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Abstract 
Triple Modular Redundancy (TMR) is a suitable fault 
tolerant technique for SRAM-based FPGA. However, one 
of the main challenges in achieving 100% robustness in 
designs protected by TMR running on programmable 
platforms is to prevent upsets in the routing from 
provoking undesirable connections between signals from 
distinct redundant logic parts, which can generate an 
error in the output. This paper investigates the optimal 
design of the TMR logic (e.g., by cleverly inserting voters) 
to ensure robustness. Four different versions of a TMR 
digital filter were analyzed by fault injection. Faults were 
randomly inserted straight into the bitstream of the 
FPGA. The experimental results presented in this paper 
demonstrate that the number and placement of voters in 
the TMR design can directly affect the fault tolerance, 
ranging from 4.03% to 0.98% the number of upsets in the 
routing able to cause an error in the TMR circuit.  

1. Introduction 
 
Triple Modular Redundancy (TMR) is a well-known fault 
tolerant technique for avoiding errors in integrated 
circuits. The TMR scheme uses three identical logic 
blocks performing the same task in tandem with 
corresponding outputs being compared through majority 
voters. TMR is especially suitable for protecting designs 
synthesized in SRAM-based Field Programmable Gate 
Arrays (FPGAs) [1], due to the peculiar effect of an upset 
in the user’s combinational logic design.  

In a SRAM-based FPGA, both the user’s 
combinational and sequential logic are implemented in 
programmable complex logic blocks (CLBs), which are 
customizable by writing in the SRAM cells of the 
program memory. When a charged particle strikes one of 
the sensitive nodes of a cell in such a memory,  as a drain 
in an off state transistor, it generates a transient current 

pulse that can turn  the gate of the opposite transistor on. 
The effect can produce an inversion in the stored value (in 
other words, a bit flip in the memory cell). This is called 
Single Event Upset (SEU), or simply upset. The value of 
an SRAM cell affects either the CLB logic function (by 
implementing it in a Lookup Table or LUT), or the 
connections among CLBs (by customizing the routing). 
Changing the value of such a cell has a transient effect 
followed by a permanent effect on the controlled logic or 
routing [2]. The upsets in the routing represent the main 
concern, as 90% of the SRAM cells inside the FPGA 
control the routing. The main effects of an upset in the 
routing are open wires and shortcuts between distinct 
wires. When an upset in the routing affects signals from 
two distinct redundant logic parts, for example, provoking 
an undesirable connection between redundant logic part 0 
and redundant logic part 1, the TMR approach may not 
vote the correct output. The probability of this occurrence 
depends on the logic placement and the number of 
majority voters in the design.  Previous results from 
bitstream fault injection [3, 4] and radiation ground testing 
[5] showed that there are few upsets in the routing that can 
generate an error in the output. This work focuses on how 
to avoid these types of upsets.  

The majority voters perform a very important task in 
the TMR approach, because they are able to block the 
effects of an upset through the logic at the final output.  In 
this way, the voters can be placed in the end of the 
combinational and sequential logic blocks, creating 
barriers for the upset effects. The problem is to determine 
the optimal partition of the TMR logic that must be voted 
inside the circuit in order to reduce the probability that 
upsets in the routing affect two distinct redundant parts 
that are voted by the same voters. A small size block 
partition requires a large number of majority voters that 
may be too costly in terms of area and performance. On 
the other hand, placing only voters at the last output 
increases the probability of an upset in the routing 
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affecting two distinct redundant logic parts overcoming 
the TMR.  

The goal of this paper is to investigate the optimal 
partition of the TMR logic that must be voted in such a 
way that the minimal number of voters is used and the 
maximal upset tolerance is achieved. The considered case 
study circuit is a digital filter. This design has a large 
amount of combinational and sequential logic 
corresponding to dedicated multipliers and adders and 
registers present in each tap of the filter. To evaluate the 
TMR robustness a previously developed upset injection 
tool [6] was used to randomly inject faults in the FPGA 
bitstream. Results show that there is an optimal solution in 
terms of number and placement of voters and robustness, 
which in the case of the filter can reduce from 4.03% to 
0.98% (four times smaller!) the number of upsets in the 
routing able to cause an error in the TMR. 

   
2. Related Work 
 
The correct implementation of a TMR circuitry into a 
SRAM-based FPGA depends on the type of data structure 
to be protected. As stated in [1], the logic may be grouped 
into four different structure types: Throughput Logic, 
State-machine Logic, I/O Logic, and Special Features 
(Select block RAM, DLLs, etc.). The Throughput Logic is 
a logic module of any size or functionality, synchronous 
or asynchronous, where all of the logic paths flow from 
the inputs to the outputs of the module without ever 
forming a logic loop. In this case, it is only necessary to 
triplicate the logic, creating three redundant logic parts 
(tr0, tr1 and tr2), as presented in fig. 1.  

If an upset occurs in one of the redundant 
combination logic parts (LUTs or routing), its effect will 
remain until the load of the next bitstream. The constant 
reconfiguration of the device avoids the accumulation of 
upsets in the programmable matrix. This continuous 
loading of the bitstream is called scrubbing, and it does 
interrupt the application.  It is important to notice that in 
Throughput Logic structures composed by registers, the 
only way to correct an upset in a register is by loading a 
new data in the input of the register, or by implementing 
this refreshing structure with voters (see fig. 2). In the 
case of the registers, it is not possible to load the 

configuration bitstream without interrupting the 
application because the correct state of the register cannot 
be saved and loaded by the bitstream. 

State-machine logic is any structure where a 
registered output, at any register stage within the module, 
is fed back into any prior stage within the module, 
forming a registered logic loop. This structure is used in 
accumulators, counters, or any custom state-machine or 
state-sequencer where the given state of the internal 
registers is dependent on its own previous state. In this 
case, it is necessary to triplicate the logic and have 
majority voters in the outputs. The register cannot be 
locked in a wrong value, and for this reason there is a 
voter for each redundant logic part in the feedback path, 
making the system able to recover by itself. The same 
structure presented in fig. 2 can be used. One majority 
voter can be implemented by one LUT. Because the LUT 
can be upset (permanent effect), the voters are also 
triplicated. In this way, if one voter is upset, there are still 
two voters working properly.  

The primary purpose of using a TMR design 
methodology is to remove all single points of failure from 
the design. This begins with the FPGA inputs. If a single 
input was connected to all three redundant logic paths 
within the FPGA, then a failure at that input would cause 
these errors to propagate through all the redundancies, and 
thus the error would not be mitigated. Therefore, each 
redundant logic part of the design that uses FPGA inputs 
should have its own set of inputs, as shown in fig. 1. Thus, 
if one of the inputs suffers a failure, it will only affect one 
of the redundant logic parts. The outputs are the key to the 
overall TMR strategy. Since the full triple module 
redundancy generates every logic path triplicated, the 
TMR output majority voters, inside the output logic block, 
allow converging the output again to one signal outside 
the FPGA, as presented in fig. 1. 

There are mainly four types of upsets that may occur 
in designs synthesized into the FPGA matrix, whose 
effects are summarized in table 1. They can be classified 
by the upset location: upsets in the logic (LUT), upsets in 
the customization routing bits inside the CLB 
(customization logic in general), upsets in the routing 
connecting CLBs and pins (routing), and upsets in the 
CLB flip-flops (flip-flops).  
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Figure 1. Triple Modular Redundancy (TMR) Scheme in the FPGA 



The percentages of each type of SRAM cells in the 
whole set of customizable elements in the programmable 
matrix of our filter are as follows: the LUTs represent 
7.4%, the flip-flops represent 0.46%, the customization 
bits in the CLB represent 6.36% and the general routing 
represents 82.9%. Based on these values, one can 
conclude that the probability of an upset affecting the 
registers is very low, compared to the probability of this 
same upset affecting the routing, which is our main 
concern as the other type of upsets are protected by TMR.   
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clk2 voter

 
Figure 2- TMR register with voters and 

scrubbing 
The probability that an upset in the routing overcomes 

the TMR is related to the routing density and logic 
placement. In fig. 1, there are two examples of upsets in 
the routing. Upset “a” connects two signals from the same 
redundant part, which does not generate an error in the 
TMR output, because the upset effect will be voted by the 

outermost voters. However, upset “b” may provoke an 
error in the TMR output, because it connects two signals 
from distinct redundant logic parts affecting two out of 
three redundant parts of the TMR. 

Dedicated floorplanning for each redundant part of 
the TMR can reduce the probability of upsets in the 
routing affecting two or more logic modules, but it may 
not be sufficient, since placement can be too complex in 
some cases. Remember that each time it is necessary to  
include voters, there are connections between the 
redundant parts (see fig. 2), which make impossible to 
place the redundant logic parts very far away from each 
other with no connections at all. 

If the redundant logic parts tr0, tr1 and tr2 
(represented in fig. 1 after the TMR register with voters 
and refresh) were partitioned in smaller logic blocks with 
voters, a connection between signals from distinct 
redundant parts could be voted by different voters. This 
logic partition by voters is represented in fig. 3. Notice 
that now the upset “b” can not provoke an error in the 
TMR output, which increases the robustness of the TMR 
in the presence of routing upsets without being of concern 
to floorplanning. The problem is to evaluate the best size 
of the logic to achieve the best robustness. If the logic is 
partitioned in very small blocks, the number of voters will 
increase dramatically, causing an overly costly TMR 
implementation. The objective is finding the best partition 
in terms of area cost, performance and robustness.   

Table 1. Upset analysis in the Triple Modular Redundancy approach  

Upset Location Upset Effect Consequences Upset Correction 
LUT  Modification in the 

Combinational logic 
- Error in one redundant part with no error 
in the TMR design output 

By scrubbing 

Routing  Connection or disconnection 
between any two or more signals 
in the design 

- Error in the redundant part with no error 
in the TMR design output 
- Error in more than one redundant part 
with error in the design output 

By scrubbing 

Customization 
logic in 
general 

Connection or disconnection 
between any two signals in the 
same CLB 

- Error in the redundant part with no error 
in the TMR design output 
- Error in more than one redundant part 
with error in the design output 

By scrubbing 

Flip-flops Modification in the sequential 
logic 

- Error in the redundant part, no error in 
the TMR design output 

By design 
modification  
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Figure 3. Triple Modular Redundancy (TMR) scheme with logic partition in the FPGA 



3. The Case Study Design: Digital Fir Filter 
 
The designed test case to evaluate the robustness of the 
TMR according to the logic partition is an 11 taps 9-bit 
digital low-pass filter. The original coefficients calculated 
by Matlab [7] were multiplied by the constant 512. The 
final multiplier coefficients are: 1, -1, -9, 6, 73 and 120. In 
this filter design, there are eleven dedicated 9-bit 
multipliers, ten 18-bit adders and ten 9-bit registers.  

An upset can affect the registers (in this case causing 
a transient effect), or can affect the logic (multipliers, 
adders, voters), causing a permanent effect. Five different 
versions of the filter were implemented. The first is the 
standard one with no protection at all (filter). The second 
version was protected by TMR using the maximum logic 
partition (TMR_p1). In this case, each combinational logic 
component, such as an adder or a multiplier, was 
triplicated and majority voters were inserted in the output 
as presented in fig. 4(a). The third implementation is a 
TMR filter, where each partition logic block has one 
adder, one multiplier and voters placed in the output 
(TMR_p2), as shown in fig. 4(b). The fourth TMR filter 
version has only majority voters in the outermost output 
signals (TMR_p3), as presented in fig. 4(c).  
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(c) TMR_p3: filter with minimum partition  

Figure 4. TMR digital filter schemes used to 
evaluate the optimal logic partition of TMR 

All the TMR implementations so far have TMR 
registers with voters and refresh. The last implementation 
differs from the fourth version because the registers in this 
case are not voted (TMR_p3_nv). They are just triplicated 
and the final majority voters are responsible for voting the 
upsets in the combinational logic (adders and multipliers) 
and in the sequential logic (registers), as well as the 
routing upsets.   

The comparison between the main characteristics of 
the four implemented versions of the FIR digital filter are 
reported in Table 2, where slice reports the number of 
FPGA slices that the circuit uses, bitstream is composed 
of the routing bits, LUTs bits and CLB flip-flops. The 
routing bits is the number of configuration memory bits 
for interconnections and multiplexers used for routing the 
signals of the circuits, LUTs bits is the number of 
configuration memory bits used to program the LUTs 
within the CLBs, and CLB flip-flops is the number of 
configuration memory bits used to program the flip-flops 
within the CLBs.  

The amount of routing bits in the unprotected design 
corresponds roughly to 80% of the total customizable bits. 
In the TMR version, the design with the maximum 
partition has 77% of the total customizable bits 
corresponding to routing bits, whereas the minimum 
partition presents 81% of routing bits. This result is very 
interesting, because it shows that increasing the logic 
partition with voters actually decreases the percentage of 
routing bits compared to the logic. This can happen 
because of the amount to logic that is inserted by the 
voters.  

Table 2. Comparison between TMR partitioned designs in XC2S200E-PQ208 

Bitstream Filter Design Area 
 (# slices) #routing bits #LUTs bits #CLB ffps bits 

Estimated 
Performance 

Standard: no TMR protected 150 42,953 9,600 722 154 Mhz 
TMR: max. partition (TMR_p1) 560 138,453 35,840 3,498 123 Mhz 
TMR: med. partition (TMR_p2) 504 161,568 32,256 3,492 137 Mhz 
TMR: min. partition (TMR_p3) 498 151,994 31,872 3,447 153 Mhz 
TMR: min. partition / no voted registers  
(TMR_p3_nv) 476 150,521 30,464 2,141 154 Mhz 



4. Fault Injection Experiments 
 
The robustness of the TMR technique implemented in a 
high-level description language synthesized in the 
Spartan® FPGA was evaluated by injecting faults in the 
configuration bits of the matrix (LUTs and configuration 
routing cells). We used a fault-injection system we 
developed [6] which is composed of three modules: 

1. Fault List Manager: it generates the list of faulty 
bitstreams to be injected within the circuit under 
analysis. 

2.  Fault Injection Manager: it manages the fault 
injection process, by selecting one fault from the 
fault list, performing its injection in the circuit 
under analysis, and then observing and analyzing 
the obtained results to provide the fault 
classification. 

3. Golden device: it is a copy of the DUT without 
the usage of TMR. 

The fault injection system consists of the Fault List 
Manager implemented as a software process that runs on a 
PC, a Fault Injection Manager running in part on a PC as a 
software process, and in part on the same FPGA where the 
circuit under analysis is placed, and finally a Golden 
device placed on the same FPGA, and linked with the 
Fault List Manager and with the DUT. Every clock cycle 
their output signals are compared with those coming from 
the DUT. 

In order to improve the fault-injection process, we 
designed the Fault List Manager so that it is able to 
identify the configuration memory bits that are actually 
programmed to implement the DUT and generate the bit-
flips only for them. To implement this solution we first 
generated the file storing the configuration memory file 
for the whole design; secondly the Fault List Manager 
identified those bits related to the DUT. Please note that 
faults were selected in such a way that common-mode 
errors were not possible. This process is possible thanks to 
a data base of the programmed resources (LUTs and 
configuration routing cells) we developed by decoding the 
Xilinx bitstream.  The list of faults for the DUT is finally 
computed and stored. Each element of the fault list is a 
faulty bitstream for the FPGA, where one bit at a time is 
modified emulating the effect of a SEU. 

In the used fault-injection system the DUT and the 
Fault Injection Manager implemented on the FPGA share 
the same FPGA device. However, to guarantee that the 
modules are placed on the FPGA device in such a way 
that any fault injected in the DUT does not interfere with 
the Fault Injection Manager, we constrained the place and 
route tools to organize the FPGA-resource floorplanning 
allocation. The DUT and the Fault Injection Manager are 
placed separately on the floorplanning by at least 10 slice 
columns to avoid the link between the two units generated 
by an undesirable interconnection due to an upset. 

The FPGA device used in our experiment is a 
Spartan® XC2S200EPQ208 from Xilinx [8], whose 
configuration memory is composed of 1,442,016 bits 
organized in 2,501 frames of 576 bits each. The 
configuration memory controls an array of 28 x 42 slices. 
The robustness of the TMR technique implemented in a 
high-level description language was observed while 
running five fault-injection campaigns, one for each 
circuit.  

The fault injection process took about 13 seconds for 
each fault injected. The test pattern generation and the 
output analyzer placed in the same FPGA need a 
negligible time for applying all the input stimuli and 
classifying the faults (5.7 ms on the average). Most of the 
time for evaluating each injected fault was due to the time 
for downloading the faulty bitstream within the SRAM-
based FPGA. The results we gained performing the fault-
injection campaigns are reported in table 3, where Injected 
Faults reports the number of SEUs injected, and Wrong 
Answer reports the percentage of SEUs provoking a fault 
within the TMR DUT.  

Roughly 10% of the whole configuration memory 
bits were injected. This set was randomly chosen from the 
fault list. It would take approximately 3 months for testing 
the whole configuration memory bits of the five circuits. 
The results confirm our original hypothesis, since they 
show that placing voters just at the final output is not 
sufficient to avoid errors. There is an optimum size of 
triplicated logic that must be voted inside the design, 
creating voter barriers along the logic that help block the 
effect of upsets in the routing to propagate to the output. 
The results experimentally demonstrate that the logic 
partition done in the TMR_p2 version reduce the 
percentage of uncovered faults from 4.03% to 0.98%, 
corresponding to a four times reduction. This solution is 
also efficient in term of estimated performance, as shown 
in Table 2.  

Table 3. Fault injection campaign results 
Wrong answer Design Injected 

Faults [#] [#] [%] 
Standard Filter 5,100 4,952 97.10 
TMR _p1 17,515 706 4.03 
TMR_p2 19,401 190 0.98 
TMR _p3 18,501 289 1.56 
TMR _p3_nv 18,000 2,268 12.60 

 
Table 4 reports a classification of the effects of the 

injected upsets that caused an error in the TMR. The 
effect analysis of each faulty bitstream was done using the 
classification tool developed in [9]. The results confirm 
that the routing resources are the most sensitive to upsets. 
No upsets in the LUTs could provoke an error in the TMR 
design, as it was expected. Upsets in the CLB 
multiplexers (mux) and in the initialization that are related 



to the routing resources represent less than 8% of the total 
effects. The main problem is the general routing that 
connects CLBs and I/O pads, corresponding to more than 
90% of routing resources. The general routing effects that 
can provoke an error in the TMR output are classified as 
Open, Bridge, Input-Antenna, Conflict and others. The 
Open effect corresponds to a Programmable 
Interconnection Point (PIP) in open state (open 
connection). The Bridge effect means that a new PIP is 
permitted. Both Bridge and Open effects may influence 
the behavior of the circuit. The Input-Antenna effect also 
represents a new permitted PIP. In this case, this new PIP 
connects an unused input node to a used output node; this 
may influence the behavior of the circuit, since the CLB 
or output pad are driven to an unknown logic value. The 
Conflict effect is when a new PIP links both used input 
and output nodes, creating a conflict and a propagation of 
an unknown value along the TMR. These effects are a real 
challenge for those designers who are involved in devising 
solutions for hardening their FPGA-based circuits, and 
these effects must be avoided or at least minimized.   

It is important to notice that one upset can provoke 
more that one effect in the programmable matrix. The 
same can be said about different upsets in the bitstream 
that can present the same effect. This explains why the 
number of table 3 and 4 are not exactly the same. 

  
5. Conclusions 
 

The results presented in this paper suggest that there 
is a trade off between the logic partition of the throughput 
logic (and consequently between the number of voters) 
and the number of routing upsets that could provoke an 
error in the TMR. In contrary to what was expected, a 
large number of voters does not always mean larger 
protection against upsets. There is an optimal logic 
partition for each circuit that can reduce the propagation 
of the upset effect in the routing. For the case study 
circuit, the best partition is the medium partition 
(TMR_p2). This version of the TMR design presents a 
small sensitivity to routing upsets (0.98%, a four times 
improvement over normal TMR) and small performance 

degradation (about 10%) compared to the standard version 
(not protected).   

Future works will consider analyzing the effect of 
logic partition in power dissipation, and resolving the 
problem of the uncovered routing upsets by means of a 
combination of logic partition and dedicated 
floorplanning. 
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CLBs 
Logic and 
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 Total 5321  727  210  342  3856  


