
On the Optimal Design of Triple Modular Redundancy Logic
for SRAM-based FPGAs

F. Lima Kastensmidt1,3, L. Sterpone2, L. Carro3, M. Sonza Reorda2

1Universidade Estadual do Rio

Grande do Sul (UERGS)
Engenharia em Sistemas Digitais

Guaíba, Brazil
fernanda-lima@uergs.edu.br

2Politecnico di Torino
Dipartimento di Automatica e

Informatica
Torino, Italy

luca.sterpone@polito.it,
matteo.sonzareorda@polito.it

3Universidade Federal do Rio
Grande do Sul (UFRGS)

PPGC – II - DELET
Porto Alegre, Brazil

carro@eletro.ufrgs.br
fglima@inf.ufrgs.br

Abstract
Triple Modular Redundancy (TMR) is a suitable fault
tolerant technique for SRAM-based FPGA. However, one
of the main challenges in achieving 100% robustness in
designs protected by TMR running on programmable
platforms is to prevent upsets in the routing from
provoking undesirable connections between signals from
distinct redundant logic parts, which can generate an
error in the output. This paper investigates the optimal
design of the TMR logic (e.g., by cleverly inserting voters)
to ensure robustness. Four different versions of a TMR
digital filter were analyzed by fault injection. Faults were
randomly inserted straight into the bitstream of the
FPGA. The experimental results presented in this paper
demonstrate that the number and placement of voters in
the TMR design can directly affect the fault tolerance,
ranging from 4.03% to 0.98% the number of upsets in the
routing able to cause an error in the TMR circuit.

1. Introduction

Triple Modular Redundancy (TMR) is a well-known fault
tolerant technique for avoiding errors in integrated
circuits. The TMR scheme uses three identical logic
blocks performing the same task in tandem with
corresponding outputs being compared through majority
voters. TMR is especially suitable for protecting designs
synthesized in SRAM-based Field Programmable Gate
Arrays (FPGAs) [1], due to the peculiar effect of an upset
in the user’s combinational logic design.

In a SRAM-based FPGA, both the user’s
combinational and sequential logic are implemented in
programmable complex logic blocks (CLBs), which are
customizable by writing in the SRAM cells of the
program memory. When a charged particle strikes one of
the sensitive nodes of a cell in such a memory, as a drain
in an off state transistor, it generates a transient current

pulse that can turn the gate of the opposite transistor on.
The effect can produce an inversion in the stored value (in
other words, a bit flip in the memory cell). This is called
Single Event Upset (SEU), or simply upset. The value of
an SRAM cell affects either the CLB logic function (by
implementing it in a Lookup Table or LUT), or the
connections among CLBs (by customizing the routing).
Changing the value of such a cell has a transient effect
followed by a permanent effect on the controlled logic or
routing [2]. The upsets in the routing represent the main
concern, as 90% of the SRAM cells inside the FPGA
control the routing. The main effects of an upset in the
routing are open wires and shortcuts between distinct
wires. When an upset in the routing affects signals from
two distinct redundant logic parts, for example, provoking
an undesirable connection between redundant logic part 0
and redundant logic part 1, the TMR approach may not
vote the correct output. The probability of this occurrence
depends on the logic placement and the number of
majority voters in the design. Previous results from
bitstream fault injection [3, 4] and radiation ground testing
[5] showed that there are few upsets in the routing that can
generate an error in the output. This work focuses on how
to avoid these types of upsets.

The majority voters perform a very important task in
the TMR approach, because they are able to block the
effects of an upset through the logic at the final output. In
this way, the voters can be placed in the end of the
combinational and sequential logic blocks, creating
barriers for the upset effects. The problem is to determine
the optimal partition of the TMR logic that must be voted
inside the circuit in order to reduce the probability that
upsets in the routing affect two distinct redundant parts
that are voted by the same voters. A small size block
partition requires a large number of majority voters that
may be too costly in terms of area and performance. On
the other hand, placing only voters at the last output
increases the probability of an upset in the routing

1530-1591/05 $20.00 © 2005 IEEE

affecting two distinct redundant logic parts overcoming
the TMR.

The goal of this paper is to investigate the optimal
partition of the TMR logic that must be voted in such a
way that the minimal number of voters is used and the
maximal upset tolerance is achieved. The considered case
study circuit is a digital filter. This design has a large
amount of combinational and sequential logic
corresponding to dedicated multipliers and adders and
registers present in each tap of the filter. To evaluate the
TMR robustness a previously developed upset injection
tool [6] was used to randomly inject faults in the FPGA
bitstream. Results show that there is an optimal solution in
terms of number and placement of voters and robustness,
which in the case of the filter can reduce from 4.03% to
0.98% (four times smaller!) the number of upsets in the
routing able to cause an error in the TMR.

2. Related Work

The correct implementation of a TMR circuitry into a
SRAM-based FPGA depends on the type of data structure
to be protected. As stated in [1], the logic may be grouped
into four different structure types: Throughput Logic,
State-machine Logic, I/O Logic, and Special Features
(Select block RAM, DLLs, etc.). The Throughput Logic is
a logic module of any size or functionality, synchronous
or asynchronous, where all of the logic paths flow from
the inputs to the outputs of the module without ever
forming a logic loop. In this case, it is only necessary to
triplicate the logic, creating three redundant logic parts
(tr0, tr1 and tr2), as presented in fig. 1.

If an upset occurs in one of the redundant
combination logic parts (LUTs or routing), its effect will
remain until the load of the next bitstream. The constant
reconfiguration of the device avoids the accumulation of
upsets in the programmable matrix. This continuous
loading of the bitstream is called scrubbing, and it does
interrupt the application. It is important to notice that in
Throughput Logic structures composed by registers, the
only way to correct an upset in a register is by loading a
new data in the input of the register, or by implementing
this refreshing structure with voters (see fig. 2). In the
case of the registers, it is not possible to load the

configuration bitstream without interrupting the
application because the correct state of the register cannot
be saved and loaded by the bitstream.

State-machine logic is any structure where a
registered output, at any register stage within the module,
is fed back into any prior stage within the module,
forming a registered logic loop. This structure is used in
accumulators, counters, or any custom state-machine or
state-sequencer where the given state of the internal
registers is dependent on its own previous state. In this
case, it is necessary to triplicate the logic and have
majority voters in the outputs. The register cannot be
locked in a wrong value, and for this reason there is a
voter for each redundant logic part in the feedback path,
making the system able to recover by itself. The same
structure presented in fig. 2 can be used. One majority
voter can be implemented by one LUT. Because the LUT
can be upset (permanent effect), the voters are also
triplicated. In this way, if one voter is upset, there are still
two voters working properly.

The primary purpose of using a TMR design
methodology is to remove all single points of failure from
the design. This begins with the FPGA inputs. If a single
input was connected to all three redundant logic paths
within the FPGA, then a failure at that input would cause
these errors to propagate through all the redundancies, and
thus the error would not be mitigated. Therefore, each
redundant logic part of the design that uses FPGA inputs
should have its own set of inputs, as shown in fig. 1. Thus,
if one of the inputs suffers a failure, it will only affect one
of the redundant logic parts. The outputs are the key to the
overall TMR strategy. Since the full triple module
redundancy generates every logic path triplicated, the
TMR output majority voters, inside the output logic block,
allow converging the output again to one signal outside
the FPGA, as presented in fig. 1.

There are mainly four types of upsets that may occur
in designs synthesized into the FPGA matrix, whose
effects are summarized in table 1. They can be classified
by the upset location: upsets in the logic (LUT), upsets in
the customization routing bits inside the CLB
(customization logic in general), upsets in the routing
connecting CLBs and pins (routing), and upsets in the
CLB flip-flops (flip-flops).

INPUT

package PIN

INPUT

package PIN

REDUNDANT
LOGIC (tr0)

REDUNDANT
LOGIC (tr1)

REDUNDANT
LOGIC (tr2)

OUTPUT

package PIN

TM
R

 register
w

ith voters and refresh

tr0

tr1

tr2

TM
R

 O
utput

M
ajority Voter

size

FPGA

a

b

Figure 1. Triple Modular Redundancy (TMR) Scheme in the FPGA

The percentages of each type of SRAM cells in the
whole set of customizable elements in the programmable
matrix of our filter are as follows: the LUTs represent
7.4%, the flip-flops represent 0.46%, the customization
bits in the CLB represent 6.36% and the general routing
represents 82.9%. Based on these values, one can
conclude that the probability of an upset affecting the
registers is very low, compared to the probability of this
same upset affecting the routing, which is our main
concern as the other type of upsets are protected by TMR.

voter

voter

clk0

clk1

clk2 voter

Figure 2- TMR register with voters and

scrubbing
The probability that an upset in the routing overcomes

the TMR is related to the routing density and logic
placement. In fig. 1, there are two examples of upsets in
the routing. Upset “a” connects two signals from the same
redundant part, which does not generate an error in the
TMR output, because the upset effect will be voted by the

outermost voters. However, upset “b” may provoke an
error in the TMR output, because it connects two signals
from distinct redundant logic parts affecting two out of
three redundant parts of the TMR.

Dedicated floorplanning for each redundant part of
the TMR can reduce the probability of upsets in the
routing affecting two or more logic modules, but it may
not be sufficient, since placement can be too complex in
some cases. Remember that each time it is necessary to
include voters, there are connections between the
redundant parts (see fig. 2), which make impossible to
place the redundant logic parts very far away from each
other with no connections at all.

If the redundant logic parts tr0, tr1 and tr2
(represented in fig. 1 after the TMR register with voters
and refresh) were partitioned in smaller logic blocks with
voters, a connection between signals from distinct
redundant parts could be voted by different voters. This
logic partition by voters is represented in fig. 3. Notice
that now the upset “b” can not provoke an error in the
TMR output, which increases the robustness of the TMR
in the presence of routing upsets without being of concern
to floorplanning. The problem is to evaluate the best size
of the logic to achieve the best robustness. If the logic is
partitioned in very small blocks, the number of voters will
increase dramatically, causing an overly costly TMR
implementation. The objective is finding the best partition
in terms of area cost, performance and robustness.

Table 1. Upset analysis in the Triple Modular Redundancy approach

Upset Location Upset Effect Consequences Upset Correction
LUT Modification in the

Combinational logic
- Error in one redundant part with no error
in the TMR design output

By scrubbing

Routing Connection or disconnection
between any two or more signals
in the design

- Error in the redundant part with no error
in the TMR design output
- Error in more than one redundant part
with error in the design output

By scrubbing

Customization
logic in
general

Connection or disconnection
between any two signals in the
same CLB

- Error in the redundant part with no error
in the TMR design output
- Error in more than one redundant part
with error in the design output

By scrubbing

Flip-flops Modification in the sequential
logic

- Error in the redundant part, no error in
the TMR design output

By design
modification

INPUT

package PIN

INPUT

package PIN

REDUNDANT
LOGIC (tr0)

REDUNDANT
LOGIC (tr1)

REDUNDANT
LOGIC (tr2)

tr0

tr1

tr2

OUTPUT

package PIN

tr0

tr1

tr2

TM
R

 register
w

ith voters and refresh

TM
R

 M
ajority Voter

tr0

tr1

tr2

TM
R

 M
ajority Voter

TM
R

 O
utput

M
ajority Voter

size

FPGA
a

b

Figure 3. Triple Modular Redundancy (TMR) scheme with logic partition in the FPGA

3. The Case Study Design: Digital Fir Filter

The designed test case to evaluate the robustness of the
TMR according to the logic partition is an 11 taps 9-bit
digital low-pass filter. The original coefficients calculated
by Matlab [7] were multiplied by the constant 512. The
final multiplier coefficients are: 1, -1, -9, 6, 73 and 120. In
this filter design, there are eleven dedicated 9-bit
multipliers, ten 18-bit adders and ten 9-bit registers.

An upset can affect the registers (in this case causing
a transient effect), or can affect the logic (multipliers,
adders, voters), causing a permanent effect. Five different
versions of the filter were implemented. The first is the
standard one with no protection at all (filter). The second
version was protected by TMR using the maximum logic
partition (TMR_p1). In this case, each combinational logic
component, such as an adder or a multiplier, was
triplicated and majority voters were inserted in the output
as presented in fig. 4(a). The third implementation is a
TMR filter, where each partition logic block has one
adder, one multiplier and voters placed in the output
(TMR_p2), as shown in fig. 4(b). The fourth TMR filter
version has only majority voters in the outermost output
signals (TMR_p3), as presented in fig. 4(c).

x

C1

R2 R3

+

x

C2

INPUT

+

x

C1

…

… OUTPUT

TMR Output Voter (buffers)
TMR Majority Voter (LUT)

TMR FPGA interface pin

x

+

TMR Multiplier

TMR Adder

TMR voted register with refresh

 (a) TMR_p1: filter with maximum logic partition

x

C1

R2 R3

+

x

C2

+

x

C1

…

… OUTPUT

INPUT

(b) TMR_p2: filter with medium logic partition

x

C1

R2 R3

+

x

C2

+

x

C1

…

…

INPUT

(c) TMR_p3: filter with minimum partition

Figure 4. TMR digital filter schemes used to
evaluate the optimal logic partition of TMR

All the TMR implementations so far have TMR
registers with voters and refresh. The last implementation
differs from the fourth version because the registers in this
case are not voted (TMR_p3_nv). They are just triplicated
and the final majority voters are responsible for voting the
upsets in the combinational logic (adders and multipliers)
and in the sequential logic (registers), as well as the
routing upsets.

The comparison between the main characteristics of
the four implemented versions of the FIR digital filter are
reported in Table 2, where slice reports the number of
FPGA slices that the circuit uses, bitstream is composed
of the routing bits, LUTs bits and CLB flip-flops. The
routing bits is the number of configuration memory bits
for interconnections and multiplexers used for routing the
signals of the circuits, LUTs bits is the number of
configuration memory bits used to program the LUTs
within the CLBs, and CLB flip-flops is the number of
configuration memory bits used to program the flip-flops
within the CLBs.

The amount of routing bits in the unprotected design
corresponds roughly to 80% of the total customizable bits.
In the TMR version, the design with the maximum
partition has 77% of the total customizable bits
corresponding to routing bits, whereas the minimum
partition presents 81% of routing bits. This result is very
interesting, because it shows that increasing the logic
partition with voters actually decreases the percentage of
routing bits compared to the logic. This can happen
because of the amount to logic that is inserted by the
voters.

Table 2. Comparison between TMR partitioned designs in XC2S200E-PQ208

Bitstream Filter Design Area
 (# slices) #routing bits #LUTs bits #CLB ffps bits

Estimated
Performance

Standard: no TMR protected 150 42,953 9,600 722 154 Mhz
TMR: max. partition (TMR_p1) 560 138,453 35,840 3,498 123 Mhz
TMR: med. partition (TMR_p2) 504 161,568 32,256 3,492 137 Mhz
TMR: min. partition (TMR_p3) 498 151,994 31,872 3,447 153 Mhz
TMR: min. partition / no voted registers
(TMR_p3_nv) 476 150,521 30,464 2,141 154 Mhz

4. Fault Injection Experiments

The robustness of the TMR technique implemented in a
high-level description language synthesized in the
Spartan® FPGA was evaluated by injecting faults in the
configuration bits of the matrix (LUTs and configuration
routing cells). We used a fault-injection system we
developed [6] which is composed of three modules:

1. Fault List Manager: it generates the list of faulty
bitstreams to be injected within the circuit under
analysis.

2. Fault Injection Manager: it manages the fault
injection process, by selecting one fault from the
fault list, performing its injection in the circuit
under analysis, and then observing and analyzing
the obtained results to provide the fault
classification.

3. Golden device: it is a copy of the DUT without
the usage of TMR.

The fault injection system consists of the Fault List
Manager implemented as a software process that runs on a
PC, a Fault Injection Manager running in part on a PC as a
software process, and in part on the same FPGA where the
circuit under analysis is placed, and finally a Golden
device placed on the same FPGA, and linked with the
Fault List Manager and with the DUT. Every clock cycle
their output signals are compared with those coming from
the DUT.

In order to improve the fault-injection process, we
designed the Fault List Manager so that it is able to
identify the configuration memory bits that are actually
programmed to implement the DUT and generate the bit-
flips only for them. To implement this solution we first
generated the file storing the configuration memory file
for the whole design; secondly the Fault List Manager
identified those bits related to the DUT. Please note that
faults were selected in such a way that common-mode
errors were not possible. This process is possible thanks to
a data base of the programmed resources (LUTs and
configuration routing cells) we developed by decoding the
Xilinx bitstream. The list of faults for the DUT is finally
computed and stored. Each element of the fault list is a
faulty bitstream for the FPGA, where one bit at a time is
modified emulating the effect of a SEU.

In the used fault-injection system the DUT and the
Fault Injection Manager implemented on the FPGA share
the same FPGA device. However, to guarantee that the
modules are placed on the FPGA device in such a way
that any fault injected in the DUT does not interfere with
the Fault Injection Manager, we constrained the place and
route tools to organize the FPGA-resource floorplanning
allocation. The DUT and the Fault Injection Manager are
placed separately on the floorplanning by at least 10 slice
columns to avoid the link between the two units generated
by an undesirable interconnection due to an upset.

The FPGA device used in our experiment is a
Spartan® XC2S200EPQ208 from Xilinx [8], whose
configuration memory is composed of 1,442,016 bits
organized in 2,501 frames of 576 bits each. The
configuration memory controls an array of 28 x 42 slices.
The robustness of the TMR technique implemented in a
high-level description language was observed while
running five fault-injection campaigns, one for each
circuit.

The fault injection process took about 13 seconds for
each fault injected. The test pattern generation and the
output analyzer placed in the same FPGA need a
negligible time for applying all the input stimuli and
classifying the faults (5.7 ms on the average). Most of the
time for evaluating each injected fault was due to the time
for downloading the faulty bitstream within the SRAM-
based FPGA. The results we gained performing the fault-
injection campaigns are reported in table 3, where Injected
Faults reports the number of SEUs injected, and Wrong
Answer reports the percentage of SEUs provoking a fault
within the TMR DUT.

Roughly 10% of the whole configuration memory
bits were injected. This set was randomly chosen from the
fault list. It would take approximately 3 months for testing
the whole configuration memory bits of the five circuits.
The results confirm our original hypothesis, since they
show that placing voters just at the final output is not
sufficient to avoid errors. There is an optimum size of
triplicated logic that must be voted inside the design,
creating voter barriers along the logic that help block the
effect of upsets in the routing to propagate to the output.
The results experimentally demonstrate that the logic
partition done in the TMR_p2 version reduce the
percentage of uncovered faults from 4.03% to 0.98%,
corresponding to a four times reduction. This solution is
also efficient in term of estimated performance, as shown
in Table 2.

Table 3. Fault injection campaign results
Wrong answer Design Injected

Faults [#] [#] [%]
Standard Filter 5,100 4,952 97.10
TMR _p1 17,515 706 4.03
TMR_p2 19,401 190 0.98
TMR _p3 18,501 289 1.56
TMR _p3_nv 18,000 2,268 12.60

Table 4 reports a classification of the effects of the

injected upsets that caused an error in the TMR. The
effect analysis of each faulty bitstream was done using the
classification tool developed in [9]. The results confirm
that the routing resources are the most sensitive to upsets.
No upsets in the LUTs could provoke an error in the TMR
design, as it was expected. Upsets in the CLB
multiplexers (mux) and in the initialization that are related

to the routing resources represent less than 8% of the total
effects. The main problem is the general routing that
connects CLBs and I/O pads, corresponding to more than
90% of routing resources. The general routing effects that
can provoke an error in the TMR output are classified as
Open, Bridge, Input-Antenna, Conflict and others. The
Open effect corresponds to a Programmable
Interconnection Point (PIP) in open state (open
connection). The Bridge effect means that a new PIP is
permitted. Both Bridge and Open effects may influence
the behavior of the circuit. The Input-Antenna effect also
represents a new permitted PIP. In this case, this new PIP
connects an unused input node to a used output node; this
may influence the behavior of the circuit, since the CLB
or output pad are driven to an unknown logic value. The
Conflict effect is when a new PIP links both used input
and output nodes, creating a conflict and a propagation of
an unknown value along the TMR. These effects are a real
challenge for those designers who are involved in devising
solutions for hardening their FPGA-based circuits, and
these effects must be avoided or at least minimized.

It is important to notice that one upset can provoke
more that one effect in the programmable matrix. The
same can be said about different upsets in the bitstream
that can present the same effect. This explains why the
number of table 3 and 4 are not exactly the same.

5. Conclusions

The results presented in this paper suggest that there
is a trade off between the logic partition of the throughput
logic (and consequently between the number of voters)
and the number of routing upsets that could provoke an
error in the TMR. In contrary to what was expected, a
large number of voters does not always mean larger
protection against upsets. There is an optimal logic
partition for each circuit that can reduce the propagation
of the upset effect in the routing. For the case study
circuit, the best partition is the medium partition
(TMR_p2). This version of the TMR design presents a
small sensitivity to routing upsets (0.98%, a four times
improvement over normal TMR) and small performance

degradation (about 10%) compared to the standard version
(not protected).

Future works will consider analyzing the effect of
logic partition in power dissipation, and resolving the
problem of the uncovered routing upsets by means of a
combination of logic partition and dedicated
floorplanning.

References

[1] C. Carmichael. Triple Module Redundancy Design

Techniques for Virtex® Series FPGA: Application Notes
197. San Jose, USA: Xilinx, 2000.

[2] F. Lima Kastensmidt, G. Neuberger, L. Carro, R. Reis.
Designing and Testing Fault-Tolerant Techniques for
SRAM-based FPGAs. In: Computer Frontiers Conference,
2004. New York : ACM, 2004.

[3] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis. A
fault injection analysis of Virtex FPGA TMR design
methodology. In: RADECS Proceedings, 2001. Los
Alamitos : IEEE Computer Society, 2001. p. 275 -282.

[4] E. Fuller, M. Caffrey, P.Blain. Radiation Test Results of the
Virtex FPGA and ZBT SRAM for Space Based
Reconfigurable Computing. In: MAPLD Proceedings, 5.,
2002. [S.l.: s.n.], 2002.

[5] M. Rebaudengo, M. M. Sonza Reorda, M. Violante.
Simulation-based Analysis of SEU effects of SRAM-based
FPGAs. In: FPL Proceedings, 2002. Los Alamitos : IEEE
Computer Society, 2002. p. 607-615.

[6] P. Bernardi, M. Sonza Reorda, L. Sterpone, M. Violante.
On the evaluation of SEU sensitiveness in SRAM-based
FPGAs. In: IEEE IOLTS Proceedings, 10., 2004, Los
Alamitos : IEEE Computer Society, 2004, p.115-120.

[7] MATHWORKS INC. Matlab and Simulink
Documentation. USA, 2003.

[8] XILINX, INC. Spartan®™ 2.5 V Field Programmable Gate
Arrays: Datasheet DS003. USA, 2000.

[9] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M.
Cerchia, A. Paccagnella, M. Rebaudengo, M. Sonza
Reorda, M. Violante, P. Zambolin. Evaluating the effects of
SEUs affecting the configuration memory of an SRAM-
based FPGA. In: DATE Proceedings, 2004, Los Alamitos :
IEEE Computer Society, pp.188-193.

Table 4. Effects induced by the injected upsets
Standard TMR_p1 TMR_p2 TMR_p3 TMR_p3_nv

[#] [%] [#] [%] [#] [%] [#] [%] [#] [%]
LUT 852 16 0 0 0 0 0 0 0 16
MUX 123 2 16 2 1 0 15 4 367 2

CLBs
Logic and
Routing Initialization 174 3 13 1 0 0 11 3 400 3

Open 1321 25 276 38 82 40 126 37 1672 25
Bridge 427 8 62 9 41 20 42 12 403 8
Input-Antenna 76 1 33 5 7 3 14 4 73 1
Conflict 1342 25 26 4 13 6 6 2 185 25

General
Routing

Others 1006 20 301 41 66 31 128 38 756 20

 Total 5321 727 210 342 3856

