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Abstract—Magnetic actuation of elasto-magnetic devices has long been proposed as a simple
way to propel fluid and achieve locomotion in environments dominated by viscous forces. Under
the action of an oscillating magnetic field, a permanent magnet, when attached to an elastic
tail, is able to generate bending waves and sufficient thrust for propulsion. We study the
hydrodynamical effects of the magnetic head geometry using a geometrically exact formulation
for the elastic tail elastohydrodynamics. We show that the spherical head geometry fails to take
full advantage of the propulsive potential from the flexible tail. Nevertheless, while elongated
prolate spheroids demonstrate a superior swimming performance, this is still regulated by the
nature of the imposed magnetic field. Interestingly, the highest swimming speed is observed
when the magnitude of the magnetic field is weak due to delays between the orientation of
the magnetic moment and the oscillating magnetic field. This allows the stored elastic energy
from the deformed tail to relax during the phase lag between the imposed magnetic field and
the swimmer’s magnetic moment, favouring in this way the net propulsion. In particular, this
result suggests the existence of optimal magnetic actuations that are non-smooth, and even
discontinuous in time, in order to fully explore the propulsive potential associated with the
relaxation dynamics of periodically deformed elastic filaments.

MSC2010 numbers: 76Z99, 35Q35, 35Q74, 35Q93

DOI: 10.1134/S156035471301005X

Keywords: micro-swimmers, magnetic actuation, elastohydrodynamics and elastic filaments

1. INTRODUCTION

External actuation of artificial devices via the action of a magnetic field has long been employed
for diverse applications in science and technology [1]. By constructively controlling magnetic objects,
it is possible to perform mechanical work with great precision and without the need of a wired
connection. At the micro-scale, it offers an elegant and non-invasive method to drive fluid and
even induce locomotion in wireless magnetic devices [3, 5, 6, 17, 26]. Furthermore, due to the
malleability of different magnetic materials, the versatility of this method has proven to be limitless
and ranges from biomimetic magnetic devices, such as artificial cilia [10, 18], bacteria [13, 14] and
spermatozoa [17, 22, 27], to fluid mixers [4], surface walkers [28] and micro-robots that are capable
of carrying cargos at microscope precision [9, 24]. Nevertheless, the small-scale involved in these
systems entails that the fluid viscous dissipation is dominant, suppressing in this way hydrodynamic
inertial effects notorious for imposing a time-reversibility constraint [25] that is responsible for
additional challenges on the design of micro-swimmer devices. In this regime, when the motion
is reversed over time, each material point in the fluid retraces its history, implying that no time-
reversible motion can result in swimming at low Reynolds number, also known as the Purcell’s
scallop theorem [25]. It follows from the scallop constraint that low Reynolds number swimmers
need to undergo a non-reciprocal motion in order to generate propulsion. Interestingly enough,
traveling waves propagating down in flexible filaments [21, 29–31], such as the sperm flagellum [7, 8],
are non-reciprocal in time and this mechanism is a very common method of propulsion over a wide
range of Reynolds numbers.
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Fig. 1. (Colour online) Schematic of the elasto-magnetic swimmer composed of a prolate spheroidal permanent
magnet and an elastic tail.

One of the simplest designs for a magnetic microswimmer, and yet highly effective while
circumventing the time-reversibility constraint, consists of a permanent magnet head attached
to a non-magnetic flexible tail [9, 22, 24, 27], as illustrated in Fig. 1. By imposing an oscillating
magnetic field, the magnetic head forces the flexible tail to wiggle around in a non-reciprocal
manner, ultimately resulting in the net propulsion of the magnetic swimmer. Here, we consider
the hydrodynamic effect of different head geometries on the swimming behavior of such elasto-
magnetic devices, while coupling geometrically non-linear interactions arising from the flexible
filament elastohydrodynamics. The resulting system is solved numerically, and the swimming speed
is contrasted for different configurations of the magnetic field.

2. GOVERNING EQUATIONS

We consider prolate spheroidal, permanent magnets with an average magnetic moment N, lying
along the spheroid’s polar axis, of length 2a and equatorial radius b, as illustrated in Fig. 1.
The spheroidal magnetic head is rigidly anchored to a flexible, but inextensible, Euler-Bernoulli
filament of bending stiffness E and total length L, so that the tangent direction of the elastic
filament coincides with the polar axis of the magnetic head at the point of attachment. The
resulting magnetic swimmer is externally actuated by a periodic magnetic field H(t), constrained
to the plane, while immersed in an inertialess viscous medium, characterized by low Reynolds
number hydrodynamics. The bending wave generation along the filament, ultimately responsible
for the propulsion of the swimmer, is therefore achieved via the magneto-elastic coupling between
the flexible tail and the magnetic torque. The elastic tail is described by its neutral line r(s, t),
relative to a fixed frame of reference, and parameterized by the arclength s ∈ [0, 1] and time t,
nondimensionalized, respectively, by the length scale L and time scale given by the frequency of
oscillation of the magnetic field ω. The flexible tail is free from body couples, and the total contact
force F is implicitly specified by the total balance of angular momentum on the elastic slender-
body [20]. The motion of the elastic tail is dominated by the hydrodynamic drag experienced by
each infinitesimal element along the filament [23, 30], simplified to leading order of the slender-body
hydrodynamics [12] and nondimensionalized by E/L2,

L4
rt = −

[

1 + (γ − 1)rsrs

]

· rssss + τ rss + γτs rs (2.1)

where rs ≡ ∂r/∂s is the tangent vector to the centerline of the elastic tail, and the subscript t
denotes differentiation with respect to the dimensionless time. γ = ξ⊥/ξ‖ represents the ratio
between the perpendicular, ξ⊥, and parallel, ξ‖, fluid dynamic resistance coefficients, and is
typically 2 for slender circular cylinders in infinite fluids. The dimensionless parameter

L = L

(

ξ⊥ω

E

)1/4

, (2.2)
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elsewhere known as the sperm-compliance number [8], characterizes the relative importance of
elastic forces to viscous drag [23, 30]. The line tension τ(s, t) is the Lagrange multiplier determined
by the filament inextensibility constraint rs · rs = 1. In Eq. (2.1) the time derivative and the
anisotropic operator, described by the bracket term on the left-hand side, originate from the
force-velocity linearity of the hydrodynamic coupling [12], while the fourth-order derivative in
arclength and the line tension terms arise from the monotonicity between moment and curvature
derived from the Euler–Bernoulli rod theory [20, 23, 30]. Equations of motion (2.1)-(2.2) describe
the elastohydrodynamics of a passive elastic filament in a viscous fluid, and have been studied
extensively in the literature [7, 11, 16, 23, 30, 31].

The contribution of the magnetic torque to the dynamics of the flexible swimmer is included by
specifying the boundary conditions. At the right boundary, s = 1, the elastic tail is free from external
forces and torques, hence (−rsss + τ rs)|s=1 = 0 and rss|s=1 = 0. At the point of attachment
between the magnetic head and the flexible tail, s = 0, the elastic filament experiences the viscous
drag force, Fhead, and moment, Mhead, due to translations and rotations of the prolate spheroidal
head in the fluid,

⎛

⎝

Fhead

Mhead

⎞

⎠ = L̄4 R(a/L, t)

⎛

⎝

U

Ω

⎞

⎠ , (2.3)

where L̄ = L(ηω/E)1/4, for a fluid viscosity η. R is the dimensionless grand resistance matrix of the

magnetic head, given by analytical functions of the prolate spheroid’s eccentricity ǫ =
√

1 − (1/ℓ)2

and polar axis 2a, where we have defined ℓ = a/b [19]. The torque and force balance at s = 0 yields
the required boundary condition for the magnetic swimmer in terms of the head velocity field
(U,Ω), as well as the imposed magnetic torque,

TH = m rs × ĥ , (2.4)

via

Fhead = rsss − τ rs,

Mhead = TH − rs × rss, (2.5)

where ĥ is the dimensionless, normalized magnetic field. The magnetic number

m =
μ0v N0H0L

E
(2.6)

represents the ratio between the magnetic and elastic moments, given in terms of the permeability
of free space μ0, the volume of the magnetic head v, and the strength of both magnetic field H0

and magnetization N0 of the permanent magnet [15]. A general discussion on different types of
magnetic materials, the shape influence of the magnet, as well as their applications, is given in
Ref. [1], and references therein.

3. NUMERICAL SOLUTIONS

Numerical solutions for the elasto-magnetic swimmer described by Eqs. (2.1)-(2.5) have been
found by employing the numerical scheme devised in Gadêlha et al. [7] for the dynamics of sperm
motility, which uses a combination of second-order finite differences and second-order implicit time-
stepping. The latter, in particular, has been validated against analytical and non-linear numerical
solutions, in addition to experiments, for driven passive elastic filaments in viscous fluids [7, 31]. In
order to study the influence of the magnetic head geometry on the overall behavior of the magnetic
swimmer, we have considered four distinct prolate spheroidal shapes for the head by varying the
head slenderness parameter ℓ = a/b from a simple spherical head, ℓ = 1, to an elongated prolate
spheroid, ℓ = 6, with the same head volume and equivalent to a sphere of radius 0.05. We allowed

the applied magnetic field ĥ(t) to periodically vary its angular orientation relative to the fixed
frame of reference,

φ(t) = φ0 sin t + π, (3.1)

REGULAR AND CHAOTIC DYNAMICS Vol. 18 Nos. 1–2 2013
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Fig. 2. (Color online) Swimming behavior of a spherical head magnetic swimmer with ℓ = 1, and magnetic
number m = 50, for L ∈ [1.5, 5] and φ0 = π/4, π/2, 3π/4, π, as indicated. The evolution of the flexible tail
is plotted at equal time intervals over one period (darker curves for later times), while the trajectory of the
head-tail junction at s = 0 is depicted by the red curves.

while keeping |ĥ(t)| = 1, with an angular amplitude of oscillation φ0. This particular choice of
magnetic actuation describes magnetic fields with a constant time-averaged orientation, directed
to −x , which is ultimately responsible for defining the swimming direction of the magnetic device.
Finally, periodicity is expected from the imposed magnetic field in Eq. (3.1), and therefore the time
iteration is continued until consecutive solutions, one period apart, are identical.

We begin by contrasting the swimming behaviors for two distinct head geometries in Figs. 2
and 3, for the case of a simple spherical magnetic head, ℓ = 1, and an elongated prolate spheroidal
head, ℓ = 6, respectively. For each magnetic head swimmer, the tail-compliance parameter varied
from effectively stiff, L = 1.5, to effectively flexible filaments, L = 5, while the imposed angular
amplitude of the magnetic field φ0 varied between π/4 and π. The most evident feature in both
Figs. 2 and 3 is the emergence of a wide range swimming patterns with distinctive complexity, as
both L and φ0 are augmented. The head-junction trajectories, depicted by the red curves, ranges
from circular, cusp-like shapes for L = 1.5, 2 to smooth curvature patterns for L = 3, 5. The area

REGULAR AND CHAOTIC DYNAMICS Vol. 18 Nos. 1–2 2013
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Fig. 3. (Color online) Swimming behavior of a magnetic swimmer with an elongated prolate spheroidal head,
ℓ = 6, and magnetic number m = 50, for L ∈ [1.5, 5] and φ0 = π/4, π/2, 3π/4, π, as indicated. The evolution
of the flexible tail is plotted at equal time intervals over one period (darker curves for later times), while the
trajectory of the head-tail junction at s = 0 is depicted by the red curves.

covered by the flexible tail over a period is equally modified by the pair (L, φ0). As one would
expect, by increasing the angular amplitude of the magnetic field, the angular variation of the
magnetic head trajectory is equally increased. Nevertheless, the latter is still regulated by the tail-
compliance parameter, which tends to dampen the imposed magnetic actuation for larger values
of L, corresponding to an increasing viscous domination of the dynamics or, alternatively, a higher
frequency of oscillation; compare, for instance, L = 1 to 5 for φ0 = π in Fig. 2. The resulting
propulsion is, however, an intricate consequence of the flexible tail covering a fluid volume, or
project area for slender filaments, while minimizing the low Reynolds number time-reversibility
constraint, Purcell’s scallop theorem [25], by allowing elastic bending deformations. This explains,
for instance, the almost non-existent net propulsion observed for effectively stiff tails, L = 1.5 in
Figs. 2 and 3 despite the large projected area covered by the elastic filament [29, 30].

Now we turn our attention to the influence of the magnetic field on the total travelled distance
d performed by the magnetic swimmer over one period. Fig. 4 plots d as a function of the tail-
compliance parameter L for the spherical and prolate spheroidal head geometries with the same

REGULAR AND CHAOTIC DYNAMICS Vol. 18 Nos. 1–2 2013
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Fig. 4. (Color online) Total swimming distance d, over one period of oscillation, as a function of the tail-
compliance parameter L for four distinct angular amplitudes φ0, as indicated by the colored lines. Results
for the spherical (prolate spheroidal) head are shown in the top (bottom) rows for two different magnetic
numbers m.

angular amplitude of the imposed magnetic field used in Figs. 2 and 3. As one would expect from
the elastohydrodynamic formulation of pivoting elastic filaments [29, 30], the net propulsion is
characterized by a maximum, typically around L ≈ 2.2. The maximum value of the swimming
distance, dmax, however, is a non-monotonic function of the amplitude φ0 and is represented by
the formation of a global maximum around φ0 = 3π/4 for any given head geometry and magnetic
number, cf. Fig. 4. Furthermore, Fig. 4 shows how changes in the magnetic number have little
effect in d for effectively stiff filaments, that is when L is low. The opposite scenario is found for the
viscous dominated regime L > 4, where d is marked by a rapid decay with L, when the magnetic
number is weak.

The central result from this elastohydrodynamic formulation is depicted in Fig. 5, where we
contrast the hydrodynamic effect of the head geometry on the traveled distance d of the magnetic
swimmer for six different (m,φ0)-pairs, with ℓ ∈ [1, 6]. Despite the similarities between the tail
beating associated with different head geometries in Figs. 2 and 3, the head shape plays an
important role in regulating the total swimming distance. With the exception of Figs. 5, c, f for
the extreme case φ0 = π, continuous elongation of the head shape acts to increase dmax for any
pair (m,φ0). Nevertheless, after reaching the maximum, the total swimming distance is observed
to have a faster decay with L for larger values of the slenderness parameter ℓ, if the magnetic
number is sufficiently weak (see, e.g., Figs. 5, b, d and e). The head shape hydrodynamics have
therefore opposing effects depending on the tail-compliance parameter. For the elastic dominated
regime, when L is low, the magnetic swimmer is marked by a large head yawing, Fig. 2, which is
reduced by the non-symmetric viscous friction arising from the elongated head geometry, working to
ultimately favor the forward motion. For the viscous dominated case, the effective hydrodynamic

REGULAR AND CHAOTIC DYNAMICS Vol. 18 Nos. 1–2 2013
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Fig. 5. (Color online) Total swimming distance d, over one period of oscillation, as a function of the tail-
compliance parameter L for four distinct head geometries ℓ, as indicated by the colored lines. Results for
high (low) magnetic number are shown in the top (bottom) rows for three different angular amplitudes of the
magnetic field φ0.

drag experienced by the head is already sizable and even augmented if the head aspect ratio
increases, cf. Fig. 3, reducing in this way the potential for forward propulsion. The decrease in
the swimming speed for large L, however, is still influenced by φ0 and m, which can be chosen
accordingly to circumvent the large viscous head drag (see, e.g., Fig. 5, c). Recall that we are
contrasting head geometries with the same volume. Surprisingly enough, the overall maximum in
d was found when the magnetic number is low, as shown in Fig. 5, e for ℓ = 6, with an angular
amplitude φ0 = 3π/4 as expected from the behavior displayed in Fig. 4. If the magnetic number is
large, the magnetic swimmer rigidly follows the angular oscillation imposed by the magnetic field,
regardless of the tail configuration. The angle α between the magnetic moment and the imposed
magnetic field reaches a maximum value in time of only α = 0.0298π for a strong magnetic field,
m = 50, while for a low magnetic number, m = 10, the phase lag between the head orientation and
the oscillatory magnetic field can be five times larger, α = 0.1473π, for the optimum case shown in
Fig. 5, e with ℓ = 6 and L = 2. Due to the hydrodynamic friction, the delay between the orientation
of the magnetic moment and the imposed magnetic field is used constructively to favor propulsion
by allowing the stored elastic energy from the deformed tail to relax during the phase lag of the
magnetic moment, when the head is reorienting to the magnetic field at the same time as the large
head aspect ratio directs the swimmer into a forward motion, as discussed above. In particular,
this result suggests the existence of optimal magnetic actuations that are non-smooth, and even
discontinuous in time, in order to take full advantage of the propulsive potential associated with
the relaxation dynamics of the deformed elastic tail.

A large head aspect ratio is not always beneficial for the net propulsion of the swimmer, as
demonstrated in Fig. 5, c, f. When the angular amplitude of the magnetic field is large, elongated
head geometries induce an increasingly high viscous friction due to the long time spent with the
head orientation directed away from, and perpendicular to, the direction of propulsion. The latter is
minimized by using a spherical head when φ0 is large. In particular, an even better performance for
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this regime may be achieved by considering oblate spheroids, or by connecting instead the elastic
tail in such a way that the filament tangent vector coincides with the prolate spheroid’s minor axis.
It is also noteworthy that although φ0 = π reduces dmax, Fig. 4, a slower decay of the travelled
distance with L is observed, see Fig. 5, c. Hence, the swimming speed is considerably larger for the
viscous dominated regime if the angular amplitude is π, contrast, for example, the values of d for
ℓ = 1, L = 7 in Fig. 5, a, b with Fig. 5, c. Furthermore, Fig. 5 shows that the head aspect ratio ℓ
modifies not only the maximum speed of the swimmer, but also, for a given magnetic number m and
angular amplitude φ0, the location of the maximum Lmax. While in Figs. 5, a and d Lmax remains
unchanged when ℓ is varied, Lmax tends to decrease with ℓ for the cases shown in Figs. 5, b, e and f.
The opposite scenario is depicted in Fig. 5, c, which shows Lmax increasing with ℓ, in addition to
the formation of a local minimum at the same tail-compliance that maximizes d for φ0 � 3π/4, see
Fig. 4, c for clarity.

4. CONCLUSIONS

Although the performance of artificial magnetic swimmers with a flexible tail has been discussed
in detail, the influence of the body geometry on the swimming speed and ultimate shape of the
beating patterns has been markedly overlooked. In this work we tackled the problem by employing
an elastohydrodynamic formulation for the flexible tail, while coupling the intrinsic hydrodynamic
forces and torques associated with the prolate spheroidal magnetic head, together with the imposed
moments from oscillatory magnetic field. The resulting geometrically non-linear equations were
solved numerically for a wide range of head aspect ratios and distinct magnetic field configurations.

Our geometrically non-linear formulation revealed a wide range of swimming patterns with
increased complexity, depending on the tail-compliance parameter L and the angular amplitude of
the magnetic field φ0, as illustrated in Figs. 2 and 3. Despite the similarities between the beating
patterns associated with different head geometries, the swimming speed is dramatically modified
by the head aspect ratio. In general, the added asymmetric hydrodynamic moments from elongated
prolate spheroids act to suppress the non-forward motion due to the head yawing, favoring in this
way the net propulsion of the magnetic swimmer. The latter, in particular, is in agreement with the
geometrically linear formulation of non-magnetic swimmers that are driven, instead, by pivoting
an elastic tail [21]. Nevertheless, for a large head aspect ratio, the swimming speed, averaged over
a period, is found to be maximized for L ≈ 2, when the magnetic number m is low and φ0 = 3π/4,
see Fig. 5, e. In this case, smaller values of the magnetic number allow viscous friction to ultimately
induce a time delay between the orientation of the imposed magnetic field and the swimmer’s
magnetic moment, which is directed along the spheroid’s polar axis, so that the head orientation
does not coincide with the instantaneous direction of the external magnetic field. Because of this
weak magnetic coupling, the artificial swimmer is able to constructively use the time-delayed head
orientation, in the swimming direction, by releasing the stored elastic energy from the deformed tail
in order to promote a larger forward motion. This further exemplifies that large magnetic numbers
are not necessary in order to maximize the swimming speed of magnetic swimmers. Furthermore,
this result suggests the possibility of maximizing the swimming speed by considering an even richer
space of non-smooth and discontinuous periodic functions for the magnetic actuation, with the
objective to take advantage of the relaxation dynamics of the elastic tail.

We have also found that the swimming speed can be maximized by considering the appropriate
angular amplitude of the magnetic field, Fig. 4. The maximum net propulsion is in fact a non-
monotonic function of φ0, characterized by the formation of a maximum around φ0 = 3π/4, as
illustrated in Fig. 4. Nevertheless, despite the distinctive role of the angular amplitude, the
swimmer’s performance can be improved by tuning the appropriate head parameter with the
magnetic field strength. This is illustrated in Fig. 5, c, f, where the large head aspect ratio is in fact
reducing the maximum speed, so that the spherical head geometry offers a superior performance.
Furthermore, because of the rapid decay of the swimming distance d with tail-compliance parameter,
for L > Lmax, characteristic of elastohydrodynamic systems [21, 29–31], a large angular amplitude
of the magnetic field and large magnetic numbers are required to achieve a sizeable forward motion
in the viscous dominated regime.

Finally, the numerical investigation presented here showed the possibility of engineering not
only the maximum swimming speed of the magnetic device, dmax, but also the location of the
maximum in the tail-compliance parameter space, Lmax, by considering non-linear interactions from
the magnetic head geometry and the nature of the imposed magnetic field via the triplet (ℓ, φ0,m).
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Additionally, our geometrically non-linear formulation can be equally employed to consider a higher
class of mathematical problems in optimal control theory, applied to achieve, for instance, a better
maneuverability of the magnetic swimmer, or to minimize instead the transient state from the
above non-linear dynamical system. A systematic search in the space of parameters, and periodic
functions for the magnetic actuation, may also provide valuable insight into the physical limit of the
swimming speed of elasto-magnetic devices. In summary, we hope our current work will stimulate
further investigations on the role of oscillatory magnetic fields and the body shape geometry during
the design of artificial magnetic devices.
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