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Abstract—We consider a point-to-point frequency-selective
orthogonal frequency division multiplexing (OFDM) channel.
Based on a linear minimum mean square error (MMSE) channel
estimates from pilot signals, a receiver determines a set of ‘on’
or active subchannels that maximizes a lower bound on a sum
capacity. The capacity bound optimization is constrained to a
fixed total power, which is a sum of total training power and a
sum of equal transmission power on activated subchannels. We
show that as number of subchannels N increases, the optimal
training power converges to a deterministic constant while the
optimal number of active subchannels increases at the rate of
(logN − 2 log logN)2. The associated capacity bound tends to
infinity at the rate of logN−2 log logN while that with uniform
power allocation of all subchannels converges to a constant.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is

widely used in current wireless communications systems such

as digital audio broadcast (DAB), digital video broadcast

(DVB), IEEE Std. 802.11 (WiFi), IEEE Std. 802.16 (WiMAX)

and is a core technique for the fourth generation (4G) cellular

telephony. OFDM provides a high spectral efficiency over a

frequency selective channel. In OFDM system, data stream

is divided and transmitted over many low-rate parallel sub-

channels, which help increase symbol duration and reduce

intersymbol interference [1], [2].

For coherent detection, a receiver must track a time-varying

channel. Channel information is also useful at the transmitter

that adapts transmitted power according to channel variations.

Several pilot-aided channel estimation schemes for OFDM

have been studied [3]–[5]. Here we assume that known pilots

are transmitted to estimate time-domain channel taps and that

channel fades slowly so that channel estimates are valid for

several OFDM blocks. A linear minimum mean square error

(MMSE) estimator is employed at the receiver. Accuracy of

the obtained channel estimates depends on power allocated for

pilots.
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203-11-01.

Based on channel estimates, the receiver can compute the

optimal transmitted power allocation, which is water-pouring

across subchannels and then can relay set of power levels

via a feedback channel to the transmitter. Since a number

of subchannels denoted by N is usually large, a number

of feedback bits required to specify power levels can be

significantly large. To reduce amount of feedback, we choose

a suboptimal on/off threshold-based power allocation. If a

subchannel gain exceeds a threshold, then equal power is

allocated for that subchannel. Otherwise, no power will be

allocated for transmission and thus, that subchannel is not

used. The on/off scheme requires only 1 feedback bit per

subchannel, which is substantially less than water-pouring

algorithm, and the scheme has been shown to perform close

to the optimal water-pouring solution [6], [7]. References [7],

[8] considered similar problem. However, [7] assumes perfect

channel knowledge at the receiver while [8] chose to estimate

N subchannel gains instead of channel taps whose number is

much smaller.

We derive the lower bound on a sum capacity over all sub-

channels with channel estimation and the on/off power alloca-

tion and which maximizes the bound, subject to a total power

constraint. The total power consists of total power allocated for

training and that for transmission. As N tends to infinity, we

show that the optimal training power converges to the constant

that depends on number of channel taps while the number of

active subchannels increases as (logN − 2 log logN)2. The
lower bound on the sum capacity grows as logN−2 log logN .

We note that the results obtained here is different from those

derived in [8] due to different assumption on channel esti-

mation. Numerical examples illustrate a performance tradeoff

between training power, which increases accuracy of channel

estimates and transmission power.

II. SYSTEM MODEL

We consider a point-to-point discrete-time OFDM system

with N subchannels. The channel h = [h0 h2 . . . hM−1]
T

is assumed to be a frequency selective Rayleigh fading channel

with orderM and each channel tap hm is independent complex

Gaussian distributed with zero mean and variance σ2
m. Also
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σm, 0 ≤ m ≤ M − 1 represents a power delay profile and is

normalized
M−1∑

m=0

σ2
m = 1. (1)

Thus, σ2
m = 1

M for all m.

We assume independent block fading in which channel taps

remain relatively unchanged for several OFDM symbols before

changing to the next independent set. This slow fading channel

model allows a meaningful adaptation of transmission power

allocation. Let

H(i) =

M−1∑

m=0

hme−
j2πmi

N (2)

denote a discrete Fourier transform (DFT) of h for the ith
subchannel. Thus, the output signal of a DFT unit at the

receiver is given by

y(i) = H(i)x(i) + n(i), 0 ≤ i ≤ N − 1 (3)

where x(i) is a transmitted symbol on the ith subchannel and

n(i) is an additive white Gaussian noise (AWGN) with zero

mean and variance σ2
n.

A. Channel Estimation

To adapt a transmission power over subchannels, current

channel coefficients are needed. We assume that the transmitter

sends to the receiver pilot signals on NT subchannels during

a training period. NT pilots are inserted in the OFDM block

at known location {in; 0 ≤ n ≤ NT − 1} with each pilot

allocated power P̄T . The received pilot signals at the output

of a DFT unit is given by

yT = [yT (i0) yT (i1) · · · yT (iNT−1)]
T . (4)

Applying MMSE estimation, we obtain the estimate of the

M × 1 vector of channel taps as follows [9]

ĥ = (σ2
n(E[hh†])−1 +B†B)−1B†yT (5)

= (σ2
nMI +B†B)−1B†yT (6)

where (6) follows from the earlier assumption on channel tap

statistics (E[hh†] = 1
M I), I is an M × M identity matrix,

and B is an NT ×M matrix whose entry

[B]n,m = e−
j2πmin

N , 0 ≤ n ≤ NT − 1, 0 ≤ m ≤ M − 1.
(7)

Reference [3] shows that the total MMSE is achieved when

pilots are uniformly placed among N subchannels. Computing

the DFT of ĥ, we obtain an estimate of H(i) denoted by

Ĥ(i) =

M−1∑

m=0

ĥme−
j2πmi

N . (8)

The resulting MSE for each subchannel is given by [10]

E|∆H(i)|2 , E|Ĥ(i)−H(i)|2 (9)

=
σ2
nM

P̄TNT + σ2
nM

(10)

=
σ2
nM

PT + σ2
nM

(11)

where PT , P̄TNT is a total power used for pilots. We

note from (11) that the estimation variance is the same for

all subchannels and that the MSE decreases as either number

of channel taps M to estimate increases or power allocated

for training channel decreases. With an orthogonal property

of MMSE estimation, the variance of the channel estimate is

given by

σ2
Ĥ

, E|Ĥ(i)|2 (12)

= E|H(i)|2 − E|∆H(i)|2 (13)

=
PT

PT + σ2
nM

. (14)

B. On/Off Power Allocation

The MMSE estimate of the subchannel Ĥ(i) is a complex

Gaussian random variable with zero mean and variance σ2
Ĥ
.

Based on the channel estimates, the receiver employs on/off

transmission power allocation. Namely, if |Ĥ(i)|2 exceeds a

threshold µ, the ith subchannel will be allocated an equal

power or will be ‘on’ during a transmission period. Otherwise,

the ith subchannel will not be allocated power and hence will

be ‘off’. The on/off power scheme is suboptimal, however,

was shown to perform close to the optimal water-pouring

scheme [6], [7].

Let ND denote a number of subchannels whose channel

gains exceed or equal a threshold, which is given by

ND =

N∑

i=1

1µ(|Ĥ(i)|2) (15)

where a indicator function

1µ(x) =

{
1 : x ≥ µ
0 : x < µ

, (16)

ND is random and depends on the threshold µ. For a fixed

total transmission power, asND increases, the power per active

subchannel decreases. Although channel taps {hm} are inde-

pendent, Ĥ(i), ∀i are correlated complex Gaussian sequence

with zero mean and variance σ2
Ĥ
. (ℜ{Ĥ(i)} and ℑ{Ĥ(i)}

are independent Gaussian with zero mean and variance σ2
Ĥ
/2,

where ℜ{x} and ℑ{x} are real and imaginary parts of x,
respectively.) Thus, |Ĥ(i)|2 is exponential distributed with

probability density function (pdf)

f|Ĥ|2(x) =
1

σ2
Ĥ

e
− x

σ2
Ĥ . (17)

For given µ, we can compute expected number of active

subchannel as follows

E[ND] =

N∑

i=1

E[1µ(|Ĥ(i)|2)] (18)

= N

∫ ∞

µ

f|Ĥ|2(x) dx (19)

= Ne
− µ

σ2
Ĥ . (20)
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From (20) we note that ND is decreasing exponentially with

µ. The variance is given by

var[ND] =

N∑

i=1

var[1µ(|Ĥ(i)|2)]

+

N∑

i=1

N−i∑

k=1−i,
k 6=0

cov[1µ(|Ĥ(i)|2)1µ(|Ĥ(i+ k)|2)].

(21)

The variance term in (21) can be easily computed using the

pdf in (17) and is given by

var[1µ(|Ĥ(i)|2)] = e
− µ

σ2
Ĥ − e

− 2µ

σ2
Ĥ . (22)

The covariance computation requires a joint pdf for channel

gains Ĥ(i) and Ĥ(i+ k). Reference [11] shows that correla-

tions between subchannel gains are given by

E[ℜ{Ĥ(i)}ℜ{Ĥ(j)}] = E[ℑ{Ĥ(i)}ℑ{Ĥ(j)}] (23)

=
σ2
Ĥ

2M

M−1∑

m=0

cos
2πm(i− j)

N
(24)

and

E[ℜ{Ĥ(i)}ℑ{Ĥ(j)}] =
σ2
Ĥ

2M

M−1∑

m=0

sin
2πm(i− j)

N
(25)

and pdf for |Ĥ(i)|2 and |Ĥ(i+k)|2 is jointly exponential and

is given by

f|Ĥ(i)|2,|Ĥ(i+k)|2(x1, x2) =
1

σ4
Ĥ
(1− ρ2k)

e
− x1+x2

σ2
Ĥ

(1−ρ2
k
)

× I0

(
2ρk

σ2
Ĥ
(1− ρ2k)

√
x1x2

)

(26)

where I0(·) is a modified Bessel function of the first kind and

correlation coefficient

ρ2k =
4

σ4
Ĥ

(
E2[ℜ{Ĥ(i)}ℜ{Ĥ(i + k)}]

+ E2[ℜ{Ĥ(i)}ℑ{Ĥ(i + k)}]
)

(27)

=
1

M2

(
M−1∑

m=0

cos
2πmk

N

)2

+
1

M2

(
M−1∑

m=0

sin
2πmk

N

)2

(28)

=

(
sin πk

N M

M sin πk
N

)2

. (29)

Deducing (29) requires some trigonometry manipulation.

Thus, the covariance term in (21) can be computed as follows

cov[1µ(|Ĥ(i)|2)1µ(|Ĥ(i + k)|2)]
= E[1µ(|Ĥ(i)|2)1µ(|Ĥ(i+ k)|2)] (30)

− E[1µ(|Ĥ(i)|2)]E[1µ(|Ĥ(i+ k)|2)] (31)

=

∫ ∞

µ

∫ ∞

µ

f|Ĥ(i)|2,|Ĥ(i+k)|2(x1, x2) dx1dx2 − e
− 2µ

σ2
Ĥ .

(32)

After some algebraic manipulation, we can show that
∫ ∞

µ

∫ ∞

µ

fĤ(i),Ĥ(i+k)(x1, x2) dx1dx2

= (1− ρ2k)e
− 2µ

σ2
Ĥ

(1−ρ2
k
)

∞∑

n=0

[
ρ2k

σ4
Ĥ
(1 − ρ2k)

2

]n

× 1

nΓ(n+ 1)

[
n∑

l=0

(σ2
Ĥ
(1− ρ2k))

l n

(n− l)
µn−l

]2

(33)

where Γ(·) is the Gamma function. Substituting (33) and (29)

into (32) gives the covariance between |Ĥ(i)|2 and |Ĥ(i+k)|2.
However, if number of subchannels N is increasing with

fixed number of channel taps M , the frequency-selective

channel will converge to a flat fading channel with gains

H(i) =
∑M−1

m=0 hm, ∀i. Namely, as N → ∞,

cov[1µ(|Ĥ(i)|2)1µ(|Ĥ(i+ k)|2)] → var[1µ(|Ĥ(i)|2)] (34)

where var[1µ(|Ĥ(i)|2)] is given in (22).

Let PD denote total power allocated for transmission.

Therefore, for on/off allocation, the power allocated for each

active subchannel is equal to P̄D , PD/ND.

III. CAPACITY BOUND OPTIMIZATION

In this work, a sum capacity on N subchannels is a

performance metric for the system. Since analyzing the sum

capacity with channel estimation is not tractable, instead we

derive its lower bound, which is obtained by assuming that

the sum of channel estimation error and AWGN is Gaussian.

Thus, the sum capacity

C ≥
N∑

i=1

E

[
log

(
1 +

P̄D|Ĥ(i)|2
P̄DE|∆H(i)|2 + σ2

n

)
1µ(|Ĥ(i)|2)

]

(35)

where log is a natural logarithm and the expectation is over

both Ĥ(i) and P̄D . Conditioned on P̄D (and hence ND), the

expectation in (35) can be explicitly expressed as follows

CL|P̄D

,
∫ ∞

µ

log

(
1 +

P̄Dx

P̄DE|∆H(i)|2 + σ2
n

)
f|Ĥ|2(x) dx (36)

= e
1
W Ei1(W

−1 + µ′) + e−µ′
log(1 +Wµ′) (37)

where an exponential integral

Eim(z) =

∫ ∞

1

e−tzt−m dt (38)
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and

W , P̄D

P̄D
σ2
nM
PT

+
σ2
n

σ2
Ĥ

, (39)

µ′ , µ

σ2
Ĥ

. (40)

The exponential integral term in (37) has tight lower and upper

bounds [12]

1

2
e−µ′

log

(
1 +

2

W−1 + µ′

)
≤ e

1
W Ei1(W

−1 + µ′)

≤ e−µ′
log

(
1 +

1

W−1 + µ′

)
.

(41)

We would like to maximize the lower bound of the sum

capacity subject to the total power constraint as follows

max
PT ,P̄D ,N̄D

{
CL , NE[CL|P̄D

]
}

(42)

subject to P = PT + P̄DN̄DN (43)

where N̄D , ND/N denotes the normalized number of active

subchannels and the optimal set of solutions and the optimized

capacity lower bound are denoted by {P ∗
T , P̄

∗
D, N̄∗

D} and C∗
L,

respectively. We resort to numerical method to solve this

optimization problem for finite system parameters. However,

numerical solutions obtained do not give us much insights

into the system performance. By letting N → ∞, we can

derive asymptotic solutions as stated in Theorem 1. The limit

considered is reasonable since in a practical OFDM system,

N is usually large (e.g. 512).

Theorem 1: As N → ∞, the solutions to (42)-(43) con-

verge as follows

P ∗
T −→ σ2

nM

(√
P

σ2
nM

+ 1− 1

)
(44)

P̄ ∗
D log2 N̄∗

D −→ 2σ2
n

(
1 +

σ2
nM

PT

)
. (45)

The associated sum capacity is given by

C∗
L

logN − 2 log logN
−→ PT (P − PT )

σ2
n(PT + σ2

nM)
. (46)

To derive these results, we first define the Lagrangian given

by

L(PT , P̄D, N̄D, λ) = CL + λ(P − PT − P̄DN̄DN). (47)

Applying the Karush–Kuhn–Tucker conditions, the bounds in

(41), and the asymptotic mean and variance of ND derived in

previous section, we obtain Theorem 1. (Due to limited space,

the detailed derivation is omitted here.)

From Theorem 1, the optimal training power converges to

the constant, which is a function of number of channel taps,

noise variance, and total power. We note that for large P and

N , P ∗
T scales with

√
Pσ2

nM . However, the optimal power per

active subchannel P̄D decreasing to zero implies that ND must

tend to infinity. With (45), we can show that the optimal ND

scales with (logN−2 log logN)2 as N → ∞. The associated

optimized capacity bound also increases at the rate of logN−
2 log logN . The results derived should be a good indicator for

the solutions for the actual sum capacity, which remains an

open question.

IV. NUMERICAL RESULTS

In this section, we show some simulation results and com-

pare them with analytical ones from Theorem 1. In Fig. 1,

we consider an OFDM channel with number of channel

taps M = 20, total available power P = 20, and noise

variance σ2
n = 0.1 and find the optimal set of parameters

that maximizes the capacity bound. As we increase number

of subchannels N , we observe that the optimal training power

converges to a constant while the optimal power per subchan-

nel and number of active subchannels decreases to zero and

increases to infinity, respectively. At N = 512, N∗
D ≈ 184 or

approximately one third of all subchannels should be activated

and P ∗
T = 6.1 or approximately 30% of total power should be

used to estimate 10 channel taps.
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*

P
D

*
/N

D

*

Fig. 1. Shown is the optimal training power P ∗
T , transmission power allocated

for each active subchannel P̄ ∗
D , and number of active subchannel N∗

D with
number of total subchannels N .

In Fig. 2, we compare the simulation results with asymptotic

results in Theorem 1 for M = 10, P = 10, and σ2
n = 0.1.

Both P ∗
T and P̄ ∗

D log2 N̄∗
D converge to their limiting values as

N → ∞. We note that the rate of convergence is quite slow.

Thus, the asymptotic results can be a good approximation for

a system performance with large N .

The capacity bound associated with the optimal parameters

in Fig. 1 is plotted with a solid line in Fig. 3. We see that

the lower bound increases with N . We also show the sum

capacity with perfect channel estimates with a dashed line.

The gap between the two performances is substantial. A more

advanced estimation method should narrow the gap between

the two. Finally we plot a capacity lower bound with uniform

power allocation with a dashed-dot line. Namely, transmission

power is uniformly allocated on all subchannels. Uniform

power scheme performs much worse than the on/off one. We

also note that the capacity of the uniform power allocation
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Fig. 2. Simulation results for P ∗
T and P̄ ∗

D log2 N̄∗
D is shown with their

limiting values derived in Theorem 1.

converges as N tends to infinity [13]. However, the uniform

power scheme does not require any feedback while the on/off

power scheme requires 1 feedback bit per subchannel.
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Fig. 3. Rates (nat per channel use) for different assumptions on channel
estimation and power allocation are shown with number of subchannels.

Fig. 4 shows the capacity lower bound with a ratio between

power used for training and total power for different M , P ,

and σ2
n. P̄D and N̄D are set approximately to the asymptotic

value in (45). We see that for M = 20, P = 20, and

σ2
n = 0.1, the maximum performance is achieved when PT /P

is about 30%, which is approximately the same to what the

simulation predicts in Fig. 1. Thus, the asymptotic results can

give a good approximation for optimal solutions for finite-size

system. When M is increased to 20, the optimal PT /P also

increases.

V. CONCLUSIONS

In this work, we derived the asymptotic optimal training

power, transmission power, and number of active subchannels
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Fig. 4. The lower bound is shown with ratio between training power and
total power.

in a point-to-point OFDM system. As number of total sub-

channels increases, the total power for training converges to a

deterministic constant, which is a function of total power, noise

variance, and number of channel taps. The number of active

subchannels increases at the rate of (logN − 2 log logN)2.
The numerical results showed that channel estimation error

has a significant impact on the performance and the on/off

power allocation performs much better than a uniform power

allocation. However, the performance gain from the on/off

power allocation comes with the cost of N feedback bits. We

also showed that operating at the optimal parameters can give

significant performance gain.

However, our results here only apply to channels with uni-

form power delay profile. A more practical channel to consider

may have exponential-decaying profile. Future work includes

extending the current results to a multiantenna channel.
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