the numerical range of the buckling load over ad.
To this point we have concentrated on its maximization, and, though we may compare
this value to that of the associated uniform column, it would be of interest to weigh it
against the minimum buckling load. Clearly, α must now be strictly positive, for one
could produce a buckling load of zero by prescribing that σ vanish on some interval.
Regarding the existence of a minimizer for σ 7→ µi,j(σ) over ad we note that Theorem
3.1 is insufficient. Recall in (3.3) that the limit of the maximizing sequence integrated to
less than one. This was not an obstacle, for adding mass could only increase the buckling
load. As our goal now is to minimize this load it appears that one must either relax the
cost functional or construct the so–called G–closure of ad to obtain a minimizing design.
Instead of embarking on this we modified the strongest column algorithm to minimize
instead of maximize σ 7→ µi,j(σ).

The modification to the algorithm is very simple, namely changing the sign of (LP0)
and requiring a decrease instead of an increase in the smallest eigenvalue. The modified
algorithm generated plausible weakest designs in ad, and, though we lack a proof of opti-
mality, we shall content ourselves with a discussion of these numerical results. In all cases
(independent of p and α) the minimum buckling load was simple; this is to be expected
since the minimization should tend to separate the least eigenvalue from the remainder
of the spectrum. In addition, we find that the generated designs have their mass concen-
trated near the inflection points of their associated positive buckling mode. This too is to
be expected, making the opposite argument to that made in §2.

Figure 10 gives our weakest clamped–clamped column with p = 2, α = 0.25, and
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β = 10. This column buckles under a simple axial load of 2.5658. The buckling load of
our strongest column in this class (see Fig. 2) is 52.3467.

Figure 11 gives our weakest clamped–clamped column with p = 1, α = 0.8, and
β = 1.2. This column buckles under the simple axial load of 33.5631. The buckling load
of our strongest column in this class (see Fig. 9) is 43.4921.

8. Concluding Remarks

Having thoroughly discussed the work of Tadjbakhsh and Keller [37] we now take up
two related issues, that, though discussed by Keller in [20], have received little rigorous
attention since.

The first involves the optimal design of cylindrical columns. Here, given again a fixed
amount of material to be distributed over a column of fixed length, we seek the shape of the
cross–section that when used to generate a cylinder produces a column with the greatest
buckling load. One is not allowed to “taper” the column as we have in past sections.
Keller quickly reduced this problem to the search for that planar domain of fixed area with
the greatest least second moment of area. Recall that the second moment of area of the
domain Ω with centroid at the origin in the direction η (with |η| = 1) is

I(Ω, η) ≡
∫

Ω

|ηT y|2 dy. (8.1)

Denoting the unit circle by S, Keller’s problem takes the form

sup
|Ω|=A

inf
η∈S

I(Ω, η). (8.2)

Keller noted the existence of Ω for which this value is infinite. To exclude such Ω he
restricted himself to convex domains. Within this smaller class he then argued, without
proof, that the equilateral triangle possesses the greatest least second moment of area.
Citing Pólya, Truesdell later observed that Keller’s conjecture was indeed true. In partic-
ular, Pólya in [30] found that among convex sets the maximum of 4I1I2|Ω|−4 occurs for
triangles. Here I1 and I2 are the respective principal second moments of area, i.e., the min
and max of (8.1). Keller’s result follows on noting that only sets for which I1 = I2 need
be considered, for if I1 < I2 one can simply redistribute the mass in such a way that I1

increases while I2 decreases.
This reduction to convex domains is too severe. It is not the lack of convexity that

allows (8.2) to grow without bound but the possibility that Ω itself may be unbounded,
though of finite area. To exclude this behavior one may simply bound |∂Ω|, the length
of Ω’s boundary. That this does indeed bound I(Ω, η) follows from the isoperimetric
inequality

2Ip(Ω)/π ≤ (|∂Ω|/2π)4

of Pólya and Szegö [31, §1.5], where Ip(Ω) is the polar moment of inertia. As the second
moment of area will be independent of η for the best Ω, its value will be one half that of
its polar moment of inertia. We must now consider,

sup
|Ω|=A

|∂Ω|≤L

inf
η∈S

I(Ω, η). (8.3)
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For fixed A the value of (8.3) will grow as one increases L, suggesting that for sufficiently
large L one may produce a domain whose second moment of area exceeds that of the
equilateral triangle of the same area. We shall accomplish this with A = 1 and L = 16.
To produce large values in (8.3) one need only consider domains that are symmetric about
the coordinate axes as well as the two diagonals and that stretch out towards infinity. The
symmetry will render η 7→ I(Ω, η) constant, while the latter condition will ensure us that
I(Ω, η) is large. The domain of Fig. 12 has an area of one, a boundary whose length does
not exceed 16, and a second moment of area of 16

45
+ 71

8390
. This value is more than three

times greater than 1
6
√

3
, the second moment of area of the equilateral triangle of the same

area. Though we have not solved (8.2), this example demonstrates that (8.2) produces,
through the designer’s choice of L, columns with arbitrarily large buckling load.

The other issue we wish to resurrect from Keller [20] is that of post-buckling. Analysis
of the buckled column must proceed from the nonlinear model. For example, in the hinged-
hinged case one considers

(σpφ′)′ + λ sin φ = 0,

∫ 1

0

sin φ ds = 0, φ′(0) = φ′(1) = 0, (8.3)

where φ measures the angle between the column and a fixed axis in its plane of buckling.
Equation (5.1) arises from linearizing sinφ to φ, identifying u′ = φ, and differentiating
the differential equation in (8.3). The least eigenvalue of (5.1), µ1,1, is indeed a bifurca-
tion point for (8.3). Moreover, Keller showed that the direction of the solution branch
emanating from µ1,1 was indeed rightward, i.e., that (8.3) admits only the trivial solution
for λ < µ1,1. It remains to determine the nature of the nontrivial solution branch(s) for
the other sets of boundary conditions. Here one would also like to understand the role of
imperfections in the model and/or design. In particular, the splitting of the double eigen-
value in the optimal clamped–clamped column via an unfolding of the ideal bifurcation
problem in a parameter that introduces material asymmetry would be of interest.

Appendix

We have argued throughout that the necessary and sufficient conditions proposed by
Tadjbakhsh and Keller are incorrect. This does not in itself however, invalidate their
designs. Indeed, we argued that their solutions to the hinged–hinged and clamped–free
problems are correct. This appendix serves to demonstrate that these are their only correct
designs.

In particular, we show that Tadjbakhsh and Keller incorrectly calculated the buckling
loads of their proposed solutions to the clamped-clamped and clamped–hinged problems.
Recall their solution of the former,

A(x) = 4
3 sin2 θ(x), −π/2 ≤ θ ≤ 3π/2, (A.1)

θ(x) − 1
2 sin 2θ(x) + π/2 = 2πx, 0 ≤ x ≤ 1.

As Olhoff and Rasmussen [25] observed in their numerical work, the column constructed
according to (A.1) tends to deform (under axial compression) on (0, 1/4) and (3/4, 1), with
the center of the column experiencing only a rigid motion. To make this precise we recall
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from [37] that this A, when restricted to (0, 1/4), is actually the optimal design of the
clamped–free problem there, with a corresponding buckling load of π2/3 (as the volume of
this piece is also 1/4) and first eigenfunction u2,0. We normalize u2,0 so that

∫ 1/4

0

|u′
2,0|2 dx = 1,

and use it to construct a sequence {ϕn} ⊂ H2
0 on which

∫ 1

0
A2|ϕ′′

n|2 dx
∫ 1

0
|ϕ′

n|2 dx
→ π2

3
as n → ∞. (A.2)

First we build the continuous displacement

ũ(x) =







u2,0(x), if 0 ≤ x ≤ 1/4
u2,0(1/4), if 1/4 ≤ x ≤ 3/4
u2,0(1 − x), if 3/4 ≤ x ≤ 1.

This function is not a member of H2
0 but we shall see that it suffices to introduce the cubic

perturbation
pn(x) = a(x − 2nx2 + n2x3), where a = u′

2,0(1/4),

near its singularities. As pn(0) = pn(1/n) = p′n(1/n) = 0, the function

ϕn(1 − x) = ϕn(x) =







ũ(x), if 0 ≤ x ≤ 1/4
ũ(1/4) + pn(x − 1/4), if 1/4 ≤ x ≤ 1/4 + 1/n
ũ(1/4), if 1/4 + 1/n ≤ x ≤ 1/2

possesses a continuous derivative. It remains to show that ϕ′′
n ∈ L2. The only possible

obstacle is the behavior of u′′
2,0 near 1/4. Returning to Tadjbakhsh and Keller [37,§3 (25)]

we find

u′′
2,0(x) =

√
3

2 sin θ(x)
.

And, as (A.1) implies that θ(x) = O(|x − 1/4|1/3) as x → 1/4 we find u′′
2,0(x) = 0(|x −

1/4|−1/3). This singularity is clearly square integrable hence ϕn ∈ H2
0 and one can consider

the Rayleigh quotient

∫ 1

0
A2|ϕ′′

n|2 dx
∫ 1

0
|ϕ′

n|2 dx
=

2
∫ 1/4

0
A2|u′′

2,0|2 dx + 2
∫ 1/n

0
A2(x − 1/4)|p′′n|2 dx

2
∫ 1/4

0
|u′

2,0|2 dx + 2
∫ 1/n

0
|p′n|2 dx

. (A.3)

By construction

∫ 1/4

0

A2|u′′
2,0|2 dx = π2/3 and

∫ 1/4

0

|u′
2,0|2 dx = 1.
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It remains to show that the remaining terms in (A.3) tend to zero with increasing n.
Beginning with the numerator, from A(x) = O(|x − 1/4|2/3) comes

∫ 1/n

0

A2(x − 1/4)|p′′n(x)|2 dx =

∫ 1/n

0

O(x4/3)|2an(3nx− 2)|2 dx = O(1/n1/3),

while in the denominator

∫ 1/n

0

|p′n(x)|2 dx =

∫ 1/n

0

|a(1 − 4nx + 3n2x2)|2 dx = O(1/n).

As we have constructed a sequence of admissible displacements whose Rayleigh quotients
tend to π2/3 we conclude that the clamped–clamped column built according to (A.1)
buckles at a load not exceeding π2/3.

Now recall Tadjbakhsh and Keller’s solution to the clamped–hinged problem,

σ̂2,1(x) =
4 sin2 θ(x)

3 sin2 θ(0)
, θ(0) ≤ θ ≤ π, (A.4)

θ(x) − 1
2 sin 2θ(x) + 1

2 sin 2θ(0) − θ(0) = x(π + 1
2 sin 2θ(0) − θ(0)), 0 ≤ x ≤ 1,

1
2 sin 2θ(0) − θ(0) = − 2

3 sin3 θ(0) cos−1 θ(0) − π,

and the fact that it vanishes at x0 = y/(π + y) where y = 1
2

sin 2θ(0)− θ(0). Analogous to
the above, this design is optimal for the clamped–free column on (0, x0). The volume of this
piece being x0 as well, we find that it buckles at π2/3. Denoting by u2,0 the corresponding
clamped–free eigenfunction on (0, x0) whose derivative has L2 norm 1, we define,

ũ(x) =

{

u2,0(x), if 0 ≤ x ≤ x0
u2,0(x0)
1−x0

(1 − x), if x0 ≤ x ≤ 1.

Here we introduce the perturbation

pn(x) = bx − 2n(b + c)x2 + n2(b + c)x3, where b = u2,0(x0), c = u′
2,0(x0),

and the corresponding regularization

ϕn(x) =







ũ(x), if 0 ≤ x ≤ x0

ũ(x0) + pn(x − x0), if x0 ≤ x ≤ x0 + 1/n
ũ(x), if x0 + 1/n ≤ x ≤ 1.

By construction, ϕn ∈ C1, while as in the clamped–clamped case u′′
2,0 behaves like

|x − x0|−1/3 near x0, and so ϕn ∈ H2
0 . Moreover, σ̂2,1(x) = O(|x − x0|2/3) implies as

above that

∫ 1/n

0

σ̂2
2,1(x − x0)|p′′n(x)|2 dx = O(1/n1/3), and

∫ 1/n

0

|p′n|2 dx = O(1/n).
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Consequently,

∫ 1

0
σ̂2

2,1|ϕ′′
n|2 dx

∫ 1

0
|ϕ′

n|2 dx
→ π2/3

1 + u2
2,0(x0)/(1 − x0)

as n → ∞,

i.e., the clamped–hinged column built according to (A.4) is even weaker than the clamped–
clamped column of (A.1).
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