
On the Optimal Placement of
Web Proxies in the Internet:
The Linear Topology

Bo Li, Xin Deng and Mordecai J. Golin
Department of Computer Science, Hong Kong University of Science
and Technology
Clear Water Bay, Kowloon, Hong Kong.
Tel: +852 2358 6976, Fax: +852 2358 1411
E-Mail: {bli, dengxin, golin }@cs.ust.hk

Kazem Sohraby
Bell Laboratories, Lucent Technologies
101 Crawfords Corner Road, Holmdel, NJ 07733, USA.
E-Mail: sohraby@lucent.com

Abstract

Web caching or web proxy has been considered as the prime vehicle to cope
with the ever-increasing demand for information retrieval over the Internet,
WWW being a typical example. The existing work on web proxy has pri

marily focused on content based caching; relatively less attention has been
given to the development of proper placement strategies for the potential web
proxies in the Internet. This paper investigates the optimal placement policy
of web proxies for a target web server in the Internet. The objective is to
minimize the overall latency of searching the target web server subject to the
network resources and traffic pattern. Specifically, we are interested in find
ing the optimal placement of multiple web proxies (m) among the potential
sites (n) under a given traffic pattern. We model the problem as a Dynamic

Programming problem, and we obtain an optimal solution for a linear array
topology using O(n2 m) time.

Keywords

Web caching, Proxy server, Dynamic Programming

1 INTRODUCTION

We have witnessed an explosive growth in the use of World Wide Web (or web)
in the past few years; there are many reasons behind this success, in particular,
ease of use, the availability of standard tools for creating web documents and

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998

H. R. van As (ed.), High Performance Networking

10.1007/978-0-387-35388-3_42

http://dx.doi.org/10.1007/978-0-387-35388-3_42

486

for navigating the web, timely dissemination of information, and the increased
popularity of the Internet [1]. At the same time, this quick adoption also leads
to its poor performance, as web clients often have to tolerate long response
times. There are a number of factors contributing to this inefficiency including
server congestion during peak time, links with limited inadequate bandwidth,
and long propagation delay. Caching has been considered as the prime vehicle

to cope with this inefficiency.
The caching technique has been successfully used in the memory hierar

chy (12] and distributed file system, AFS being one of such examples (10].
The basic principle behind caching is that it allows the retrieved documents
to be kept close to the clients, this is essential in bringing down the access
latency. There are several ways that documents can be cached for a web server
including, web browser (client), web server itself and web proxy (15]. Caching
at the clients' side has been implemented by most existing web browsers [2].
This can prevent a client from generating traffic to the same location re
peatedly; for example both NCSA Mosaic and Netscape can save images and
documents. Caching can also be deployed at the server side when a server con
tains pointers to other servers (15], this allows a web server to use a local copy
fetching in advance to serve clients' requests, instead of having to forward the
requests to remote server(s) each time. Unfortunately, both do little towards
reducing the overall latency on the network (13]. Client side caching only saves
one single client from fetching this document. In other words, each client has
to cache the document, even if multiple clients accessing the same remote
web document belong to the same local area network. Server caching only
mitigates the problem of not forwarding requests further, but does nothing to
alleviate the long access delay to the sever experienced by clients.

The most effective way in reducing the overall latency is the use of web
proxy, or proxy server (or simply proxy). Web proxy is an intermediate server
acting as an caching agent between clients and server. If properly designed,
proxy can eliminate the possibly long propagation delay, and alleviate the
potential inadequate link bandwidth path(s). Additionally, it also can reduce
the server load, which may be critical during peak time. There has been
considerable work on various aspect of web proxy, for example, traffic charac
terization [1], cache replacement algorithms (13] and server design [4, 9].

The effectiveness of proxy is primarily determined by locality, the same as
for any cache. This locality depends a number of factors such as access patterns
and configurations. The unique characteristics of web caching, different from
conventional caching used in memory and distributed systems, is that locality

is also largely influenced by the location of the web proxies. Simply put,

placing a web proxy in the "wrong" place is not only costly, but also does
little to improve the performance. In addition, it has also been shown that
multiple web proxies are sometime needed in order to increase this locality,
e.g., the hierarchical caching proposed in [4, 6].

Finding the optimal placement of web proxies in a network like the Internet

487

is a challenging task, as there is relatively little data on how well web proxy
works. The decentralized and dynamic nature of the web adds extra complex
ity to this task [I5]. Most existing proxies are placed in fairly "obvious" spots,
e.g., gateway for a LAN, or some "strategic" locations [11]. To the best of our
knowledge, there has been no systematical study on the proper placement of
web proxies, which is the aim of this paper.

In this paper, we focus on two factors: the overall traffic and latency as
described in [I5]. The objective is to minimize the overall latency of searching
the target web server subject to the network resources and traffic pattern.
Specifically, we are interested in finding the optimal placement of multiple
web proxies (m) among the potential sites (n) under a given traffic pattern.
This turns out to be a very difficult problem, mainly caused by the depen
dency among the potential sites. This is because a potential site, say i, can be
in place between another potential site (j) and the web server. We define site i
to be upstream of site j and j to be downstream of site i. The caching at any
downstream site (j) in general modifies the traffic pattern of the upstream
site (i). Unless the paths from all sites to the server are disjoint, in which
the finding the optimal location becomes trivial, these dependencies signif
icantly complicate the problem. In this paper, we consider a simple linear
array topology. We show that this can be modeled as a dynamic programming
problem, we further obtain the optimal solution for the linear array topology
using O(n2 m) time.

The rest of the paper is organized as follows. We present the problem for
mulation in the next Section. Results are discussed in Section 3. We conclude
the paper in Section 4 with discussions of on-going work.

2 PROBLEM FORMULATION

1: L(i-1) L(i) "I "'I

LJ) Proxy

web-server

Q(i,i+ l)=P(i)-P(i+ 1)

Figure I The Linear Configuration

We consider a one-dimensional array illustrated in Figure 1. Denote the po
tential web proxy locations by n =I, 2, ... , N. Without loss of generality, we
assume the locations starting from the web server to be labeled as I, 2, .. _ , N,
i.e., i and i +I are neighbors and i is closer to the web server than i + 1. Let

488

P(i) be the percentage of the overall traffic accessing the web that has to pass
through node i. Since requests passing through node i must also pass through
node i- 1 we have P(l) P(2) . . . P(N). Let the propagation delay
(distance) from node ito the server be L(i); If caching is done at the node i,
we define the Gain to be G(i) = L(i) x P(i) *. This makes intuitive sense in
that the percentage of the traffic (P(i)) would not need to traverse the dis
tance from the node ito the web server, i.e., L(i). We are interested in finding
M (M N) web locations K1, K2, ... , KM, i.e., K1 < K2 < · · · < KM,
that maximize the following value

(P(K1)- P(K2))L(K1) + (P(K2)- P(Ka))L(K2) + · · ·
+(P(KM-1)- P(KM))L(KM-1) + P(KM)L(KM)

The main complication is dependency between the potential web proxies,
specifically the caching at a node i will affect the up-stream node, 1, 2, · · ·, i-1.
To simplify the notation, It will help us to slightly rewrite this problem. Set
P(N + 1) = 0 and now, for 1 i j N + 1 define

Q(i,j) = P(i)- P(j) i < j

Note that Pi = Pi- PN+l = Q(i,N + 1). Q(i,j) is the amount of traffic
coming to node i when node j has been chosen as one of the proxies and no
nodes between i and j (i.e., i + 1, · · ·, j -1) are proxies; Q(i, i + 1) is simply
the traffic arriving at node i that did not pass through node j as illustrated
in Figure lb. Using this notation the expression that we wish to maximize
becomes

L(Kl)Q(K11 K2) + L(K2)Q(K2, Ka) + · · ·
+ L(KM-1)Q(KM-1,KM) +L(KM)Q(KM,N + 1)

To efficiently solve this optimization problem we will first generalize it

Definition Let n, m be such that 2 n N + 1 and n - 1 m M. Let
K1, K2, ... , Km be such that 1 K1 < K2 < · · · < Km < n. Set

cost(m, n : K11 ... , Km) = L(K1)Q(K1, K2) + L(K2)Q(K2, Ka) + · · ·
+ L(Km-1)Q(Km-1, Km) + L(Km)Q(Km, n)

The (m,n)-optimization problem is to find K 1 < K2 < · · · < Km that maxi
mizes cost(m, n : K 11 K2, ... , Km)·

Note: the reason for restricting n -1 m M is that in the (m, n) problem

*The calculation derived in this paper also applies to other cost functions.

489

we must have 1 K1 < K2 < K3 < · · · < Km < n. If m < n - 1 this is
obviously impossible.

The original problem becomes the problem of maximizing cost(M, N + 1 :
K 1,K2, ... ,KM), i.e., solving the (M,N + 1) optimization problem. We will
now develop a dynamic programming method that permits solving all of the

(m, n)-optimization problems with 2 n N + 1 and n - 1 m M.
Solution of the (M, N + 1) problem yields the solution to the original problem.

Our main observation is that solutions to the (m, n) problem must contain

optimal solutions to certain subproblems.

Lemma 1 Let 2 n N + 1 and n - 1 < m M. Further suppose that

m > 1. K1,K2, ... ,Km is an optimal solution to the (m,n) problem then

K1, K2, ... , Km-l is an optimal solution to the (m - 1, Km) problem.

Proof: Suppose, by contradiction that the lemma is incorrect. Then there

exist m,n, K1,K2, ... ,Km and ... ,K:n_1 such that K1,K2, ... ,Km
solves the (m, n) optimization problem but Kt, K2, ... , Km-1 does not solve
the (m- 1,Km) one because

cost(m -1,Km: ... ,K:n_1) < cost(m -1,Km: K1,K2, ... ,Km-1)·

But then

cost(m, n: ... , K:n_1, Km)

+ + · · ·
+L(K:n_l)Q(K:n-1, Km) + L(Km)Q(Km, n)

cost(m- 1, Km : ... , K:n_1) + L(Km)Q(Km, n)

< cost(m- 1, Km : K1, ... , Km-l) + L(Km)Q(Km, n)

L(K1)Q(K1,K2) + L(K2)Q(K2,K3) + · · ·
+L(Km-1)Q(Km-1, Km) + L(Km)Q(Km, n)

cost(m, n : Kt, .. . , Km-l, Km)

contradicting the optimality of K1,K2, ... ,Km for the (m,n) problem.

This leads immediately to the following corollary:

Corollary 2 Let K1, K 2, •.. , K m be an optimal solution to the (m, n) prob

lem and ... , K:n_1 be an optimal solution to the (m -1, Km) problem.

Then ... , K:n_1, Km is also an optimal solution to the (m, n) problem.

Proof: From the Lemma we already know that K1, K2, ... , Km_1 is also an
optimal solution to the (m- 1, Km) problem and thus

cost(m-1,Km: K1, ... ,Km-1)=cost(m-1,Km: ... ,K:n_1).

490

Therefore

cost(m,n: K1, ... ,Km)

cost(m,Km: K11 ... ,Km-1) + L(Km)Q(Km,n)

= cost(m,Km: ... ,K:,._1) + L(Km)Q(Km,n)

= cost(m,n: Kf, ... ,K:,._1 ,Km)

Since K11 ... ,Km-l!Km is optimal for (m,n) and Kf, ... ,K:,._1 ,Km has the

same cost as
K1, ... , Km-1, Km this implies that Kf, ... , K:,._1, Km is optimal as well.

Now define the following

Definition Let 2 ::; n ::; N + 1 and n - 1 ::; m ::; M. Then

OPT(m,n) = maximal value solution for the (m,n) problem.

H m = 1 then, by definition,

OPT(1, n) = max L(k)Q(k, n).
1$1c<n

(1)

If m > 1 and K1 ,K2, ... ,Km is a solution to the (m,n) problem then, from

Lemma 1, K11K2, ... ,Km-1 is a solution to the (m -1,Km) subproblem so

OPT(m,n) cost(m,n: K1, ... ,Km-1 1 Km)

= cost(m- 1, Km : K11 ... , Km-1) + L(Km)Q(Km, n)

= OPT(m- 1, Km) + L(Km)Q(Km, n)

Thus, for m > 1,

OPT(m, n) = max [OPT(m- 1, k) + L(k)Q(k, n)].
1$1c<n

(2)

Equations (1) and (2) can together be used to calculate all of the OPT(m, n)

values. To also calculate the actual solution locations we define another array
K(m,n) that satisfies K(1,n) = k such that

k < n and L(K)Q(k, n) = OPT(1, n)

i.e., K(1, n) is a solution location for the one-cache problem and K(m, n) = k

such that

k < n and OPT(m- 1, Km) + L(Km)Q(Km, n) = OPT(m, n)

i.e., K(m, n) is a rightmost cache location in some solution to the (m, n)

491

problem. Notice that if there are many solutions, K(m, n) might not nec
essarily be uniquely defined. Given this K(m, n) array we can calculate a
solution by setting Km = K(M,N + 1) and, iteratively, for all i < m, setting
Ki = K(i, KiH)· Repeated applications of Corollary 2 shows that

cost(m, n : K1, ... , Km) = OPT(M, N + 1)

and is thus the solution we are looking for.
Pseudocode for constructing the OPT() and K() arrays is given below. The

first, initialization, section, has two O(n) size nested for loops and therefore
uses O(n2) time in total. The second section contains an outer O(m) size for
loop each iteration of which calls two nested O(n) size loops. Thus the entire
section, and therefore the entire algorithm, runs in O(n2m) time.

1. Initialization.

for n := 2 to N + 1 do

k := 1;

for j := 2 to n - 1 do

if L(j)Q(j, n) > L(k)Q(k, n) then k := j
OPT(1,n) := L(k)Q(k,n); K(1,n) := k;

2. Filling in the array

for m := 2 to M do

for n := m + 1 to N + 1 do

k=m;
for j := m + 1 to n - 1 do

if(OPT(m-1,j)+L(j)Q(j,n)) > (OPT(m-1,k)+L(k)Q(k,n))
then k := j

OPT(m, n) := OPT(m- 1, k) + L(k)Q(k, n); K(m, n) := k;

3 RESULTS

In this section, we present an example to illustrate how the algorithm works.
The example considers a configuration with N = 10 and M = 5, shown in
Figure 3. The delay time L(i) and traffic probabilities P(i) are given in Table 1.

This example shows a case with balanced spread-out traffic, specifically, each
of the 10 nodes contributes 10% traffic (i.e., Q(i, i + 1)). The distance is what
dictates the measurement P(i)L(i).

The algorithm essentially needs to fill in the matrix K(M, N + 1), whose
entryK(m,n)(m=1,2, ... , M, n=2,3, ... , N+1)denotestherightmost
(farthest) proxy location, i.e., Km = K(m,n), as defined earlier. Recall from
Lemma 1, that the next element Km-l must be the rightmost optimal solution

492

1 2 3 4 5 6 7 8 9 10

L(i) 0.1 0.6 1.6 3.1 5.1 7.6 10.6 14.1 18.1 22.6

P(i) 1.0 0.9 0.8 0.1 0.6 0.5 0.4 0.3 0.2 0.1

Table 1 Example: The delay time L(i) and traffic percentage P(i)

1 2 3 4 5

10 (7) (6, 9) (5, 7, 9) (4, 6, 8,10) (4, 6, 8, 9,10)

Table 2 Example: The optimal solution (M,N)

for K(m- 1, Km), i.e., the next element is Km-1 = K(m- 1, Km)· Accord

ingly, we can obtain all the optimal proxy locations: K1 = K(1,K2), K2 =
K(2, Ka), · · ·, KM-1 = K(M- 1, KM), KM = K(M, N + 1).

The algorithm is divided into two parts: the first part is initialization, which

calculates the K(1,N + 1). For example, in the above example, K(1, 11) =

1, simply because L(7)P(7) = 4.24 is the maximum over all L(i)P(i) i =
1, 2, ···, 10.

The next step is to fill in the rest of the elements in K(m, n). For the

above example, referring to the Figure 2. That K(5, 11) = 10 means that
Ks = 10 is the rightmost optimal proxy location. The next one is therefore

K(5- 1, 10) = K(4, 10) = 9, and so on. We have the optimal solution is
(4, 6, 8, 9, 10) shown in Table 2 and Figure 3.

Notice, as defined in Section 2, that the notation K(m, n) in Figure 2
assumes the last element (n) has no traffic. For the rightmost proxy loca

tion (KM), this is obtained by calculating K(M, N + 1). For others Ki =
K(i,Ki+1), since the Ki+1 has been chosen as one of the proxy locations,

Hence the traffic generated from location Ki+1 to location Ki is also zero.

This is precisely what the term Q(i,j) does.

4 CONCLUSION

In this paper, we investigate the optimal placement policy of web proxies for

a target web server in the Internet. The objective is to minimize the overall

latency of searching the target web server subject to the network resources

and traffic pattern. Our contributions are 1) formulating the problem into a

dynamic programming problem; 2) obtaining an optimal solution for a linear
array topology using polynomial time.

493

1 2 3 4 s
1

2 1

3 2 2

4 3 3 3

s 3 4 4 4

6 4, 5 5 5 5

7 5 ""' 6 6 6 6

8 5 "'-6 ..._ 7 7 7

9 6, 7 --8...__ 8 8

10 7

""
8 8 -- 9......_ 9

11 7 "-9 9 10 --10

Figure 2 Example: The optimal solution matrix I K(M, N + 1)

Figure 3 Example: The optimal proxy locations

The model proposed here can be easily extended to handle the following
two cases:

• Hierarchical caching, in which the down-stream proxies only hold a subnet
of the documents of the up-stream proxies. In such cases each down-stream
proxy can only block a portion of the traffic. This can be handled by re
defining the notation P(i) to be only the percentage of the traffic that the
ith node's cache can serve.

• Different link bandwidth. This can be dealt with by incorporating the link

bandwidth into the distance L(i), e.g., assigning larger value to slower links.

We are currently working on refining the model by relaxing two key assump

tions in this paper, linear topology and static traffic pattern. In particular, we

are studying a tree topology, which is considered to be more realistic topology

for the Internet. The web server is the root of the tree. The complication, sim

ilar to the linear topology, is dependency among the potential web proxies.

The result we obtained recently demonstrates that this can also be modeled
as a dynamic programming problem with higher complexity O(n3m2) [8] . In

494

addition, we are also working on reducing this complexity, and the preliminary
result indicates that this can be brought down to O(n2m2) [5].

The second issue concerns the dynamic nature of the traffic. The placement
policy ideally should be distributed and adaptive. We are investigating this
issue in the content of active networking [14]. The model assumes the potential
web proxy sites can somehow monitor the traffic periodically, which is one of
properties within an active network environment, and then make the decision
about whether caching or not based on a threshold. Specifically, if the observed
traffic volume within an observed period is above the threshold, the potential
site will cache the web content. Notice that the threshold is determined by
a number offactors, in particular the distance L(i). In other words, different
sites have different thresholds. This makes intuitive sense in that the closer
the potential site is to the target web server, the higher the threshold should
be. The results show that such distributed decisions can potentially lead to
convergence to the static solution proposed in this paper by properly selecting
the threshold [7].

The future work will consider more realistic web traffic distribution, for
example capturing the actual workload characterization [1], or considering
the Zipf distribution used by Bestarov [3].

REFERENCES

[1] M. F. Arlitt and C. L. Williamson, "Internet Web Servers: Wordload
Characterization and Performance Implications," IEEE 17-ansactions
on Networking, Vol. 5, No. 5, October 1997.

[2] M. Baentsch, L. Baum, G. Molters. S. Rothkugel and P. Sturm, "World
Wide Web Caching: The Application-Level View of the Internet,"
IEEE Communications Magazine, Vol. 35, No.6, June 1997.

[3] A. Bestavros, "WWW Traffic Reduction and Load Balancing Through
Server-based Caching," IEEE Concurrency, Vol. No. , January 1997.

[4) S. Glassman, "A Caching Relay for World Wide Web," Computer Net
works and ISDN Systems, Vol. 27, No.2, November 1994.

[5] M. Golin, G. Italiano and A. Vigneron, "The p-median problem on di
rected trees," To be submitted for publication.

[6] C. Bowman, P. Danzig, D. Hardy, U. Manber and M. Schwartz, "The
Harvest Information Discovery and Access System," Computer Net

works and ISDN Systems, Vol. 28, No. 1-2, December 1997.

[7] B. Li, X Deng, M. J. Golin and K. Sohraby, "Dynamic and Distributed
Web Caching in Active Networks," Submitted to APWeb'98, April
1998. Also Li's presentation at Bell Lab, Lucent Technology, June 1997.

[8] B. Li, M. J. Golin, G. Italiano, X. Deng and K. Sohraby, "On The Op
timal Placement of Web Proxies in the Internet," Submit to IEEE

17-ansactions on Knowledge and Data Engineering: Special Issue on
Web Technologies, May 1998.

495

[9] A. Luotonen and K. Altis, "World Wide Web Proxies," Computer Net
works and ISDN Systems, Vol. 27, No.2, November 1994.

[10] J. Morris, "Andrew: A Distributed Personal Computing Environment,"
Communications of ACM, Vol. 29, No.3, March 1986.

[11] M. Nabeshima, "The Japan Cache Project: An Experiment on Domain
Cache," Computer Networks and ISDN Systems, Vol. 29, No. 8-13,
September 1997.

[12] D. Patterson and J. Hennessy, Computer Organization and Design: the
Hardware/Software Interface, 2nd edition, Morgan Kaufman, 1997.

[13] P. Scheuermann, J. Shim and R. Vingralek, "A Case for Delay-Conscious

Caching of Web Documents", Computer Networks and ISDN Systems,
Vol. 29, No. 8-13, September 1997.

[14] D. Tennenhouse, J. Smith, W. Sinncoskie, D. Wetheral and G. Minden,
"A Survey of Active Network Research," IEEE Communications Mag
azine, Vol. 35, , No. 1, January 1997.

[15] N. Yeager and R. McGrath, Web Server Technology, Morgan Kaufman,
1996.

	On the Optimal Placement ofWeb Proxies in the Internet:The Linear Topology
	1 INTRODUCTION
	2 PROBLEM FORMULATION
	3 RESULTS
	4 CONCLUSION
	REFERENCES

