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On the Optimal Insulation of Conductors1
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Abstract. We coat a conductor with an insulator and equate the effec-
tiveness of this procedure with the rate at which the body dissipates
heat when immersed in an ice bath. In the limit, as the thickness and
conductivity of the insulator approach zero, the dissipation rate
approaches the first eigenvalue of a Robin problem with a coefficient
determined by the shape of the insulator. Fixing the mean of the shape
function, we search for the shape with the least associated Robin eigen-
value. We offer exact solutions for balls; for general domains, we estab-
lish existence and necessary conditions and report on the results of a
numerical method.
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boundary conditions of the third type.

1. Introduction

We suppose that a homogeneous conductor occupies the smooth open-
bounded connected set OERd. With e>0 and a nonnegative function h on
dO, whose outer normal we denote by n, we define the insulated conductor
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If the conductivity of O is 1, while that of OE (h) \O is e, then in solving the
heat equation on O e(h), subject to zero Dirichlet data, one is led to consider



where 1O denotes the characteristic function of O. In particular, the least
eigenvalue, denoted by L1(O, h, e), governs the rate at which OE (h) dissipates
heat and, hence, is a natural measure of the quality of the insulation pro-
cedure. Thus, we seek out those h that render L1 (O, h, e) small. Our search
is considerably simplified if we first permit the thickness and conductivity
of the insulator to simultaneously approach zero. More precisely, we recall
that Friedman (Ref. 1) has established that

254 JOTA: VOL. 100, NO. 2, FEBRUARY 1999

the eigenvalue problem

where E1(O, h) is the least eigenvalue of the Robin problem,

Friedman went on to pose the problem of minimizing E1(O, h) over those
h of fixed mean. The present paper provides the solution to this problem
under the additional asumption that h satisfies a pointwise lower bound.
More precisely, we address

where

and 0<a<h0<A are both fixed throughout. As h has the dimension of
length, the convention specified in (3) renders a and h0 dimensionless.

Let us dispense with a few preliminaries before summarizing the main
results. To begin, the weak formulation of (1) reads

and gives rise to the associated variational characterization,



where H1(O) is the class of H1(O) functions with L2(O) norm one. It follows
from (5) [see, e.g., Gilbarg and Trudinger (Ref. 2, Theorem 8.38)] that
E1 (O, h) is simple and may be associated with a nonnegative eigenfunction.
A useful lower bound on E1(O, h) follows from the Holder inequality
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For, using (6) in (5), one finds

If we denote by C1(O, h0) the value of this infimum and by v1 a function at
which this infimum is attained, we find C1(O, h0) and v1 to be the first
eigenpair of the nonlocal problem

In Section 2, we find that

when B is a ball, and so establish that an insulator of constant thickness is
optimal for such domains. In Section 3, we show via the direct method that
the infimum in (2) is attained for arbitrary smooth Q. We produce the
associated necessary conditions in Section 4; in Section 5, we describe and
test a numerical method.

Finally, let us recall that Buttazzo (Ref. 3) has investigated the related
problem of choosing h so to maximize the heat IO wfdx, where w is the
temperature of the insulated body in the presence of the heat source f; i.e.,
w satisfies

Our analyses differ in that Buttazzo was able to establish existence of an
optimal h without imposing a pointwise lower bound; i.e., he permits a =
0. He produced explicit solutions for rods subject to nonnegative f and for
planar annular domains under constant f. He did not address the numerical



treatment of more general domains. It is exactly out of numerical necessity
that we have imposed a pointwise lower bound on h. More precisely, the
lack of a lower bound on h introduces infinite components [see, e.g., (17)]
in the stiffness matrix stemming from the standard finite-element approxima-
tion to (4). Moreover, our numerical results suggest that the bound a may
always be chosen small enough, with respect to h0, to guarantee that the
best h, in the sense of (2), remains positively above a.

2. Best Insulation of Balls

If O = Ba is a ball of radius a in Rd, then each radial solution of (8) is
necessarily of the form
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where £ is a zero of

Let us denote these zeros, in increasing order, by {C0,j} j=1. Note that these
are exactly the radial eigenfunctions and associated eigenvalues of (1) with

Next, we note that every nonradial Neumann eigenfunction of the
Laplacian on Ba is also an eigenfunction of (8). If v is an eigenfunction of
(8) that is not a nonradial Neumann eigenfunction, then perforce it is ortho-
gonal to each of these and, hence, lies in the span of the radial Neumann
eigenfunctions, the upshot being that v is radial. Having already charac-
terized the radial eigenfunctions, it follows that the spectrum of (8) is

where the ui,j are Neumann eigenvalues (nondecreasing in j for fixed 0
associated with nonradial eigenfunctions. It is not difficult to show that C0,1

is the smallest member of the spectrum; therefore, C1 = C0,1. Observing now
that (8) and (1) with h = h0|Ba|/|dBa| have precisely the same radial eigen-
functions and associated eigenvalues, we find

This fact, together with (7), yields the following proposition.



Proposition 2.1. Insulators of constant thickness are best for balls.
More precisely,

3. Existence of Optimal Insulators

The arguments of the previous section were, of course, custom fit to
balls. Although

and so conclude that E1 and u constitute an eigenpair for h. As u is positive,
it follows that E1 = E1(h). It remains only to check whether h lies in ad0.
The pointwise bound offers no obstacle. Regarding the integral constraint,
we note that the convexity of t-> t-1 allows us to invoke Dacorogna (Ref. 4,
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indeed holds for all smooth domains O, our ignorance of C1 (O, h 0 ) , together
with our doubt that equality may be attained for domains other than the
disk, leads us to pursue less constructive means in the proof of existence of
minimal h. In the following, we shall drop the argument O, when the domain
is understood. For example, E1 will denote the value of the infimum in (2).

Proposition 3.1. If O is smooth, open, bounded, and connected, then
there exists an hEad0(DO) such that E1 (h) = E1.

Proof. Suppose that {hn} c ad0 (DO) is a minimizing sequence, i.e.,
E1 (hn)->E1. As {hn

-1} is uniformly bounded in LA(dO), it has a subsequence,
that we neglect to relabel, that converges in the weak* topology to some
function g, i.e., hn

-1->g. We write h=g-1 and suppose that un is the positive
first eigenfunction, associated with hn, normalized such that

From (9), it follows that {un}n is bounded in H1(O) and, hence, that un->u
in H1(O), un->u in L2(O), and the traces un|dO->u|dO in L2(dO). These obser-
vations permit us to pass to the limit in the weak form



Hence, at worst, h uses less than all the available insulator. Now, let h be
any function that is pointwise greater than h but that lies in ad0. From (5),
it follows that E1 (h) < E1 (h). Now, as E1 = E1 (h), our claim follows. S

4. Necessary Conditions

We denote by u1eH1(O) the positive eigenfunction associated with h;
note that one may always interchange the order of two minimizations, and
so record

From v1u
2>0, we deduce from (11) that v2<0. More precisely, if V2>0,

then the term in parentheses in (11) is positive, and so (11) requires that
h = A, in contradiction of the integral constraint.
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Theorem 1.1) in claiming that

In other words,

The former simply states that u1 is an eigenfunction corresponding to h. The
latter, however, informs us that h solves the much simpler optimization
problem

We make it still simpler by exchanging the volume constraint for a Lagrange
multiplier. More precisely, from the Lagrange multiplier rule of Clarke (Ref.
5, Theorem 6.1.1), we deduce that (10) implies the existence of v1>0 and
|v1| + |v2 |>0 such that

where



Similarly, as v2<0 if v1 = 0, then (11) implies that
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again in violation of the integral constraint.

As a result, v2 = - v2/ v1 is well defined and we may deduce from (11),
along the lines say of Cea and Malanowski (Ref. 6), the following pointwise
necessary conditions:

With respect to the best insulated ball, where h and the trace of MI are
constant, we note that (13) is trivially satisfied along the entire boundary.
In the general case, these conditions state that, where h is off of its bound,
it coincides with (a multiple of) its associated eigenfunction u1. Recalling
(1), this implies that

there. Conditions on Q sufficient to guarantee the solvability (together with
questions pertaining to the inheritance of symmetry) of -Au = £u subject to
(14) on dO have yet to be specified.

5. Numerical Approach

As the analytical necessary conditions fail to characterize the optimal
h, we turn to its numerical approximation. Our approach is similar to that
promoted by Cox and Uhlig (Ref. 7).

We write d£l as the closure of the disjoint union of m open edges
{Tj}j=1 and restrict h to

where He Rm satisfies

In order to compute E1 at such an h, we restrict our search to eigenvectors
of the form



where p < A and each Ti is a piecewise linear hat function. On substituting
this expansion into the weak form (3), with v running through the Ti, we
arrive at the p xp eigensystem

With AD0 denoting those H satisfying (15), we have now assembled all
the ingredients necessary for a numerical attack on the finite-dimensional
optimization problem
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where K and M are independent of H while

Let us denote the least eigenvalue of (16) by S 1 (H) . As this approximation
procedure respects the symmetry of the original problem, we retain a varia-
tional characterization,

As the approximation is refined (i.e., as m and p become large), E 1 ( H ) tends
to E1(H) and so S1 (H) may be assumed simple. Recalling Cox (Ref. 8), this
permits the computation of the gradient of E1 in terms of the representation
in (18). More precisely,

where UH is the minimizer (eigenvector) in (18) associated with E 1 ( H ) , and
recalling (17),

We have implemented such an attack in Matlab, using the routine pdeeig,
within its Partial Differential Equations Toolbox, in the computation of
E 1 ( H ) and UH, and the routine constr, within its Optimization Toolbox, in
the resolution of (19). We present detailed results for two model domains.

In Fig. 1, we have plotted a rounded equilateral triangle together with
its associated best insulation for the parameter choice
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Fig. 1. Best insulation, a =0.1.

The best H is depicted here by the shaded region. We have magnified it in
order to better depict its variation in thickness. The contours within the
domain are those of the associated eigenvector UH. The dot-dash line within
the insulated region corresponds to the line
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Hence, given (20), the best H achievable from a random start lies completely
off of its lower bound. We have found that, by increasing a, one can arrive
at an H that attains a. In particular, with

the best insulation of the rounded equilateral triangle assumes the form
depicted in Fig. 2. For each of these runs, we partitioned the boundary into
m = 60 segments and partitioned the domain into p= 1177 elements.

As our final example, we depart from convexity and consider the
rounded cross. We plot it in Fig. 3 along with its (magnified) best H and
associated UH contours under the parameter choice
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Fig. 2. Best insulation, a =0.2.

Fig. 3. Best insulation of a cross.
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As in the first case, the best insulator is everywhere off of its lower bound.
In this case, we partitioned the boundary into m = 96 segments and the
domain into p= 1913 elements.
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