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ON THE OPTIMAL DESIGN OF TRUSSES

UNDER ONE LOADING CONDITION*
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Abstract. The optimal design of singly loaded trusses required to satisfy allowable stress

criteria has the popular structural properties of a statically determinate configuration and

fully stressed members. Linear programming and the duality theorem were used to attain

these properties. This paper formulates the truss problem as a nonlinear programming

problem, derives the optimality criteria via the Lagrangian and through proper physical

interpretation of the Lagrange multipliers demonstrates the validity of the above results.

1. Introduction. The concern for the most economic structures has led Cilley [1] (1900)

and Mitchell [2] (1904) to the famous conclusion that the optimal design of singly loaded

elastic trusses is a fully stressed statically determinate design. Shen and Schmit [3] regard

the singly loaded truss as a special case in their discussion on lower bounds to multiply

loaded trusses and demonstrate the properties of statical determinacy and global opti-

mum. Hemp [4] and Spillers [5] used linear programming [6] with its necessary and

sufficient conditions and the duality theorem to arrive at the same conclusion. They

formulated the problem as a linear problem demanding that the volume, which is a linear

function of the internal forces, be minimized and equilibrium satisfied. Such a procedure

which neglects the constitutive relations from the general formulation is termed plastic

design, formally written as

Minimize ^JAiLj

i (1>
Subject to NF = P and A: > \Fi\/aa

where L;'s are the member lengths and aa represents the allowable stress for both negative

and positive stresses. With the areas taken as At■ = \Fi\/aa and the allowable member

length changes introduced as (Aa), = auLi/E, Eq. (1) becomes

Minimize £ |/}|(AJ,.

1 (2)
Subject to NF = P.
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Equation (2) comprises a linear programming problem with the member forces, as

unknown variables whose dual can be written as

Maximize P8

Subject to |(./VS),| < (Aj,. ^

The solution to Eq. (2) is a statically determinate subtruss (defined as a truss containing p

bars of an originally b-bar truss) for which the inequality constraints of Eq. (3) are

satisfied as equalities and the member displacements, A,, and the member forces have the

same sign. Moreover it can be shown that the inequality constraint of Eq. (3) for members

out of the design is not violated. The dual variables, 5, can be interpreted as nodal

displacements and the results of the optimal design for singly loaded trusses satisfying

allowable stress requirements only summarized as

Kr

0

|Fr|
where KT - ———,

Mr (4)
sgn Ft = sgn Ar,

IA 7-1 = (Aa)T< an(J |A/_| < (Aa)L.

Here a matrix with corner diagonals is a diagonal matrix. The results in Eq. (4) are given

in partitioned form with the subscript T standing for the number of members in the

statically determinate subtruss and the subscript L for the number of superfluous

members. Note that the notation in Eqs. (1)—(4) is that of the node method as described in

Sec. 2.

Nonlinear programming [7,8] with its powerful techniques for attaining optimal solu-

tions has had little impact on the understanding of structural behavior and physical

properties at the optimum. It is the author's intent here to demonstrate its use in proving

the results of Eq. (4).

2. Optimal properties through nonlinear programming. The optimal elastic design of

singly loaded trusses is truly a nonlinear programming problem and can be formulated as

such by seeking those cross-sectional areas and nodal displacements that minimize the

volume (linear with respect to the stiffnesses) and satisfy the equations of statics (as

opposed to equilibrium only) and allowable stress criteria. Prior to the formal formulation

this section briefly introduces the equations of statics for trusses in the form of the node

method then synthesizes the problem and finally shows the validity of Eq. (4).

2.1 The node method. The equations of statics that govern the behavior of elastic trusses

are presented below as

NF = P (equilibrium),

F = A'A (constructive relations),

N8 = A (member/nodal displacement relations),
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where

F—member force matrix,

P—joint load matrix,

K—primitive stiffness matrix,

A—member displacement matrix,

S—joint displacement matrix,

N—generalized incidence matrix.

Note that the primitive stiffness matrix is diagonal with elements Ku = A:E/Ll where At

is the cross-sectional area of member i, E is Young's modulus and Ll is the length of

member Reference (9) gives more detail on the node method for trusses.

2.2 Nonlinear programming formulation. With the equations of statics now at hand the

problem of minimizing the volume of linearly elastic trusses satisfying allowable stress

criteria can be posed formally as a nonlinear programming problem that takes the form of

Minimize ^Ki(Aa)2i

Subject to P - NKNS = 0,

|(MS),|<(Aa)„ 0.

The objective function is proportional to the volume as seen from the relation below

A.E\(oaLl
2

a2
= -|r Y.A,Lt ~ volume.

/

The equality constraint is a condensed form of the equations of statics and the inequality

constraints require that the member displacements be smaller or equal to the allowable

member displacement and stiffness of bars in the design be positive.

2.3 Optimality conditions. The nonlinear programming format of Eq. (5) is consistent

with that described in [7] and the optimality conditions are obtained via the Lagrangian

below

L = IX( A J? + d(P ~ NKNS) + X(|MS| - A J + jx(-K) (6)
i

where d, A and ;u. are the Lagrange multipliers.

Differentiate Eq. (6) with respect to the unknown variables K and 8 to obtain

H- = 0 - (AJ? - QA - PL, = 0 [Q,= (Nd),\, (7)

f) J

— = 0 =» -NKNd + NXsgn A = 0. (8)
do,
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In addition to Eqs. (7), (8) the relations below must be satisfied (necessary conditions) by

a point that is a candidate for a local minimum. These relations are

P - NKNS = 0 (9)

A,(|(MS),|-(AJ,) = 0 (10)

M, K, = 0 (11)

(12)

Equations (7)-(12) comprise the Kuhn-Tucker conditions and a desgin satisfying these

conditions is a Kuhn-Tucker design. For a completion of the discussion it will suffice to

show that the design obtained through linear programming as represented by Eq. (4) is a

Kuhn-Tucker design and, therefore, a local minimum design. That the design is unique or

global will not be apparent from the considerations that follow and no attempt is made to

undertake a globality proof. Beyond this point algebraic manipulations reduce the K. T.

conditions to a convenient form for proper identification of the Lagrange multipliers.

From Eq. (8) obtain

d = (NKN)~lN\sgn A. (13)

Premultiply Eq. (13) by N and obtain an expression for B

B = Nd = N(NKN) 1 NXsgn A. (14)

From Eq. (7) get

*,.= ( A J;/A, - m,/A,.. (15)

Equate Eqs. (14) and (15) to obtain

N(NKN)~lN\sgn A = (Afl)J/A,. - /x,/A,

or

N(NKN )-1iVAsgn A + M,/ A- = (Aj'/A,

or in matrix form

N(NKN)'lN \ —
' |A,| ^psgnA,J. (16)

If Eq. (4) is to be a solution of the system of Eqs. (9)—(12), (16) then there must exists A's

and ju's that satisfy the above same equations. Let the Lagrange multiplier X be interpreted

as the absolute value of the member force matrix i.e.

X=(*r(AJrUo (17)
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and the Lagrange multiplier il as the difference of the squares of the allowable member

displacements and the actual member displacements i.e.

^ 0. (18)

At this point the question is whether Eqs. (4), (17), (18) satisfy Eqs. (9)-(12), (16). Since

Eq. (4) is a feasable design Eq. (9) is satisfied. Eqs. (10)-(12) are also satisfied. It thus,

remains to satisfy Eq. (16). Let R = (NKN)~l. Equation (16) can now be partitioned as

NtRNt NtRN,

nlrnt nlrnl

1

|A3

A,

A^sgn Ar

^ l sgn A L

HTsgn AT

[nLsgn Al

= j (Aj2rsgn Arl

\ (Aa)lsgn Al)

With substitution of Eqs. (17), (18), Eq. (19) condenses to

[./Vr(ArAW )~1Arr] 0

N^NKN)'1 N-
1

|AJ

7"SSn A7"

((Ajl - A2l) sgn Az

(Afl)rsgn A

(AJ1
A,

sgn A/ I

Using Eq. (4) it is seen that Eq. (20) is satisfied since

Nt (NKN)~1 NtKt (A a) T sgn A T = NT (NKN) ~1 (NTKNT) S

= NtS = (AJrsgn Ar

and

NL{NKN)~1NTKTsgn AT +
1

IAJ

IAl _
.2

((Aa)\- A1) sgn AL

(Ajlsgn Al = s8n AL-

(19)

(20)

|A,i

Hence the solution represented by Eq. (4) is a Kuhn-Tucker point.

Concluding remarks. This paper has dealt with the basic question of understanding

physical properties of optimal solutions. The approach taken was one of an "intelligent

guess" as to the physical meaning of the Lagrange multipliers as they appear in the
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optimality conditions. For the simple singly loaded truss problem it was shown that for

the optimal design the multipliers pertaining to the members in the design represented the

absolute value of the member forces and that for members out of the design the Lagrange

multipliers represented the difference of the squares of the allowable member displace-

ments and the member displacements. A somewhat similar approach was taken in the,

rather, more complex problem of the design for two loading using prestress [10].
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