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Abstract

In this work we focus on the numerical approximation of the solution u of
a linear elliptic PDE with stochastic coefficients. The problem is rewritten
as a parametric PDE and the functional dependence of the solution on the
parameters is approximated by multivariate polynomials. We first consider
the Stochastic Galerkin method, and rely on sharp estimates for the decay
of the Fourier coefficients of the spectral expansion of u on an orthogonal
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polynomial basis to build a sequence of polynomial subspaces that features
better convergence properties, in terms of error versus number of degrees
of freedom, than standard choices such as Total Degree or Tensor Product
subspaces.

We consider then the Stochastic Collocation method, and use the pre-
vious estimates to introduce a new class of Sparse Grids, based on the idea
of selecting a priori the most profitable hierarchical surpluses, that, again,
features better convergence properties compared to standard Smolyak or
tensor product grids. Numerical results show the effectiveness of the newly
introduced polynomial spaces and sparse grids.

1 Introduction

Many works have been recently devoted to the analysis and the improvement of
the Stochastic Galerkin and Collocation techniques for Uncertainty Quantifica-
tion for PDEs with random input data. These methods are promising since they
can exploit the possible regularity of the solution with respect to the stochas-
tic parameters to achieve faster convergence than sampling methods like Monte
Carlo.

Stochastic Galerkin and Collocation methods can be classified as paramet-
ric techniques, since both approximate u, the solution of the PDE as a linear
combination of suitable deterministic basis functions in probability space, typi-
cally polynomials or piecewise polynomials. In this work we focus only on global
multivariate polynomial approximations. Stochastic Galerkin is a projection
technique over a set of orthogonal polynomials with respect to the probability
measure at hand (see e.g. [1, 15, 19, 27, 30]), while Collocation is a sum of
Lagrangian interpolants over the probability space (see e.g. [2, 12, 29]).

The comparison between performances of these methods is a matter of study
(see e.g. [3, 10]). However, both suffer the so-called “Curse of Dimension-
ality”: using naive projections/interpolations over tensor product polynomials
spaces/grids leads to computational costs that grow exponentially fast with the
number of random variables. Therefore the main requirement for these methods
to be appealing is the capability of retaining good approximations of u while
keeping the computational cost as low as possible.

In a Stochastic Galerkin setting this requirement can be translated to the
implementation of algorithms able to compute what is known as “best M -terms
approximation”. In other words, the method should be able to establish a-priori
the set of theM most fruitful multivariate orthogonal polynomials in the spectral
approximation of u, and to compute only those terms.

Important contributions in the study of the best M -terms approximation
have been given by Schwab and co-workers: estimates on the decay of the coef-
ficients of the spectral expansion of u have been proved e.g. in [5, 8, 7]. In this
work we will reformulate and slightly generalize the result given in [8, Corollary
6.1], and show on few numerical examples that the sequence of polynomial sub-
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spaces built upon those estimates (“TD with factorial correction” sets, TD-FC
in the following) performs better than classical choices such as Total Degree or
Tensor Product in terms of error versus the dimension of the polynomial space.

In a Stochastic Collocation setting, the construction of an optimal grid can
be recast to a classical knapsack problem and relies on the notion of profit of each
hierarchical surplus composing the sparse grid, as introduced e.g. in [6]. The
“Best M -Terms” grid is then the one built with the set of the M most profitable
hierarchical surpluses. In this work we propose a heuristic estimate of the profit
of each hierarchical surplus, and use it to build a quasi optimal sparse grid.
The estimates of the profit are in turn based on the estimates of the decay of
the spectral expansion of u. Numerical investigations show that these new grids
perform better than standard Smolyak grids as well as grids constructed with the
dimension adaptive approach developed in [14, 17]. A similar knapsack approach
to the construction of generalized optimal sparse grids has been proposed also
in [16]. Our contribution extends and details the procedure to the case of PDEs
with stochastic coefficients, working with analytic functions instead of Hr

mix

ones, and using sharp estimates for the profits of the hierarchical surpluses.
The paper is organized as follows. Section 2 defines the elliptic model prob-

lem of interest and gives general regularity results of the solution u. In Section
3 we first address the general procedure that leads to the Stochastic Galerkin
approximation of u; next we state the estimate for the decay of the spectral
approximation of u and explain how to build practically the TD-FC polynomial
subspaces that stem from it. In Section 3.2 we consider some simple numerical
tests where we can build explicitly the best M -terms approximation, and we
compare it with the TD-FC and with some standard choices of polynomial sub-
spaces. In Section 4 we recall the construction of a general sparse grid, motivate
our heuristic estimate of the profit of each hierarchical surplus and explain how
to construct in practice optimized sparse grids based on such estimates. Section
4.2 shows on some simple test cases the effectiveness of the method and the
sharpness of our heuristic estimates. Finally 5 draws some conclusions.

2 Problem setting

Let D be a convex bounded polygonal domain in R
d and (Ω,F , P ) be a complete

probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of
events and P : F → [0, 1] is a probability measure. Consider the stochastic
linear elliptic boundary value problem:

Strong Formulation. find a random function, u : D × Ω → R, such that P -
almost everywhere in Ω, or in other words almost surely (a.s.), the following
equation holds:

{
−div(a(x, ω)∇u(x, ω)) = f(x) x ∈ D,

u(x, ω) = 0 x ∈ ∂D.
(1)
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where the operators div and ∇ imply differentiation with respect to the physical
coordinate only.

We make the following assumptions on the random diffusion coefficient:

Assumption 2.1 (Coercivity and continuity). a(x, ω) is strictly positive and
bounded with probability 1, i.e. there exist amin > 0 and amax < ∞ such that
P (amin ≤ a(x, ω) ≤ amax,∀x ∈ D) = 1.

Assumption 2.2 (Finite dimensional noise). a(x, ω) is parametrized by a set of
N independent and identically distributed uniform random variables in (−1, 1),
y(ω) = [y1(ω), ..., yN (ω)]T : Ω → R

N .

Observe that the assumption that the random variables are uniform is not
that restrictive. Indeed, we could assume that a is parametrized by N random
variables zi, i = 1, . . . , n and introduce a non linear map yi = Θ(zi) that trans-
forms each of them into uniform random variables, following the well known
theory on copulas, see e.g. [20].

We denote by Γn = (−1, 1) the image set of the random variable yn, and let
Γ = Γ1×. . .×ΓN . After Assumption 2.2 the random vector y has a joint probabil-
ity density function ρ : Γ → R+ that factorizes as ρ(y) =

∏N
n=1 ρn(yn), ∀y ∈ Γ,

with ρn = 1
2 . Moreover, the solution u of (1) depends on the single realization

ω ∈ Ω only through the value taken by the random vector y. We can therefore
replace the probability space (Ω,F , P ) with (Γ, B(Γ), ρ(y)dy), where B(Γ) de-
notes the Borel σ-algebra on Γ and ρ(y)dy is the distribution measure of the
vector y. We denote with L2

ρ(Γ) the space of square integrable functions on Γ

with respect to the measure 1
2N dy. Note that in the case the original random

variables are not uniform but with bounded support, and a mapping Θ is not
available, one could still reduce the problem to the uniform case, at the price of
bounding ρ(y) with ‖ρ(y)‖∞.

In the rest of the paper we will use the following notation: given a multi-
index i ∈ N

N and a vector r ∈ R
N , we define |i| =

∑N
n=1 in, i! =

∏N
n=1(in!) and

ri =
∏N

n=1 r
in
n . We can now state a regularity assumption on a(x,y):

Assumption 2.3 (Stochastic regularity). a(x,y) is infinitely many times dif-
ferentiable with respect to y and ∃ r ∈ R

N
+ s.t.

∥∥∥∥
∂ia

a
(·,y)

∥∥∥∥
L∞(D)

≤ ri ∀y ∈ Γ,

where i is a multi-index in N
N , ∂ia =

∂i1+...+iNa

∂yi1
1 · · · ∂yiN

N

, and r is independent of y.

Example 2.1 (Stochastic regularity). A common situation of interest is when
a(x, ω) is an infinitely dimensional random field, suitably expanded in series (e.g.
by a Karhunen-Loève or Fourier expansion) either as a linear expansion of the
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form a = a0+
∑∞

n=1 bn(x)yn with bn ∈ L∞(D) and amin = a0−
∑∞

n=1 ‖bn‖L∞(D),

or an exponential expansion of the form a = a0 + exp (
∑∞

n=1 bn(x)yn). Then
the infinite series is truncated up to N terms, with N large enough to take
into account a sufficiently large amount of the total variability. Both expansions
comply with Assumption 2.3 taking rn = ‖bn‖L∞(D)/amin and rn = ‖bn‖L∞(D),
respectively.

Finally, we denote by V = H1
0 (D) the space of square integrable functions in

D with square integrable distributional derivatives and with zero trace on the
boundary, equipped with the gradient norm ‖v‖V = ‖∇v‖L2(D) , ∀v ∈ V . Its

dual space will be denoted by V ′. We are now in the position to write a weak
formulation of problem (1):

Weak Formulation. Find u ∈ V ⊗ L2
ρ(Γ) such that ∀ v ∈ V ⊗ L2

ρ(Γ)

∫

Γ

∫

D
a(x,y)∇u(x,y) ·∇v(x,y) ρ(y) dx dy =

∫

Γ

∫

D
f(x)v(x,y) ρ(y) dx dy. (2)

Under Assumption 2.1, the Lax-Milgram lemma yields that there exists a
unique solution to problem (2) for any f ∈ V ′. Moreover, the following estimate
holds:

‖u‖V ⊗L2
ρ(Γ) ≤

‖f‖V ′

amin
.

The solution u can also be thought as a function defined in Γ with solution in
V , u : Γ → V and, thanks to the previous result, we have u ∈ L2

ρ(Γ, V ) = V ⊗L2
ρ.

In what follows we will often use the notation u(y) := u(·,y) ∈ V if no confusion
arises.

Concerning the regularity of the solution with respect to y, the following
result holds, which generalizes the result given in [8] for the special case a =
a0 +

∑N
n=1 bn(x)yn.

Theorem 2.1. Let a(x,y) be a diffusion coefficient for equation (1) that satisfies
Assumptions 2.1 - 2.3. Then the derivatives of u can be bounded as

‖∂iu(y)‖V ≤ C0|i|! r̃i ∀y ∈ Γ.

Here C0 =
‖f‖V ′

amin
and r̃ =

(
1

log 2

)
r, with r as in Assumption 2.3.

The proof is technical; we thus postpone it to the Appendix. A consequence
of Theorem 2.1 is that u is analytic in every y ∈ Γ.

Corollary 2.1. Under the hypotheses of Theorem 2.1, given ε > 0, for every
y0 ∈ Γ the Taylor series of u converges in the disk

D(y0) =
{
y ∈ R

N : r̃ · abs (y − y0) < 1
}
.
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where abs (v) = (|v1|, . . . , |vN |)T . Therefore u : Γ → V is analytic and can be
extended analytically to the set

Σ =
{
y ∈ R

N : ∃y0 ∈ Γ s.t. r̃ · abs (y − y0) < 1
}
.

Proof. Use first Theorem 2.1 to bound the norm of the Taylor expansion of u(y)
centered in y0 ∈ Γ as

∥∥∥∥∥∥

∞∑

k=0

∑

|j|=k

∂ju(y0)

j!
(y − y0)

j

∥∥∥∥∥∥
V

≤
∞∑

k=0

∑

|j|=k

C0r̃
j |j|!
j!

abs (y − y0)
j
.

Next exploit the generalized Newton binomial formula, that states that for α1, . . . , αN ∈
R+ and k ∈ N we have

∑

|j|=k

k!

j!
α

j =

(
N∑

n=1

αn

)k

,

to rewrite the bound on the norm of the Taylor series as
∥∥∥∥∥∥

∞∑

k=0

∑

|j|=k

∂ju(y0)

j!
(y − y0)

j

∥∥∥∥∥∥
V

≤ C0

∞∑

k=0

(
N∑

n=1

r̃n|yn − y0,n|
)k

.

Thus the Taylor series of u converges to u in the disk D(y0). Therefore u is analytic

and admits an analytic extension in Σ. �

3 Stochastic Galerkin method

We now seek an approximation of the solution u with respect to y by global
polynomials.

As anticipated in the introduction, we remark that the choice of the poly-
nomial space is critical when the number N of input random variables is large,
since the number of stochastic degrees of freedom might grow very quickly with
N , even exponentially when isotropic tensor product polynomial spaces are used
(see Table 1). This effect is known as the curse of dimensionality.

Several choices of polynomial spaces that mitigate this phenomenon have
been proposed in the literature, see e.g. [3]. Each of these polynomial spaces
is built as the span of a properly selected subset of a multivariate orthonormal
polynomial basis {Lp(y)}p∈N for L2

ρ(Γ), to retain good approximating properties
with only a finite number of basis functions.

Since L2
ρ(Γ) =

⊗N
n=1 L

2
ρn

(Γn), the elements of an orthonormal basis can
be built as products of orthonormal polynomials for each of the directions yn,
{Lpn(yn)}pn∈N ; we can thus index the multivariate orthonormal polynomials
basis functions Lp(y) with multi-indices p = (p1, . . . , pN )

Lp(y) =

N∏

n=1

Lpn(yn).
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Then, by construction, the set {Lp(y)}p∈NN is a ρ(y)dy-orthonormal basis
in L2

ρ(Γ), i.e. such that
∫
Γ Lp(y)Lq(y)ρ(y) dy = 1 if p = q and 0 otherwise.

Let now w ∈ N be an integer index indicating the level of approximation,
and Λ(w) a sequence of increasing index sets such that

Λ(0) = {(0, . . . , 0)}, Λ(w) ⊆ Λ(w + 1) ⊂ N
N for w ≥ 0, N

N =
⋃

w∈N

Λ(w). (3)

Denoting by PΛ(w)(Γ) the multivariate polynomial space

PΛ(w)(Γ) = span {Lp(y), p ∈ Λ(w)} , (4)

the Stochastic Galerkin (SG) approximation consists in restricting the weak
formulation (2) to the subspace V ⊗ PΛ(w)(Γ) and reads:

Galerkin Formulation. Find uw ∈ V ⊗PΛ(w)(Γ) such that ∀ vw ∈ V ⊗PΛ(w)(Γ)
∫

Γ

∫

D
a(x,y)∇uw(x,y) · ∇vw(x,y) ρ(y) dx dy =

∫

Γ

∫

D
f(x)vw(x,y) ρ(y) dx dy,

(5)

where, due to the orthonormality of {Lp(y)}p∈Λ(w),

uw(x,y) =
∑

p∈Λ(w)

up(x)Lp(y), up(x) =

∫

Γ
u(x,y)Lp(y)ρ(y)dy ∀p ∈ Λ(w).

(6)
Commonly used spaces PΛ(w)(Γ) are listed in Table 1; for further details, see

[3] and references therein.

index set Λ(w) Dimension |Λ(w)|

Tensor product (TP) {p ∈ N
N : maxn=1...,N pn ≤ w} (1 + w)N

Total degree (TD) {p ∈ N
N :

PN

n=1 pn ≤ w}
`

N+w

N

´

Hyperbolic cross (HC) {p ∈ N
N :

QN

n=1(pn + 1) ≤ w + 1} (w + 1)(log(w + 1))N−1

Table 1: Examples of typical polynomial spaces. The result for HC is only an
estimate; its proof can be found e.g. in [18].

One could also consider anisotropic versions of these spaces (see e.g. [1, 3, 21])
as in Table 2, where α = (α1, . . . , αN ) ∈ R

N
+ is a vector of positive weights and

αmin = minn αn. We can interpret these weights as a measure of the importance
of each random variable yn on the solution: the smaller the weight, the higher
degree we allow in the corresponding variable.

The family of orthonormal monodimensional polynomials will of course de-
pend on the measure of each Γn (Generalized Polynomial Chaos). In the case
of uniform random variables, one can use the well-known orthonormal Legendre
polynomials; the p-th Legendre polynomial can be computed recursively (see e.g.
[13]), or explicitly with the Rodrigues’ formula:

Lpn(t) =
(−1)n

√
2pn + 1

2pnpn!

dpn

dtpn

(
(1 − t2)pn

)
. (7)
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Tensor product (TP) Λ(w) = {p ∈ N
N : maxn=1...,N αnpn ≤ αminw}

Total degree (TD) Λ(w) = {p ∈ N
N :

∑N
n=1 αnpn ≤ αminw}

Hyperbolic cross (HC) Λ(w) = {p ∈ N
N :

∏N
n=1(pn + 1)

αn
αmin ≤ w + 1}

Table 2: Corresponding anisotropic version of the polynomial spaces on Table
1.

We recall Hermite polynomials for Gaussian measures and Laguerre polynomials
for Exponential measures; see [30] for the general Askey scheme. Necessary
conditions for the convergence of the Generalized Polynomial Chaos expansion
can be found e.g. in [11].

Now let φ(x) be a basis function for the physical space V . Inserting vw =
φ(x)Lq(y) with q ∈ Λ(w) as test functions in the weak formulation (5) will
result in a set of equations in weak form for the coefficients up(x) that will be
generally coupled due to the term a(x,y)Lp(y)Lq(y) in the equation (5). See
for instance the works [3, 22, 23] for further details on space discretization and
on the numerical solution of such system of equations.

3.1 Quasi-optimal choice of polynomial spaces

A question that naturally arises in the context of Galerkin approximation con-
cerns the best choice of the polynomial space to be used, to get maximum ac-
curacy for a given dimension M of the space (best M -terms approximation).
In other words, we look for an index set SM ⊂ N

N with cardinality M that
minimizes the projection error

‖u−
∑

p∈SM

upLp‖2
V ⊗L2

ρ(Γ) =
∑

p/∈SM

||up||2V , (8)

where the equivalence is a consequence of Parseval’s equality and the complete-
ness of {Lp}p∈Λ(w) in L2

ρ(Γ).

3.1.1 Abstract construction

The obvious solution to this problem is to take the set SM that contains the M
coefficients up with largest norm. This solution of course is not constructive;
what we need are sharp estimates of the decay of the coefficients ‖up‖V , based
only on computable quantities, to be used in the approximation of the set SM .
Actually, assuming that an estimate of the type

‖up‖V ≤ G(p) (9)

is available, one can define an index set Λǫ by selecting all multi-indices p for
which the estimated decay of the corresponding Legendre coefficient is above a
fixed threshold ǫ ∈ R+,

Λǫ =
{
p ∈ N

N : G(p) ≥ ǫ
}
,
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or equivalently

Λ(w) =
{
p ∈ N

N : − logG(p) ≤ w, w = ⌈− log ǫ⌉
}
. (10)

If the sequence Λ(w) covers N
N as w goes to infinity, the corresponding uw will

converge to u and, if the bound G(p) in (9) is sharp, Λ(w) will be a “quasi opti-
mal” approximation of the best M -terms approximation, where now M denotes
the cardinality of Λ(w).

3.1.2 A preliminary example

Assume for a moment that u factorizes, i.e. it can be written as a product of
1D analytic functions in the stochastic variables, u(x,y) = f(x)

∏N
n=1 vn(yn). If

we denote with vn,pn the Legendre coefficients of the factor vn, i.e.

vn,pn =

∫

Γn

vn(yn)Lpn(yn)ρn(yn)dyn,

the Legendre coefficients of u are given simply by

up(x) = f(x)

N∏

n=1

vn,pn . (11)

Now, from classical approximation theory ([9, 26]) it is well known that, if vn is
analytic in Γn, the coefficient vn,pn is exponentially decaying in pn with a certain
rate gn, |vn,pn | ≤ c(gn)e−gnpn ; as a consequence we easily obtain a sharp bound
on the Legendre coefficients of u,

‖up‖V ≤ ‖f‖V C e−
P

n gnpn , C =

N∏

n=1

c (gn). (12)

Substituting this bound in (10), we get that a quasi optimal choice of polynomial
sets for a separable function of the form (11) is the anisotropic TD sets sequence
defined in Table 2 with weights αn = gn.

3.1.3 General case

In the general case things deriving sharp estimates on the decay of ‖up‖V is a
more delicate goal. Seminal works in this direction are [5, 8, 7], where estimates
of the decay of the Legendre coefficients are provided. We consider here a slight
generalization of the result in [8, Corollary 6.1] and show numerically that the
polynomial sets built on these modified estimates behave closely to the true best
M -terms approximation.

Under Assumptions 2.1 - 2.3 it is possible to prove that the following estimate
holds for the Legendre coefficients. Again, a similar result is given in [8] for the
special case a = a0 +

∑N
n=1 bn(x)yn.
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Proposition 3.1. Consider equation (1), suppose that the diffusion coefficient
a satisfies Assumptions 2.1 - 2.3, let r be as in Assumption 2.3 and C0 be as in
Theorem 2.1. Then the V -norm of the Legendre coefficients up can be bounded
as

‖up‖V ≤ C0e
−

P

n gnpn
|p|!
p!

, gn = − log( rn/(
√

3 log 2) ). (13)

Proof. We follow closely the proof in [8, Corollary 6.1]. We start from the definition
of the Legendre coefficients (6) and the Rodrigues’ formula for the Legendre polynomials
(7). Integrating by parts and commuting the order of the V -norm and the integral over
Γ, thanks to the properties of the Bochner integral, we have

‖up‖V (D) =

∥∥∥∥
∫

Γ

u(·,y)Lp(y)ρ(y)dy

∥∥∥∥
V

≤
∏N

n=1

√
2pn + 1

2|p|p!

∫

Γ

∥∥∂y
pu(·,y)

∥∥
V

∏N
n=1(1 − y2

n)pnρ(y)dy.

It has been shown in [8] that

I(p) =
∏N

n=1

√
2pn + 1

∫

Γ

∏N
n=1(1 − y2

n)pnρ(y)dy ≤
(

2√
3

)|p|
. (14)

Thus we have

‖up‖V (D) ≤ max
y∈Γ

∥∥∂y
pu(·,y)

∥∥
V
I(p)

1

2|p|p!
,

and the proof is completed using Theorem 2.1 to estimate maxy∈Γ

∥∥∂y
pu(·,y)

∥∥
V

:

‖up‖V (D) ≤ C0|p|!
(

1

log 2
r

)p(
2√
3

)|p|
1

2|p|p!

= C0

(
1√

3 log 2
r

)p |p|!
p!

= C0e
P

n
pn log

“

rn√
3 log 2

” |p|!
p!

. (15)

�

Example 3.1. To motivate bound (13), assume that in the model problem (1)
the forcing term is deterministic, f = f(x), and the diffusion coefficient is con-
stant in space, a = a(y) = 1 +

∑N
i=1 biyi, with bi > 0. As explained in Remark

2.1, for such a diffusion coefficient Assumption 2.3 holds with amin = 1 −
∑

i bi
and ri = bi/amin. Moreover, let us denote with g ∈ V the solution of the auxil-
iary problem {

∆g(x) = f(x) x ∈ D,

g(x) = 0 x ∈ ∂D.

Under these hypotheses we can derive an analytic expression for u and its deriva-
tives with respect to y,

u(x,y) = g(x)
1

1 +
∑N

i=1 biyi

, ∂pu(x,y) = g(x)
|p|! bp

(
1 +

∑N
i=1 biyi

)|p|+1
. (16)
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We can exploit this fact to compute explicitly a bound for the V-norm of the
Legendre coefficients up of u. Actually, using again Rodrigues’ formula (7) in
the definition of up, and integrating by parts, we obtain

up(x) =

∫

Γ
u(x,y)Lp(y)ρ(y)dy

≤ g(x)
bp

2|p|
|p|!
p!

1

(amin)|p|+1

N∏

i=1

(−1)n
√

2pn + 1

∫

[−1,1]
(1 − y2

n)pn
1

2
dyn.

Finally we exploit bound (14), pass to the V-norm and use the fact that ‖g‖V =
‖f‖V ′ to obtain

‖up‖V ≤ ‖f‖V ′

amin

bp

(amin)|p|

(
1√
3

)|p| |p|!
p!

.

This can be recast using the definition of the rate ri = bi/amin and of the constant
C0 in Theorem 2.1 to

‖up‖V ≤ C0e
−P

n gnpn
|p|!
p!

, gn = − log(rn/
√

3),

that is precisely the bound derived in Proposition 3.1, with a slight modifica-
tion on the rate gi. Numerical results in the next Section will again cover this
particular example, showing that the bound proposed yields good approximating
properties.

Remark 3.1. Since u(x, ·) is analytic in Γ (see Corollary 2.1), it can be shown
that u always admits a converging Legendre expansion. In spite of this, the
estimate (13) in the previous Proposition does not ensure that the norm of the
coefficients ‖up‖V of the expansion is decaying for any value of the coefficients rn
when |p| → ∞, nor that the Legendre series is convergent; sufficient conditions
for this to be true are given in the next Preposition.

This is a clear indication that estimate (13) is not sharp. Other estimates
derived using complex analysis arguments are available and always predict a
decay of ‖up‖V for |p| → ∞ (see e.g. [7]). On the other hand, we have observed
that the behaviour of the Legendre coefficients is well described by a bound of the
type of (13), if the rates gn are estimated numerically rather than analytically.
See Section 3.2 for numerical evidence on the quality of the bound proposed.

For a given set Λ, let w be the index of the largest TD set included in Λ:

w = max{w̃ ∈ N : TD(w̃) ⊆ Λ(w)}.

The following Proposition holds:

11



Proposition 3.2. Given an increasing sequence of index sets Λ(w) with w → ∞,
the estimate (13) in Proposition 3.1 implies that a sufficient condition for the
Legendre series uw defined in (6) to converge uniformly to u is

N∑

i=1

rn < log 2 . (17)

Proof. It is enough to prove that if condition (17) holds then the sequence uw =∑
p∈Λ(w) upLp is Cauchy with respect to the norm ‖·‖L∞(Γ;V ), for the sequence Λ(w)

considered. As a consequence uw converges uniformly to its limit u.

To prove that uw is Cauchy, let w1, w2 ∈ N such that w1 < w2. It holds

∥∥∥
∑

p∈Λ(w2)
up(x)Lp(y) −

∑
p∈Λ(w1)

up(x)Lp(y)
∥∥∥

L∞(Γ;V )
=

∥∥∥
∑

p∈Λ(w2)\Λ(w1)
up(x)Lp(y)

∥∥∥
L∞(Γ;V )

≤
∑

p∈Λ(w2)\Λ(w1)

‖up(x)Lp(y)‖L∞(Γ;V ) ≤

∑

p/∈TD(w1)

‖up(x)Lp(y)‖L∞(Γ;V ) =
∑

p/∈TD(w1)

‖up(x)‖V ‖Lp(y)‖L∞(Γ) .

Now use estimate (13) in Proposition 3.1 to bound ‖up(x)‖V . Furthermore note that
the L∞(Γ)-norm of the orthonormal Legendre polynomials can be bounded as

‖Lp(y)‖L∞(Γ) =

N∏

n=1

√
2pn + 1 ≤

(√
3
)|p|

∀p ∈ N
N ,

so that

∑

p/∈TD(w1)

‖up(x)‖V ‖Lp(y)‖L∞(Γ) ≤ C0

∑

p/∈TD(w1)

(
1

log 2
r

)p |p|!
p!

= C0

∑

|p|≥w1

(
1

log 2
r

)p |p|!
p!

= C0

∞∑

s=w1

(
N∑

n=1

1

log 2
rn

)s

,

that tends to 0 if condition (17) holds, where we have exploited the generalized Newton

binomial formula as in Corollary 2.1. �

Remark 3.2. Condition (17) in Proposition 3.2 can be weakened by improv-
ing bound (14). We recall the definition of I(p) =

∏N
n=1

√
2pn + 1

∫
Γn

(1 −
y2

n)pnρ(yn)dyn. Integrating p times by parts, one obtains

∫ 1

−1
(1 − t2)p 1

2
dt =

22p(p!)2

(2p+ 1)!
.

Using Stirling’s approximation formula

p! =
√

2πp
(p
e

)p
eλp ,

1

12p+ 1
≤ λp ≤ 1

12p
,

12



one can then bound

I(p) ≤
√
π

2
⇒ I(p) ≤

(π
2

)N/2
.

Note that this bound is sharp, even for small values of |p|. Using this result
rather then (14) in (15) we obtain

‖up‖V (D) ≤ C0

(π
2

)N/2
(

1

2 log 2
r

)p |p|!
p!

(18)

and, as a consequence, condition (17) becomes

N∑

i=1

rn <
2 log 2√

3
. (19)

Note however that this is only a little improvement, being log 2 = 0.69 and
2 log 2/

√
3 = 0.80; moreover, since π/2 > 1, bound (18) does not imply that the

Legendre coefficients of u decay regardless of the number of random variables,
which was the case for the initial estimate (13); therefore, condition (19) holds
for fixed N , while (17) is independent of N .

Following again the abstract procedure in Section 3.1.1, we substitute the
estimate (13) in the general quasi optimal set expression (10). This results in
the following expression for the quasi optimal polynomial sets for a general non
factorizing u,

Λ(w) =

{
p ∈ N

N :

N∑

n=1

gnpn − log
|p|!
p!

≤ w

}
. (20)

We refer to these sets as TD-FC sets (“TD with factorial correction” sets).

We can indeed interpret the factor log |p|!
p! appearing in (20) as a correction factor

to the TD space to take into account the intrinsic coupling between directions
in the stochastic space; observe that this correction is always isotropic.

As pointed out in Remark 3.1, the quantities gn appearing in (20) are better
estimated numerically by a sequence of monovariate analyses: one could indeed
increase the polynomial degree in one random variable at a time while keeping
degree zero in all the others variables and estimate numerically the exponential
rate of convergence. Observe that in such monovariate analyses the factorial
term does not appear so the expected convergence rate is precisely ∼ e−gnpp . In
the numerical results presented in the next section we have used this strategy,
which seems to work particularly well.

Remark 3.3. Observe that Λ(w) actually depends on the number of input vari-
ables N . One can extend the definition of Λ(w) also to the case where p is a

13



sequence of natural numbers (“infinite dimensional probability space”) with only
a finite number of non zero terms, provided the sequence gn → 0 as n → ∞.
This is an alternative way to work with random fields, without truncating them
a priori to a certain level (see e.g. [8, 7, 21]).

3.2 Numerical Tests

In this section we show the performance of the TD-FC sets (20) compared to the
isotropic and anisotropic versions of TD sets defined in Tables 1 and 2, as well
as the best M-term approximation. We consider the following elliptic problem
in one physical dimension

{
−(a(x,y)u(x,y)′)′ = 1 x ∈ D = (0, 1),y ∈ Γ

u(0,y) = u(1,y) = 0, y ∈ Γ
(21)

with different choices of diffusion coefficient a(x,y), for which Assumptions 2.1 -
2.3 hold. We focus on a linear functional ψ : V → R of the solution, so that ψ(u)
is a scalar random variable, function of y only. In our examples, ψ is defined as
ψ(v) = v(1

2).
To obtain the best M -terms approximation we compute explicitly all the

Legendre coefficients of ψ(u) in a sufficiently large index set U evaluating the
integrals ψp =

∫
Γ ψ(u)Lp(y)ρ(y)dy with a high-level sparse grid as reference

values. We order then the coefficients in decreasing order, according to their
modulus, and take the first M terms of the reordered sequence as the best M -
terms approximation.

The rates g used to build the TD-FC space, as well as the anisotropic TD
space, are computed numerically, with a sequence of 1D analyses. For each
random variable 1 ≤ n ≤ N , we consider the subset Un = {p ∈ U : pi = 0 if i 6=
n, pn = 0, 1, 2, . . .}; according to (13), the decay of the Legendre coefficients for
this particular choice of multi-indices is |ψp| ∼ e−gnpn , and we can then estimate
the rate gn via a linear interpolation on the quantities log |ψp|,p ∈ Un.

Test 1: space independent diffusion coefficient

The first case we consider has two random variables (y1, y2) and a diffusion
coefficient a(x,y) = 1 + 0.1y1 + 0.5y2; results are shown in Figures 1-2.

Figure 1(a) shows the Legendre coefficients ordered in lexicographic order,
giving this peculiar sawtooth shape. The first tooth corresponds to multi-indices
of the form [0, k], the second one to [1, k] and so on. We have also added to
the plot the estimate (13) in Proposition 3.1 of the magnitude of the Legendre
coefficients, which leads to the TD-FC sets (20), as well as the estimate (12)
which leads to the anisotropic TD spaces as in Table 2, with αn = gn. The plot
suggests that estimate (13) is quite sharp, whereas the estimate corresponding to
the TD space underestimates considerably the Legendre coefficients. This result
highlights the importance of the factorial term in (13). We expect, therefore, that

14
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(b) Convergence of different polyno-
mial approximations, measured as
‖ψ(u) − ψ(uw)‖L2

ρ
(Γ) versus dimension

of polynomial space.

Figure 1: Results for a(x,y) = 1 + 0.1y1 + 0.5y2. Here we have g ≃ (2.49, 1.27),
U =TP(12), Legendre coefficients computed with a standard Smolyak sparse
grid of level 9, with Gauss-Legendre abscissae.

the TD-FC approximation performs better than the aniso-TD one. Moreover,
we point out the non intuitive fact that the Legendre coefficients ψp are not
strictly decreasing in absolute value when listed in the lexicographic order. As
an example, |ψ[5 0]| < |ψ[5 1]|, and the same holds for all teeth but the first few.

Figure 1(b) shows convergence plots for the error in L2
ρ-norm for the various

polynomial spaces used versus the dimension of the polynomial space. As the
TD-FC sequence is the only sequence that captures correctly the non decreasing
behaviour of the Legendre coefficients in lexicographic order, the convergence of
the TD-FC sequence in Figure 1(b) is the closest to the best M -terms approxi-
mation, even though the anisotropic TD space give good results as well. We also
point out the poor performance of the standard isotropic TD space compared to
both the anisotropic TD and the TD-FC spaces: this confirms the importance
of using anisotropic spaces to reduce computational costs.

It is also useful to visualize the isolines of the Legendre coefficients of the
expansion of ψ(u) and to compare them with the isolines corresponding to esti-
mates (13) for TD-FC sets, and (12) for iso and aniso TD sets, see Figure 2. The
closer the matching of the sequence of sets with the true decay of the Legendre
coefficients, the faster the L2 convergence of the approximation for ψ will be.
The key property of the decay of the Legendre coefficients is the rounded shape
of the isolines (see Figure 2(a)), properly caught only with the factorial term |i|!

i!
in the TD-FC set formula (Figure 2(b)). Also from these plots one can see the
fact that the Legendre coefficients are not strictly decreasing in lexicographic
order: actually close to the borders the isolines tend to bend “backward”, so
that for example the index [7, 1] belongs to a lower isoline than [7, 0]. However,
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(d) isotropic TD sets

Figure 2: Isolines of estimated Legendre coefficients: a) true values, computed
with high level sparse grids; b) estimate (13) leading to TD-FC sets; c) es-
timate (12) leading to aniso-TD sets with αn = gn; d) estimate (12) with
αn = 1∀n = 1, . . . , N , leading to standard TD sets as in Table 1. In all plots,
each dot represents a multi-index in N

2, and it is coloured according to the size
of the corresponding exact coefficient in the Legendre expansion for ψ; on the
background the isolines.

as appears from results in Figure 1, approximating the isolines with “mean”
straight lines as it is done in the anisotropic TD (Figure 2(c)) gives quite good
results as well. On the other hand, using the wrong slopes for TD sets, like in
isotropic TD sets (2(d)), will result in general in poor approximation properties.
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(a) Results for linear expansion.
a(x,y) = 4 + y1 + 0.2 sin(πx)y2 +
0.04 sin(2πx)y3 +0.008 sin(3πx)y4. Here we
have g ≃ (2.03, 4.11, 5.73, 7.05), reference
set: U =TD(9).
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(b) Results for exponential expan-
sion. log a(x,y) = y1 + 0.2 sin(πx)y2 +
0.04 sin(2πx)y3 +0.008 sin(3πx)y4. Here we
have g ≃ (1.95, 3.95, 5.09, 6.51), reference
set: U =TD(7).

Figure 3: Convergence of polynomial approximations for elliptic equation
with the coefficient a depending also on x. Convergence measured as
‖ψ(u) − ψ(uw)‖L2

ρ(Γ) versus the dimension of polynomial space.

Test 2: space dependent diffusion coefficient

We now consider the following two expansions:

• a(x,y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4,

• log a(x,y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4.

and look at the functional ψ(v) = v(0.7) (the functional ψ(v) = v(1/2) is not
suited for analysis in this case as, by symmetry, many of the Legendre coeffi-
cients are zero). Figure 3 shows the results, and again we see that the TD-FC
approximation is the best performing, with anisotropic TD closely following and
isotropic TD far worse.

Test 3: factorizable diffusion coefficient

Let us now give an example on the case of a factorizable u, as in Section 3.1.2.
We recall that Section 3.1.2 states that if we can express the solution u(x,y)
as a product u(x,y) = f(x)

∏
n vn(yn) then the Legendre coefficients can be

computed as a product of 1D Legendre coefficients, and thus the optimal estimate
is (12), leading to aniso-TD sets, rather than estimate (13) leading to what
we have called TD-FC sets. To support our thesis, we now consider a(y) =

(1 + 0.6y1)(1 + 0.6y2), so that the solution of (21) is u(x,y) = x(1−x)
2a(y) .

The convergence plots for of ψ(u) are shown in Figure 4 and confirm that
in this case TD is the optimal choice, and is very close to the best M -terms
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Figure 4: convergence of polynomial approximation of the elliptic equation (21)
with the coefficient a that factorizes with respect to y, a = (1+0.6y1)(1+0.6y2).
g ≃ (1.08, 1.08), U =TP(12). Convergence measured as ‖ψ(u) − ψ(uw)‖L2

ρ(Γ)

versus number of Legendre coefficients (dimension of polynomial space).

approximation. Note that in this example the isotropic and anisotropic versions
of TD coincide, since the two factors of v are the same.

3.3 Alternative estimates for diffusion coefficients in exponen-

tial form

Let us consider again the model problem (21), with diffusion coefficient in expo-

nential form log a(x,y) =
∑N

n=1 cnyn. The solution is u(x,y) = x(1−x)
2

1
QN

n=1 ecnyn
,

therefore the solution is in separable form with vn = ecnyn ; as a consequence,
following the arguments in Section 3.1.2 on factorizable functions, we have
‖up‖V = ‖f(x)‖V

∏N
n=1 |vn,pn |, where vn,pn indicates the pn-th Legendre coeffi-

cients of vn. In this case, however, we expect the decay of vn,pn to be faster than
exponential, since vn(yn) is an entire function. Actually, the following lemma
holds:

Lemma 3.1. Given problem (21) with diffusion coefficient log a(x,y) =
∑N

n=1 cnyn,
the V -norm of the Legendre coefficients of u can be bounded as

‖up‖V ≤ Ce
e−

PN
n=1 gnpn

p!
, (22)

with gn = − log |cn|√
3

and Ce = ‖f‖V e
PN

n=1 |cn|.

Proof. Since ‖up‖V = ‖f(x)‖V

∏N
n=1 |vn,pn

| we only need to estimate |vn,pn
|. Re-
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calling the definition of I(p) given in the proof of Proposition 3.1, one gets

|vn,pn
| =

∣∣∣∣
∫ 1

−1

Lpn
(yn)vn(yn)

dyn

2

∣∣∣∣ =
√

2pn + 1

2pnpn!

∣∣∣∣
∫ 1

−1

e−cnyn

(
d

dy

)pn

(1 − y2
n)pn

dyn

2

∣∣∣∣ =

√
2pn + 1

|cn|pn

2pnpn!

∫ 1

−1

e−cnyn(1 − y2
n)pn

dyn

2
≤ |cn|pne|cn|

2pnpn!
I(p) ≤ |cn|pne|cn|

√
3

pn

pn!
.

The thesis follows setting gn = − log |cn|√
3
. �

Remark 3.4. Observe that in (22) the coefficient up will tend to zero as |p| →
∞ even when gn >

√
3 for all n = 1, . . . , N .

As a consequence, the abstract optimal space (10) becomes in this case

Λ(w) =

{
N∑

n=1

pngn +

N∑

n=1

log(pn!) ≤ w

}
. (23)

We refer to this set as anisotropic “factorial TD”, or aniso-fTD in short.
We now guess that even in the more general case where log a(x,y) =

∑N
n=1 cn(x)yn

an estimate of the type of (22) for the Legendre coefficients of the solution holds,
for some gn, n+ 1, . . . , N . We have tested this space on two cases

• log(a(x,y) + 0.01) = 0.2y1 + 2y2 (constant coefficients) ;

• log a(x,y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4 (sin
expansion, this one is the same as in Test 2).

Again, the rates gn appearing in formula (23) can be estimated numerically
with a least square approach. We will refer to these new rates as g̃n to stress
the fact that they are different from the gn we use in TD and TD-FC spaces.

The corresponding results are shown in Figure 5, and show that actually fTD
is competing with TD-FC .

4 Stochastic Collocation

The Stochastic Collocation (SC) Finite Element method consists in collocat-
ing problem (1) in a set of points {yj ∈ Γ, j = 1, . . . ,Mw}, i.e. computing
the corresponding solutions u(·,yj) and building a global polynomial approxi-
mation uw, not necessarily interpolatory, upon those evaluations: uw(x,y) =∑Mw

j=1 u(x,yj)ψ̃j(y) for suitable multivariate polynomials {ψ̃j}Mw

j=1.
Building the set of evaluation points {yj} as a cartesian product of monodi-

mensional grids becomes quickly unfeasible, since the computational cost grows
exponentially fast with the number of stochastic dimensions needed. We consider
instead the so-called sparse grid procedure, originally introduced by Smolyak in
[25] for high dimensional quadrature purposes; see also [4, 6] for polynomial in-
terpolation. In the following we briefly review and generalize this construction.
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(a) constant coefficients, log(a(x,y) +
0.01) = 0.2y1 + 2y2: g̃ ≃ (2.38, −0.12)
for fTD, g = (3.65, 1.62) for TD-FC and
TD, reference set U =TP(12).
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(b) sin expansion log a(x,y) =
y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 +
0.008 sin(3πx)y4: g̃ ≃
(0.68, 2.81, 4.10, 5.69) for fTD,
g = (1.95, 3.95, 5.09, 6.51) for TD-FC
and TD, reference set U =TD(7).

Figure 5: convergence of polynomial spaces for elliptic equation with “shifted”
exponential a(x,y), using f-TD space.

For each direction yn we introduce a sequence of one dimensional polynomial

interpolant operators of increasing order: Um(i)
n : C0(Γn) → Pm(i)−1(Γn). Here

i ≥ 1 denotes the level of approximation and m(i) the number of collocation

points used to build the interpolation at level i. As a consequence, Um(i)
n [q] = q

if q is a polynomial of degree up to m(i) − 1. We require the function m to
satisfy the following assumptions: m(0) = 0, m(1) = 1 and m(i) < m(i+ 1) for
i ≥ 1. In addition, let U0

n[q] = 0, ∀q ∈ C0(Γn).

Next we introduce the difference operators ∆
m(i)
n = Um(i)

n − Um(i−1)
n , an

integer value w ≥ 0, multi-indices i ∈ N
N
+ and a sequence of index sets I(w)

such that I(w) ⊂ I(w+ 1) and I(0) = {(1, 1, . . . , 1)}. We define the sparse grid
approximation of u : Γ → V at level w as

uw(y) = Sm
I(w)[u](y) =

∑

i∈I(w)

N⊗

n=1

∆m(in)
n [u](y). (24)

As pointed out in [14], it is desiderable that the sum (24) has some telescopic
properties. To ensure this we have to impose some additional constraints on I.
Following [14] we say that a set I is admissible if ∀ i ∈ I

i − ej ∈ I for 1 ≤ j ≤ N, ij > 1. (25)

We refer to this property as admissibility condition, or ADM in short. Given a
set I we will denote by IADM the smallest set such that I ⊂ IADM and IADM

is admissible.
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It is now possible to rewrite (24) in terms of linear combinations of tensor
grids interpolations:

uw(y) =
∑

i∈I(w)ADM

ci

N⊗

n=1

Um(in)
n [u](y), ci =

∑

j={0,1}N :

i+j∈I(w)ADM

(−1)|j|. (26)

Observe that many coefficients ci in (26) are zero. The set of all evaluation
points needed is called sparse grid and denoted by Hm

I(w) ⊂ Γ (see Figure 6).
We also introduce the tensor notation

m(i) =

N∏

n=1

m(in), ∆m(i)[u] =

N⊗

n=1

∆m(in)[u], Um(i)[u] =

N⊗

n=1

Um(in)[u].

To fully characterize the sparse approximation operator Sm
I(w) introduced in

(24) one has to provide the sequence of sets I(w), the relation m(i) between the
level i and the number of points in the corresponding one dimensional polynomial
interpolation formula Um(i), and the family of points to be used at each level,
e.g. Clenshaw-Curtis or Gauss abscissae (see e.g. [28]).

In what follows we will consider Clenshaw-Curtis abscissae and the “dou-
bling” rule m(i) = db(i),

db(i) =





0 if i = 0

1 if i = 1

2i−1 + 1, if i > 1,

(27)

which leads to nested grids. The classical Smolyak sparse grid (SM) uses I(w) =
{i ∈ N

N
+ : |i − 1| ≤ w}. A quasi optimal choice of I(w) will be discussed in the

next Section.

4.1 Quasi-optimal sparse grids

We now aim at constructing the quasi-optimal sparse grid for the Stochastic
collocation method, i.e. we aim at choosing the best sequence of sets of indices.
Let us define the error associated to a sparse grid as

E(Sm
I(w)) =

∥∥∥u− Sm
I(w)[u]

∥∥∥
V ⊗L2

ρ(Γ)
,

and the work W (S) as the number of evaluations needed, i.e.

W (Sm
I(w)) = |Hm

I(w)|.

Our goal is then to find the optimal set S that minimizes the error with a total
work smaller or equal to a maximum work W , or alternatively the set that
minimizes the work with an error smaller than or equal to a given threshold ǫ.
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Figure 6: comparison between a tensor grid (left) and the TD-FC sparse grid
(right) derived with the procedure explained in Section 4.1.

This is a classical knapsack problem and we adopt a greedy algorithm to solve
it. To this end we define the error and work contribution of a multi-index i. Let
J be any set of indices such that i /∈ J and {J ∪ i} is admissible. Then the
error contribution of i is

∆E(i) =
∥∥∥Sm

{J∪i}[u] − Sm
J [u]

∥∥∥
V ⊗L2

ρ(Γ)
(28)

and the work contribution is

∆W (i) = |W (Sm
{J∪i}) −W (Sm

J )|. (29)

Observe that the error contribution defined in (28) is always independent of
the set J , since indeed

∆E(i) =

∥∥∥∥∥∥

∑

j∈{J∪i}
∆m(j)[u] −

∑

j∈{J }
∆m(j)[u]

∥∥∥∥∥∥
V ⊗L2

ρ(Γ)

=
∥∥∥∆m(i)[u]

∥∥∥
V ⊗L2

ρ(Γ)
.

(30)
On the other hand, the work contribution (29) will depend in general on the set
J , except in the case of nested abscissae, as for Clenshaw Curtis nodes, which
is the case considered here. In this case indeed the evaluation of the extra term
∆m(i)[u] =

⊗N
n=1(Um(in) − Um(in−1))[u] implies evaluations only in the extra

points added at level in in each direction, irrespectively of the set J , provided
that J is admissible.

Following [6, 14] we can now define the profit of an index i as

P (i) =
∆E(i)

∆W (i)

and identify the optimal sparse approximation operator S∗ as the one using the
set of most profitable indices, i.e. I∗(ǫ) = {i ∈ N

N
+ : P (i) ≥ ǫ}.
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To build the set I∗ we rely on sharp estimates for both ∆E(i) and ∆W (i).
Since, using Clenshaw-Curtis abscissae and the doubling rule db(·), we get nested
grids, we can compute exactly ∆W (i) as

∆W (i) =

N∏

n=1

(db(in) − db(in − 1)), (31)

with db(in) as in (27).
On the other hand, deriving a rigorous bound for ∆E(i) is not as easy. For

instance, through numerical investigations on the model function f(y1, y2) =
1

1+c1y1+c2y2
, one can conjecture the size of a generic ∆E(i) to be closely related

to the norm of the corresponding Legendre coefficient fm(i−1), with a correcting
factor due to the interpolation operator norm. To be more precise, we conjecture
the following estimate for ∆E(i),whenever f is an analytic function:

∆E(i)[f ] .
∥∥fm(i−1)

∥∥
V

∏N
n=1 L

m(in)
n , (32)

where a . b means that there exists a constant c independent of i such that

a ≤ cb and L
m(i)
n is the Lebesgue constant for the interpolation operator Um(i)

n ,
defined as

L
m(i)
n = sup

v∈C0(Γn)

∥∥∥Um(i)
n v

∥∥∥
L∞(Γn)

‖v‖L∞(Γn)

.

For Clenshaw-Curtis abscissae with doubling relation the Lebesgue constant can
be shown to be

L(db(i)) =
2

π
log(db(in) + 1) + 1,

see e.g. [24] and references therein. Figure 7 shows the quality of estimate
(32), and numerical results in next Section also confirm that such an estimate
is accurate enough for our purposes.

Starting from (31) and (32), we can estimate the profit of each index, and
estimate the sequence SI∗(ǫ) of quasi-optimal grids with

I∗(ǫ) =

8

>

>

>

>

<

>

>

>

>

:

i ∈ N
N
+ :

C0 exp

 

−

N
X

n=1

db(in − 1)gn

!

|db(i − 1)|!

db(i − 1)!

N
Y

n=1

L
m(in)
n

N
Y

n=1

(db(in) − db(in − 1))

≥ ǫ

9

>

>

>

>

=

>

>

>

>

;

ADM

(33)

with ǫ > 0 ∈ R. Equivalently, for w = 0, 1, . . . we can define the sequence of
sets

I∗(w)=

(

i∈N
N
+ :

N
X

i=n

db(in − 1)gn−log
|db(i −1)|!

db(i − 1)!
−

N
X

n=1

log
2
π

log(db(in) + 1) + 1

db(in) − db(in − 1)
≤w

)ADM

(34)

that will be used in (24) to build the quasi optimal sparse grids. We will refer
to these “quasi best M -terms grids” as EW grids (“Error-Work” grids).
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Figure 7: Numerical comparison between ∆E(i) and |um(i−1)| for a scalar func-

tion u of the form f(y1, y2) = 1
1+c1y1+c2y2

. Both the ∆E(i) for i ∈ TP (4) and
the corresponding Legendre coefficients |fm(i−1)| have been computed with a
standard sparse grid SM(10).

Remark 4.1. Observe that estimate (31) of the work ∆W (i) associated to a
multi-index i is valid only if the underlying set of multi-indices is admissible.
This is why in formulae (33) and (34) we have explicitly enforced the admissi-
bility condition in the construction of the optimal set.

4.2 Numerical tests on sparse grids

In this Section we consider the same problem as in Section 3.2 and use it to test
the performance of the TD-FC grids derived above, comparing them with the
classical SM grid and the best M -terms approximation.

To approximate the best M -terms we again consider a sufficiently large set U

of multi-indices and for each of them we compute ∆W (i), ∆E(i) and their profit
P (i). Next, we sort the multi-indices according to P (i), modify the sequence to
fulfil the ADM condition (25) and compute the sparse grids according to this
sequence.

We remark that the procedure just described only leads to an approximation
of the best M -terms solution. Indeed, on the one hand replacing the total
error E(S) with the sum

∑
i ∆E(i) provides only an upper bound that could

be pessimistic because of possible cancellations, since the details ∆m(i)[u] are
not mutually orthogonal, in general. On the other hand, the fact that the most
profitable index may be not admissible suggests that the solution cannot be
found with a greedy algorithm. Here the coefficients gn in (34) are estimated
numerically as in Section 3.2.

We also compare our results with the dimension adaptive algorithm [14], in
the implementation proposed in [17] and available at

http://www.ians.uni-stuttgart.de/spinterp

This is an adaptive algorithm that given a sparse grid SI explores all neighbour
multi-indices and adds to I the most profitable one. The algorithm implemented

24



0 20 40 60 80 100 120 140
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

iso SM
EW
adaptive
best M terms

(a) a = 1 + 0.3y1 + 0.3y2, U=TP(6)
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(b) a = 1 + 0.1y1 + 0.5y2, U=TP(6)
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(c) a(x,y) = 4 + y1 + 0.2 sin(πx)y2 +
0.04 sin(2πx)y3+0.008 sin(3πx)y4, U=TD(8)
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0.04 sin(2πx)y3 + 0.008 sin(3πx)y4, U=TD(8)

Figure 8: Results for TD-FC sparse grids compared with best M -terms ,
isotropic Smolyak and dimension adaptive algorithm. Convergence is measured
as ‖ψ(u) − ψ(uw)‖L2(Γ) versus number of evaluations (grid points).

in [17] has a tunable parameter ω̃ that allows one to move continuously from
the classical Smolyak formula (ω̃ = 0) to the fully adaptive algorithm (ω̃ = 1).
Following [17], in the present work we have set ω̃ = 0.9, that numerically has
been proved to be a good performing choice. The cost of this algorithm is the
total number of evaluations needed, including also those necessary to explore all
neighbours, to find the most profitable multi-index.

Figure 8 shows the convergence of the quantity ‖ψ(u) − ψ(uw)‖L2
ρ(Γ) versus

the number of grid points, for the different sparse grids considered. The L2
ρ-norm

has been computed with a high level isotropic Smolyak grid. The TD-FC grid
is the best performing, even compared to the a-posteriori dimension adaptive
algorithm [17], and the closest to the best M -terms grids sequence.

Remark 4.2. A similar approach, based on estimates for ∆E and ∆W is possi-
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ble also for the case of not nested grid points, as for the Gauss-Legendre quadra-
ture points. However, in this case the estimate of ∆W is “path dependent” and
any “path independent” estimate will be too pessimistic to build effective index
sets.

5 Conclusions

In this work we have proposed a new sequence of polynomial subspaces (TD-
FC spaces in short) to be used in the solution of elliptic stochastic PDEs with
Stochastic Galerkin method in the case of a solution that depends analytically on
all random variables. The new polynomial spaces are based on sharp estimates
of the decay of the Legendre coefficients.

The performances of TD-FC spaces have been assessed through some sim-
ple test cases. Here we have compared TD-FC with some standard choices of
polynomial spaces and with the best M -terms approximation of the solution,
that can be explicitly built for the examples considered. Results show that the
TD-FC spaces perform better than the standard anisotropic TD ones, and are
close to the best M -terms approximation a clear indication that our estimates
of the decay of the Legendre coefficients are sharp. However, standard spaces
may still have reasonable performances, if used in an appropriate anisotropic
framework.

Using the estimate for the decay of the Legendre coefficients we have also
defined a new class of sparse grids to be used in the context of Stochastic Col-
location, relying on the concept of profit of each multi-index in the sparse grid.
Again numerical tests show that these new sparse grids outperform the classical
Smolyak construction and perform better than the a-posteriori dimension adap-
tive algorithm proposed in [14] (see also [17]). The reason is that our algorithm
picks up the hierarchical surpluses based purely on a priori estimates, that turn
out to be quite sharp, and does not have any extra cost to explore neighbor
points as the algorithm in [17] does.

The new polynomial spaces and sparse grids proposed here are valid in the
case of analytic dependence of the solution on the random variables. We point
out, however, that the general strategy outlined in Sections 3.1 and 4.1 on how
to build optimal polynomial spaces / sparse grids, is applicable to any problem.
Of course, this strategy requires a sharp estimate of the decay of the coefficients
of the spectral expansion of the solution on a orthonormal hierarchical basis (not
necessarily polynomial). This step is highly problem dependent and should be
analyze carefully in each situation, as we did here for a linear elliptic PDE with
a stochastic coefficient dependent on uniformly distributed random variables.
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A Proof of Theorem 2.1

Let us consider two sufficiently smooth N -dimensional functions f(y), g(y) :
R

N → R; an index i ∈ N, 1 ≤ i ≤ N ; a set S of indices with cardinality S ; a
multi-index s ∈ N

N . We use the following notation:

- ∂if denotes the derivative of f in the i-th direction: ∂if = ∂
∂yi
f ;

- ∂Sf denotes the S -th order mixed derivative of f with respect to all the
directions included in S. As an example, if S = {1 1 2 4 4 4} then

∂Sf = ∂1 1 2 4 4 4f =
∂6

∂y1∂y1∂y2∂y4∂y4∂y4

f =
∂6

∂2
y1
∂y2∂

3
y4

f.

- s is the multi-index corresponding to the set S such that ∂Sf = ∂sf . In
the previous example s = [2 1 0 3] is the multi-index corresponding to the
set S = {1 1 2 4 4 4}.

Lemma A.1 (generalized Leibniz rule). Given a set of indices K with cardinality
K and two functions f, g : R

N → R, f, g ∈ CK (RN ),

∂K(fg) =
∑

S∈P(K)

∂S f∏
i∈S ∂yi

∂K −S g∏
i/∈S ∂yi

=
∑

S∈P(K)

∂Sf ∂K\Sg, (35)

where P(K) represents the power set of K.

Lemma A.2. Let a(x,y) be a diffusion coefficient for equation (1) that satisfies
Assumptions 2.1 - 2.3. Then the derivatives of u can be bounded as

‖∂ku(y)‖V ≤ C0d|k|r
k ∀y ∈ Γ,

where C0 =
‖f‖V ′

amin
, r as in Assumption 2.3, and {dn}n∈N is a sequence defined

as:

d0 = 1, dn =

n−1∑

i=0

(
n

i

)
di. (36)

Proof.
We start by rewriting the statement using the correspondence between k and its

equivalent set K

‖∂ku(·,y)‖V = ‖∂K∇u(·,y)‖L2(D) ≤ C0dK rk, ∀y ∈ Γ.

We will first prove something closely related, namely

∥∥∥
√
a(·,y)∂K∇u(·,y)

∥∥∥
L2(D)

≤ ‖f‖V ′√
amin

dK rk ∀y ∈ Γ, (37)

from which the previous inequality follows immediately. Let us start with a weak for-
mulation of (1) in the physical space only, i.e.
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Find u ∈ V ⊗ L2
ρ(Γ) such that for almost every y ∈ Γ it holds

∫

D

a(x,y)∇u(x,y) · ∇v(x)dx =

∫

D

f(x)v(x)dx ∀v ∈ V.(y) (38)

According to Lemma A.1, the ∂K derivative of this weak formulation with respect to y
is ∫

D

∑

S∈P(K)

∂S∇u(x,y)∂K\Sa(x,y)∇v(x)dx = 0,

and putting in evidence the ∂K∇u term

∫

D

a(x,y)∂K∇u(x,y)∇v(x)dx = −
∫

D

∑

S∈P(K),S6=K
∂S∇u(x,y)∂K\Sa(x,y)∇v(x)dx.

Next we choose v = ∂Ku and use Cauchy-Schwarz inequality on the right hand side:

∥∥∥
√
a(·,y) ∂K∇u(·,y)

∥∥∥
2

L2(D)
≤

∑

S∈P(K),S6=K

∥∥∥∥
∂K\S a

a
(·,y)

∥∥∥∥
L∞(D)

∥∥∥
√
a(·,y)∂S∇u(·,y)

∥∥∥
L2(D)

∥∥∥
√
a(·,y)∂K∇u(·,y)

∥∥∥
L2(D)

.

Now simplify
∥∥∥
√
a(·,y)∂K∇u(·,y)

∥∥∥
L2(D)

on both sides and reorder the sum on the

right hand side according to the cardinality of the subsets S. From here on we omit the
dependence of a and u on x, y, to have a lighter notation. We have

∥∥√a ∂K∇u
∥∥

L2(D)
≤

K −1∑

i=0

∑

S∈P(K),S =i

∥∥∥∥
∂K\Sa

a

∥∥∥∥
L∞(D)

∥∥√a∂S∇u
∥∥

L2(D)
. (39)

We are finally in the position to prove (37). We will proceed by induction on (37), using
(39) and Assumption 2.3 on the decay of a.

Case K = 0. In this case (37) reads

∥∥√a∇u
∥∥

L2(D)
≤ ‖f‖V ′√

amin
d0,

which is true setting d0 = 1.

Case K = 1. If K = {j}, 1 ≤ j ≤ N , (37) reads

∥∥√a∂j∇u
∥∥

L2(D)
≤ ‖f‖V ′√

amin
d1rj =

‖f‖V ′√
amin

rj

(
1

0

)
d0 =

‖f‖V ′√
amin

rjd0 =
‖f‖V ′√
amin

rj .

To prove this, consider (39). Using Assumption 2.3 and the result for case K = 0
one has precisely

∥∥√a∂j∇u
∥∥

L2(D)
≤
∥∥∥∥
∂ja

a

∥∥∥∥
L∞(D)

∥∥√a∇u
∥∥

L2(D)
≤ rj

‖f‖V ′√
amin

.
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General K . Consider now a general K, and suppose (37) holds for any set S with
cardinality K − 1. Use this induction hypothesis and again Assumption 2.3 on
(39), denoting with s∗ the multi-index corresponding to the set K\S. This yields

∥∥√a∂K∇u
∥∥

L2(D)
≤

K −1∑

i=0

∑

S∈P(K),S =i

rs∗
‖f‖V ′√
amin

dS rs.

Next note that:
rs∗rs =

∏

j∈K\S
rj
∏

j∈S
rj =

∏

j∈K
rj = rk,

and that the number of subsets S with cardinality i is

(
K

i

)
. Then

∥∥√a∂K∇u
∥∥

L2(D)
≤ ‖f‖V ′√

amin
rk

K −1∑

i=0

(
K

i

)
di =

‖f‖V ′√
amin

rkdK

which proves the result.

�

Lemma A.3. The sequence {dn}n∈N defined in (36) can bounded as

dn ≤
(

1

log 2

)n

n! (40)

Proof. From definition (36) we have

dn =

n−1∑

i=0

(
n

i

)
di =

n−1∑

i=0

n!

i!(n− i)!
di .

Let fn =
dn

n!
; the recurrency relation then becomes

fn =

n−1∑

i=0

fi

(n− i)!
, f0 = f1 = 1. (41)

We now show by induction that fn ≤ Cαn, with C,α ∈ R. Enforcing 1 = f0 ≤ C
and 1 = f1 ≤ Cα results in C ≥ 1 and α ≥ 1. Next, we reorder the sum in (41) and
exploit the inductive hypothesis:

fn =

n−1∑

i=0

fn−1−i

(1 + i)!
≤

n−1∑

i=0

Cαn−1−i

(1 + i)!
= Cαn

n−1∑

i=0

α−(1+i)

(1 + i)!
= Cαn

(
e

1
α − 1

)
≤ Cαn,

where the last inequality holds true provided we choose e
1
α − 1 ≤ 1. Therefore we take

α = (log 2)−1 and C = 1, yielding fn ≤ (log 2)−n and dn ≤ (log 2)
−n

n!

�
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Theorem 1. Let a(x,y) be a diffusion coefficient for equation (1) that satisfies
Assumptions 2.1 - 2.3. Then the derivatives of u can be bounded as

‖∂iu(y)‖V ≤ C0|i|! r̃i ∀y ∈ Γ.

Here C0 =
‖f‖V ′

amin
and r̃ =

(
1

log 2

)
r, with r as in Assumption 2.3.

Proof. Combine Lemma A.2 and A.3. �
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