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Abstract 

Web caching or web proxy has been considered as the prime vehicle to cope 
with the ever-increasing demand for information retrieval over the Internet, 
WWW being a typical example. The existing work on web proxy has pri

marily focused on content based caching; relatively less attention has been 
given to the development of proper placement strategies for the potential web 
proxies in the Internet. This paper investigates the optimal placement policy 
of web proxies for a target web server in the Internet. The objective is to 
minimize the overall latency of searching the target web server subject to the 
network resources and traffic pattern. Specifically, we are interested in find
ing the optimal placement of multiple web proxies (m) among the potential 
sites (n) under a given traffic pattern. We model the problem as a Dynamic 

Programming problem, and we obtain an optimal solution for a linear array 
topology using O(n2 m) time. 
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1 INTRODUCTION 

We have witnessed an explosive growth in the use of World Wide Web (or web) 
in the past few years; there are many reasons behind this success, in particular, 
ease of use, the availability of standard tools for creating web documents and 
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for navigating the web, timely dissemination of information, and the increased 
popularity of the Internet [1]. At the same time, this quick adoption also leads 
to its poor performance, as web clients often have to tolerate long response 
times. There are a number of factors contributing to this inefficiency including 
server congestion during peak time, links with limited inadequate bandwidth, 
and long propagation delay. Caching has been considered as the prime vehicle 

to cope with this inefficiency. 
The caching technique has been successfully used in the memory hierar

chy (12] and distributed file system, AFS being one of such examples (10]. 
The basic principle behind caching is that it allows the retrieved documents 
to be kept close to the clients, this is essential in bringing down the access 
latency. There are several ways that documents can be cached for a web server 
including, web browser (client), web server itself and web proxy (15]. Caching 
at the clients' side has been implemented by most existing web browsers [2]. 
This can prevent a client from generating traffic to the same location re
peatedly; for example both NCSA Mosaic and Netscape can save images and 
documents. Caching can also be deployed at the server side when a server con
tains pointers to other servers (15], this allows a web server to use a local copy 
fetching in advance to serve clients' requests, instead of having to forward the 
requests to remote server(s) each time. Unfortunately, both do little towards 
reducing the overall latency on the network (13]. Client side caching only saves 
one single client from fetching this document. In other words, each client has 
to cache the document, even if multiple clients accessing the same remote 
web document belong to the same local area network. Server caching only 
mitigates the problem of not forwarding requests further, but does nothing to 
alleviate the long access delay to the sever experienced by clients. 

The most effective way in reducing the overall latency is the use of web 
proxy, or proxy server (or simply proxy). Web proxy is an intermediate server 
acting as an caching agent between clients and server. If properly designed, 
proxy can eliminate the possibly long propagation delay, and alleviate the 
potential inadequate link bandwidth path(s). Additionally, it also can reduce 
the server load, which may be critical during peak time. There has been 
considerable work on various aspect of web proxy, for example, traffic charac
terization [1], cache replacement algorithms (13] and server design [4, 9]. 

The effectiveness of proxy is primarily determined by locality, the same as 
for any cache. This locality depends a number of factors such as access patterns 
and configurations. The unique characteristics of web caching, different from 
conventional caching used in memory and distributed systems, is that locality 

is also largely influenced by the location of the web proxies. Simply put, 

placing a web proxy in the "wrong" place is not only costly, but also does 
little to improve the performance. In addition, it has also been shown that 
multiple web proxies are sometime needed in order to increase this locality, 
e.g., the hierarchical caching proposed in [4, 6]. 

Finding the optimal placement of web proxies in a network like the Internet 
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is a challenging task, as there is relatively little data on how well web proxy 
works. The decentralized and dynamic nature of the web adds extra complex
ity to this task [I5]. Most existing proxies are placed in fairly "obvious" spots, 
e.g., gateway for a LAN, or some "strategic" locations [11]. To the best of our 
knowledge, there has been no systematical study on the proper placement of 
web proxies, which is the aim of this paper. 

In this paper, we focus on two factors: the overall traffic and latency as 
described in [I5]. The objective is to minimize the overall latency of searching 
the target web server subject to the network resources and traffic pattern. 
Specifically, we are interested in finding the optimal placement of multiple 
web proxies (m) among the potential sites (n) under a given traffic pattern. 
This turns out to be a very difficult problem, mainly caused by the depen
dency among the potential sites. This is because a potential site, say i, can be 
in place between another potential site (j) and the web server. We define site i 
to be upstream of site j and j to be downstream of site i. The caching at any 
downstream site (j) in general modifies the traffic pattern of the upstream 
site (i). Unless the paths from all sites to the server are disjoint, in which 
the finding the optimal location becomes trivial, these dependencies signif
icantly complicate the problem. In this paper, we consider a simple linear 
array topology. We show that this can be modeled as a dynamic programming 
problem, we further obtain the optimal solution for the linear array topology 
using O(n2 m) time. 

The rest of the paper is organized as follows. We present the problem for
mulation in the next Section. Results are discussed in Section 3. We conclude 
the paper in Section 4 with discussions of on-going work. 

2 PROBLEM FORMULATION 

1: L(i-1) L(i) "I "'I 

LJ) Proxy 

web-server 

Q(i,i+ l)=P(i)-P(i+ 1) 

Figure I The Linear Configuration 

We consider a one-dimensional array illustrated in Figure 1. Denote the po
tential web proxy locations by n =I, 2, ... , N. Without loss of generality, we 
assume the locations starting from the web server to be labeled as I, 2, .. _ , N, 
i.e., i and i +I are neighbors and i is closer to the web server than i + 1. Let 
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P(i) be the percentage of the overall traffic accessing the web that has to pass 
through node i. Since requests passing through node i must also pass through 
node i- 1 we have P(l) P(2) . . . P(N). Let the propagation delay 
(distance) from node ito the server be L(i); If caching is done at the node i, 
we define the Gain to be G(i) = L(i) x P(i) *. This makes intuitive sense in 
that the percentage of the traffic (P(i)) would not need to traverse the dis
tance from the node ito the web server, i.e., L(i). We are interested in finding 
M (M N) web locations K1, K2, ... , KM, i.e., K1 < K2 < · · · < KM, 
that maximize the following value 

(P(K1)- P(K2))L(K1) + (P(K2)- P(Ka))L(K2) + · · · 
+(P(KM-1)- P(KM))L(KM-1) + P(KM)L(KM) 

The main complication is dependency between the potential web proxies, 
specifically the caching at a node i will affect the up-stream node, 1, 2, · · ·, i-1. 
To simplify the notation, It will help us to slightly rewrite this problem. Set 
P(N + 1) = 0 and now, for 1 i j N + 1 define 

Q(i,j) = P(i)- P(j) i < j 

Note that Pi = Pi- PN+l = Q(i,N + 1). Q(i,j) is the amount of traffic 
coming to node i when node j has been chosen as one of the proxies and no 
nodes between i and j (i.e., i + 1, · · ·, j -1) are proxies; Q(i, i + 1) is simply 
the traffic arriving at node i that did not pass through node j as illustrated 
in Figure lb. Using this notation the expression that we wish to maximize 
becomes 

L(Kl)Q(K11 K2) + L(K2)Q(K2, Ka) + · · · 
+ L(KM-1)Q(KM-1,KM) +L(KM)Q(KM,N + 1) 

To efficiently solve this optimization problem we will first generalize it 

Definition Let n, m be such that 2 n N + 1 and n - 1 m M. Let 
K1, K2, ... , Km be such that 1 K1 < K2 < · · · < Km < n. Set 

cost(m, n : K11 ... , Km) = L(K1 )Q(K1, K2) + L(K2)Q(K2, Ka) + · · · 
+ L(Km-1)Q(Km-1, Km) + L(Km)Q(Km, n) 

The (m,n)-optimization problem is to find K 1 < K2 < · · · < Km that maxi
mizes cost(m, n : K 11 K2, ... , Km)· 

Note: the reason for restricting n -1 m M is that in the ( m, n) problem 

*The calculation derived in this paper also applies to other cost functions. 
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we must have 1 K1 < K2 < K3 < · · · < Km < n. If m < n - 1 this is 
obviously impossible. 

The original problem becomes the problem of maximizing cost(M, N + 1 : 
K 1,K2, ... ,KM), i.e., solving the (M,N + 1) optimization problem. We will 
now develop a dynamic programming method that permits solving all of the 

(m, n)-optimization problems with 2 n N + 1 and n - 1 m M. 
Solution of the (M, N + 1) problem yields the solution to the original problem. 

Our main observation is that solutions to the (m, n) problem must contain 

optimal solutions to certain subproblems. 

Lemma 1 Let 2 n N + 1 and n - 1 < m M. Further suppose that 

m > 1. K1,K2, ... ,Km is an optimal solution to the (m,n) problem then 

K1, K2, ... , Km-l is an optimal solution to the (m - 1, Km) problem. 

Proof: Suppose, by contradiction that the lemma is incorrect. Then there 

exist m,n, K1,K2, ... ,Km and ... ,K:n_1 such that K1,K2, ... ,Km 
solves the (m, n) optimization problem but Kt, K2, ... , Km-1 does not solve 
the (m- 1,Km) one because 

cost(m -1,Km: ... ,K:n_1) < cost(m -1,Km: K1,K2, ... ,Km-1)· 

But then 

cost(m, n: ... , K:n_1, Km) 

+ + · · · 
+L(K:n_l)Q(K:n-1, Km) + L(Km)Q(Km, n) 

cost(m- 1, Km : ... , K:n_1) + L(Km)Q(Km, n) 

< cost(m- 1, Km : K1, ... , Km-l) + L(Km)Q(Km, n) 

L(K1)Q(K1,K2) + L(K2)Q(K2,K3) + · · · 
+L(Km-1)Q(Km-1, Km) + L(Km)Q(Km, n) 

cost(m, n : Kt, .. . , Km-l, Km) 

contradicting the optimality of K1,K2, ... ,Km for the (m,n) problem. 

This leads immediately to the following corollary: 

Corollary 2 Let K1, K 2, •.. , K m be an optimal solution to the ( m, n) prob

lem and ... , K:n_1 be an optimal solution to the (m -1, Km) problem. 

Then ... , K:n_1, Km is also an optimal solution to the ( m, n) problem. 

Proof: From the Lemma we already know that K1, K2, ... , Km_1 is also an 
optimal solution to the (m- 1, Km) problem and thus 

cost(m-1,Km: K1, ... ,Km-1)=cost(m-1,Km: ... ,K:n_1). 
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Therefore 

cost(m,n: K1, ... ,Km) 

cost(m,Km: K11 ... ,Km-1) + L(Km)Q(Km,n) 

= cost(m,Km: ... ,K:,._1) + L(Km)Q(Km,n) 

= cost(m,n: Kf, ... ,K:,._1 ,Km) 

Since K11 ... ,Km-l!Km is optimal for (m,n) and Kf, ... ,K:,._1 ,Km has the 

same cost as 
K1, ... , Km-1, Km this implies that Kf, ... , K:,._1, Km is optimal as well. 

Now define the following 

Definition Let 2 ::; n ::; N + 1 and n - 1 ::; m ::; M. Then 

OPT(m,n) = maximal value solution for the (m,n) problem. 

H m = 1 then, by definition, 

OPT(1, n) = max L(k)Q(k, n). 
1$1c<n 

(1) 

If m > 1 and K1 ,K2, ... ,Km is a solution to the (m,n) problem then, from 

Lemma 1, K11K2, ... ,Km-1 is a solution to the (m -1,Km) subproblem so 

OPT(m,n) cost(m,n: K1, ... ,Km-1 1 Km) 

= cost(m- 1, Km : K11 ... , Km-1) + L(Km)Q(Km, n) 

= OPT(m- 1, Km) + L(Km)Q(Km, n) 

Thus, for m > 1, 

OPT(m, n) = max [OPT(m- 1, k) + L(k)Q(k, n)]. 
1$1c<n 

(2) 

Equations (1) and (2) can together be used to calculate all of the OPT(m, n) 

values. To also calculate the actual solution locations we define another array 
K(m,n) that satisfies K(1,n) = k such that 

k < n and L(K)Q(k, n) = OPT(1, n) 

i.e., K(1, n) is a solution location for the one-cache problem and K(m, n) = k 

such that 

k < n and OPT(m- 1, Km) + L(Km)Q(Km, n) = OPT(m, n) 

i.e., K(m, n) is a rightmost cache location in some solution to the (m, n) 
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problem. Notice that if there are many solutions, K(m, n) might not nec
essarily be uniquely defined. Given this K(m, n) array we can calculate a 
solution by setting Km = K(M,N + 1) and, iteratively, for all i < m, setting 
Ki = K(i, KiH)· Repeated applications of Corollary 2 shows that 

cost(m, n : K1, ... , Km) = OPT(M, N + 1) 

and is thus the solution we are looking for. 
Pseudocode for constructing the OPT() and K() arrays is given below. The 

first, initialization, section, has two O(n) size nested for loops and therefore 
uses O(n2 ) time in total. The second section contains an outer O(m) size for 
loop each iteration of which calls two nested O(n) size loops. Thus the entire 
section, and therefore the entire algorithm, runs in O(n2m) time. 

1. Initialization. 

for n := 2 to N + 1 do 

k := 1; 

for j := 2 to n - 1 do 

if L(j)Q(j, n) > L(k)Q(k, n) then k := j 
OPT(1,n) := L(k)Q(k,n); K(1,n) := k; 

2. Filling in the array 

for m := 2 to M do 

for n := m + 1 to N + 1 do 

k=m; 
for j := m + 1 to n - 1 do 

if(OPT(m-1,j)+L(j)Q(j,n)) > (OPT(m-1,k)+L(k)Q(k,n)) 
then k := j 

OPT(m, n) := OPT(m- 1, k) + L(k)Q(k, n); K(m, n) := k; 

3 RESULTS 

In this section, we present an example to illustrate how the algorithm works. 
The example considers a configuration with N = 10 and M = 5, shown in 
Figure 3. The delay time L( i) and traffic probabilities P( i) are given in Table 1. 

This example shows a case with balanced spread-out traffic, specifically, each 
of the 10 nodes contributes 10% traffic (i.e., Q(i, i + 1)). The distance is what 
dictates the measurement P(i)L(i). 

The algorithm essentially needs to fill in the matrix K(M, N + 1), whose 
entryK(m,n)(m=1,2, ... , M, n=2,3, ... , N+1)denotestherightmost 
(farthest) proxy location, i.e., Km = K(m,n), as defined earlier. Recall from 
Lemma 1, that the next element Km-l must be the rightmost optimal solution 
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1 2 3 4 5 6 7 8 9 10 

L(i) 0.1 0.6 1.6 3.1 5.1 7.6 10.6 14.1 18.1 22.6 

P(i) 1.0 0.9 0.8 0.1 0.6 0.5 0.4 0.3 0.2 0.1 

Table 1 Example: The delay time L(i) and traffic percentage P(i) 

1 2 3 4 5 

10 (7) (6, 9) (5, 7, 9) (4, 6, 8,10) (4, 6, 8, 9,10) 

Table 2 Example: The optimal solution (M,N) 

for K(m- 1, Km), i.e., the next element is Km-1 = K(m- 1, Km)· Accord

ingly, we can obtain all the optimal proxy locations: K1 = K(1,K2), K2 = 
K(2, Ka), · · ·, KM-1 = K(M- 1, KM ), KM = K(M, N + 1). 

The algorithm is divided into two parts: the first part is initialization, which 

calculates the K(1,N + 1). For example, in the above example, K(1, 11) = 

1, simply because L(7)P(7) = 4.24 is the maximum over all L(i)P(i) i = 
1, 2, ···, 10. 

The next step is to fill in the rest of the elements in K(m, n). For the 

above example, referring to the Figure 2. That K(5, 11) = 10 means that 
Ks = 10 is the rightmost optimal proxy location. The next one is therefore 

K(5- 1, 10) = K(4, 10) = 9, and so on. We have the optimal solution is 
( 4, 6, 8, 9, 10) shown in Table 2 and Figure 3. 

Notice, as defined in Section 2, that the notation K(m, n) in Figure 2 
assumes the last element (n) has no traffic. For the rightmost proxy loca

tion (KM ), this is obtained by calculating K(M, N + 1). For others Ki = 
K(i,Ki+1), since the Ki+1 has been chosen as one of the proxy locations, 

Hence the traffic generated from location Ki+1 to location Ki is also zero. 

This is precisely what the term Q(i,j) does. 

4 CONCLUSION 

In this paper, we investigate the optimal placement policy of web proxies for 

a target web server in the Internet. The objective is to minimize the overall 

latency of searching the target web server subject to the network resources 

and traffic pattern. Our contributions are 1) formulating the problem into a 

dynamic programming problem; 2) obtaining an optimal solution for a linear 
array topology using polynomial time. 
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1 2 3 4 s 
1 

2 1 

3 2 2 

4 3 3 3 

s 3 4 4 4 

6 4, 5 5 5 5 

7 5 ""' 6 6 6 6 

8 5 "'-6 ..._ 7 7 7 

9 6, 7 --8...__ 8 8 

10 7 

"" 
8 8 -- 9......_ 9 

11 7 "-9 9 10 --10 

Figure 2 Example: The optimal solution matrix I K(M, N + 1) 

Figure 3 Example: The optimal proxy locations 

The model proposed here can be easily extended to handle the following 
two cases: 

• Hierarchical caching, in which the down-stream proxies only hold a subnet 
of the documents of the up-stream proxies. In such cases each down-stream 
proxy can only block a portion of the traffic. This can be handled by re
defining the notation P(i) to be only the percentage of the traffic that the 
ith node's cache can serve. 

• Different link bandwidth. This can be dealt with by incorporating the link 

bandwidth into the distance L(i), e.g., assigning larger value to slower links. 

We are currently working on refining the model by relaxing two key assump

tions in this paper, linear topology and static traffic pattern. In particular, we 

are studying a tree topology, which is considered to be more realistic topology 

for the Internet. The web server is the root of the tree. The complication, sim

ilar to the linear topology, is dependency among the potential web proxies. 

The result we obtained recently demonstrates that this can also be modeled 
as a dynamic programming problem with higher complexity O(n3m2) [8] . In 
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addition, we are also working on reducing this complexity, and the preliminary 
result indicates that this can be brought down to O(n2m2 ) [5]. 

The second issue concerns the dynamic nature of the traffic. The placement 
policy ideally should be distributed and adaptive. We are investigating this 
issue in the content of active networking [14]. The model assumes the potential 
web proxy sites can somehow monitor the traffic periodically, which is one of 
properties within an active network environment, and then make the decision 
about whether caching or not based on a threshold. Specifically, if the observed 
traffic volume within an observed period is above the threshold, the potential 
site will cache the web content. Notice that the threshold is determined by 
a number offactors, in particular the distance L(i). In other words, different 
sites have different thresholds. This makes intuitive sense in that the closer 
the potential site is to the target web server, the higher the threshold should 
be. The results show that such distributed decisions can potentially lead to 
convergence to the static solution proposed in this paper by properly selecting 
the threshold [7]. 

The future work will consider more realistic web traffic distribution, for 
example capturing the actual workload characterization [1], or considering 
the Zipf distribution used by Bestarov [3]. 
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