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The widespread and rapid adoption of high-throughput sequencing technologies has

afforded researchers the opportunity to gain a deep understanding of genome level

processes that underlie evolutionary change, and perhaps more importantly, the links

between genotype and phenotype. In particular, researchers interested in functional

biology and adaptation have used these technologies to sequence mRNA transcriptomes

of specific tissues, which in turn are often compared to other tissues, or other individuals

with different phenotypes. While these techniques are extremely powerful, careful

attention to data quality is required. In particular, because high-throughput sequencing

is more error-prone than traditional Sanger sequencing, quality trimming of sequence

reads should be an important step in all data processing pipelines. While several software

packages for quality trimming exist, no general guidelines for the specifics of trimming

have been developed. Here, using empirically derived sequence data, I provide general

recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq

studies. Although very aggressive quality trimming is common, this study suggests that a

more gentle trimming, specifically of those nucleotides whose PHRED score <2 or <5, is

optimal for most studies across a wide variety of metrics.
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INTRODUCTION

The popularity of genome-enabled biology has increased dramat-

ically over the last few years. While researchers involved in the

study of model organisms have had the ability to leverage the

power of genomics for nearly a decade, this power is only now

available for the study of non-model organisms. For many, the

primary goal of these newer works is to better understand the

genomic underpinnings of adaptive (Linnen et al., 2013; Narum

et al., 2013) or functional (Hsu et al., 2012; Muñoz-Mérida et al.,

2013) traits. While extremely promising, the study of functional

genomics in non-model organisms typically requires the genera-

tion of a reference transcriptome to which comparisons are made.

Although compared to genome assembly transcriptome assembly

is less challenging (Earl et al., 2011; Bradnam et al., 2013), signifi-

cant computational hurdles still exist. Amongst the most difficult

of challenges in transcriptome assembly involves the reconstruc-

tion of isoforms (Pyrkosz et al., 2013), simultaneous assembly of

transcripts where read coverage (=expression) varies by orders

of magnitude, and overcoming biases related to random hexamer

(Hansen et al., 2010) and GC content (Dohm et al., 2008).

These processes are further complicated by the error-prone

nature of high-throughput sequencing reads. With regards to

Illumina sequencing, error is distributed non-randomly over the

length of the read, with the rate of error increasing from 5′ to 3′

end (Liu et al., 2012). These errors are overwhelmingly substitu-

tion errors (Yang et al., 2013), with the global error rate being

between 1 and 3%. Although de Bruijn graph assemblers do a

remarkable job in distinguishing error from correct sequence,

sequence error does result in assembly error (MacManes and

Eisen, 2013). While this type of error is problematic for all

studies, it may be particularly troublesome for SNP-based pop-

ulation genetic studies. In addition to the biological concerns,

sequencing read error may results in problems of a more techni-

cal importance. Because most transcriptome assemblers use a de

Bruijn graph representation of sequence connectedness, sequenc-

ing error can dramatically increase the size and complexity of the

graph, and thus increase both RAM requirements and runtime.

In addition to sequence error correction, which has been

shown to improve accuracy of the de novo assembly (MacManes

and Eisen, 2013), low quality (=high probability of error)

nucleotides are commonly removed from the sequenc-

ing reads prior to assembly, using one of several available

tools [TRIMMOMATIC (Lohse et al., 2012), FASTX TOOLKIT

(http://hannonlab.cshl.edu/fastx_toolkit/index.html), or BIO-

PIECES (http://www.biopieces.org/)]. These tools typically use

either a sliding window approach, discarding nucleotides falling

below a given (user selected) average quality threshold, or

trimming of low-quality nucleotides at one or both ends of the

sequencing read. Though the absolute number will surely be

decreased in the trimmed dataset, aggressive quality trimming

may remove a substantial portion of the total read dataset, which

in transcriptome studies may disproportionately effect lower

expression transcripts.

Although the process of nucleotide quality trimming is

commonplace, particularly in the assembly-based HTS analysis

pipelines [e.g., SNP development (Milano et al., 2011; Helyar
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et al., 2012), functional studies (Ansell et al., 2013; Bhardwaj et al.,

2013), and more general studies of transcriptome characteriza-

tion (MacManes and Lacey, 2012; Liu et al., 2013)], its optimal

implementation has not been well defined. Though the rigor with

which trimming is performed may be guided by the design of

the experiment, a deeper understanding of the effects of trim-

ming is desirable. As transcriptome-based studies of functional

genomics continue to become more popular, understanding how

quality trimming of mRNA-seq reads used in these types of exper-

iments is urgently needed. Researchers currently working in this

field appear to favor aggressive trimming (e.g., Riesgo et al., 2012;

Looso et al., 2013), but this may not be optimal. Indeed, one can

easily image aggressive trimming resulting in the removal of a

large amount of high quality data (even nucleotides removed with

the commonly used PHRED = 20 threshold are accurate 99% of

the time), just as lackadaisical trimming (or no trimming) may

result in nucleotide errors being incorporated into the assembled

transcriptome.

Here, I provide recommendations regarding the efficient

trimming of high-throughput sequence reads, specifically for

mRNASeq reads from the Illumina platform. To do this, I used

publicly available datasets containing Illumina reads derived from

Mus musculus. Subsets of these data (10, 20, 50, 75, 100 mil-

lion reads) were randomly chosen, trimmed to various levels of

stringency, assembled then analyzed for assembly error and con-

tent. In addition to this, I develop a set of metrics that may be

generally useful in evaluating the quality of transcriptome assem-

blies. These results aim to guide researchers through this critical

aspect of the analysis of high-throughput sequence data. While

the results of this paper may not be applicable to all studies, that

so many researchers are interested in the genomics of adaptation

and phenotypic diversity, particularly in non-model organisms

suggests its widespread utility.

MATERIALS AND METHODS

Because I was interested in understanding the effects of sequence

read quality trimming on the quality of vertebrate transcriptome

assembly, I elected to analyze a publicly available (SRR797058)

paired-end Illumina read dataset. This dataset is fully described

in a previous publication (Han et al., 2013), and contains 232

million paired-end 100nt Illumina reads. To investigate how

sequencing depth influences the choice of trimming level, reads

data were randomly subsetted into 10, 20, 50, 75, 100 million

read datasets. To test the robustness of my findings, I evaluated

a second dataset (SRR385624, Macfarlan et al., 2012) as well as a

technical replicate of the primary dataset, both at the 10 M read

dataset size.

Read datasets were trimmed at varying quality thresholds

using the software package TRIMMOMATIC version 0.30 (Lohse

et al., 2012), which was selected as it appears to be amongst

the most popular of read trimming tools. Specifically, sequences

were trimmed at both 5′ and 3′ ends using PHRED = 0

(adapter trimming only), ≤2, ≤5, ≤10, and ≤20. Other param-

eters (MINLEN = 25, ILLUMINACLIP = barcodes.fa:2:40:15,

SLIDINGWINDOW size = 4) were held constant. Transcriptome

assemblies were generated for each dataset using the default set-

tings (except group_pairs_distance flag set to 999) of the program

TRINITY R2013-02-25 (Grabherr et al., 2011; Haas et al., 2013).

Assemblies were evaluated using a variety of different metrics,

many of them comparing assemblies to the complete collection

of Mus cDNA’s, available at http://useast.ensembl.org/info/data/

ftp/index.html

Quality trimming may have substantial effect on assembly

quality, and as such, I sought to identify high quality transcrip-

tome assemblies. Assemblies with few nucleotide errors relative

to a known reference may indicate high quality. The program

BLAT V34 (Kent, 2002) was used to identify and count nucleotide

mismatches between reconstructed transcripts and their corre-

sponding reference. To eliminate spurious short matches between

query and template inflating estimates of error, only unique tran-

scripts that covered more than 90% of their reference sequence

were used. Next, because kmers represent the fundamental unit

of assembly, kmers (k = 25) were counted for each dataset using

the program Jellyfish v1.1.11 (Marçais and Kingsford, 2011).

Another potential assessment of assembly quality may be related

to the number of paired-end sequencing reads that concordantly

map to the assembly. As the number of reads concordantly

mapping increased, so does assembly quality. To characterize

this, I mapped the full dataset (not subsampled) of adapter

trimmed sequencing reads to each assembly using Bowtie2 v2.1.0

(Trapnell et al., 2010) using default settings, except for maxi-

mum insert size (-X 999) and number of multiple mappings

(-k 30).

Aside from these metrics, measures of assembly content were

also assayed. Here, open reading frames (ORFs) were identi-

fied using the default settings of the program TRANSDECODER

R20131110 (http://transdecoder.sourceforge.net/), and were sub-

sequently translated into amino acid sequences, both using

default settings. The larger the number of complete ORFs (con-

taining both start and stop codons) the better the assembly.

Next, unique transcripts were identified using the blastP pro-

gram within the BLAST+ package version 2.2.28 (Camacho et al.,

2009). Blastp hits were retained only if the sequence similar-

ity was >80% over at least 100 amino acids, and e-value <

10−10. As the number of transcripts matching a given reference

increases, so may assembly quality. Lastly, because the effects

of trimming may vary with expression, I estimated expression

(e.g., FPKM) for each assembled contig using default settings of

the the program EXPRESS V1.5.0 (Roberts and Pachter, 2013)

and the BAM file produced by Bowtie2 as described above.

Code for performing the subsetting, trimming, assembly, pep-

tide and ORF prediction and blast analyses can be found in

the following Github folder https://github.com/macmanes/ trim-

ming_paper/tree/recreate_ms_analyses/scripts

RESULTS

Quality trimming of sequence reads had a relatively large effect

on the total number of errors contained in the final assembly

(Figure 1), which was reduced by between 9 and 26% when

comparing the assemblies of untrimmed versus PHRED = 20

trimmed sequence reads. Most of the improvement in accuracy is

gained when trimming at the level of PHRED = 5 or greater, with

modest improvements potentially garnered with more aggressive

trimming at certain coverage levels (Table 1).
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FIGURE 1 | The number of nucleotide errors contained in the final

transcriptome assembly, normalized to assembly size, is related to the

strength of quality trimming. This pattern is largely unchanged with varying

depth of sequencing coverage (10–100 million sequencing reads). Trimming

at PHRED = 5 may be optimal, given the potential untoward effects of more

stringent quality trimming. 10, 20, 50, 75, 100 M refer to the subsamples size.

10 M replicate is the technical replicate, 10 M alt. dataset is the secondary

dataset. Note that to enhance clarity, the Y-axis does not start at zero.

Table 1 | The PHRED trimming levels that resulted in optimal

assemblies across the 4 metrics tested in the different size datasets.

Dataset size Error Map ORF BLAST

10 M 20 0 2 2

10 M REP. 20 2 2 2

10 M ALT 20 2 0 0

20 M 5 5 2 2

50 M 5 10 5 2

75 M 20 10 5 0

100 M 20 0 2 2

Error, the number of nucleotide errors in the assembly. Map, the number of

concordantly mapped reads. ORF, the number of ORFs identified. BLAST, the

number of unique BLAST hits. 10 M rep. is the technical replicate, 10 M alt. is

the secondary dataset.

In de Bruijn graph-based assemblers, the kmer is the funda-

mental unit of assembly. Even in transcriptome datasets, unique

kmers are likely to be formed as a result of sequencing error,

and therefore may be removed during the trimming process.

Figure 2A shows the pattern of unique kmer loss across the vari-

ous trimming levels and read datasets. What is apparent, is that

trimming at PHRED = 5 removes a large fraction of unique

kmers, with either less- or more-aggressive trimming resulting

in smaller effects. In contrast to the removal of unique kmers,

those kmers whose frequency is >1 are more likely to be real,

and therefore should be retained. Figure 2B shows that while

PHRED = 5 removes unique kmers, it may also reduce the

number of non-unique kmers, which may hamper the assembly

process.

In addition to looking at nucleotide error and kmer distribu-

tions, assembly quality may be measured by the the proportion of

sequencing reads that map concordantly to a given transcriptome

assembly (Hunt et al., 2013). As such, the analysis of assembly

quality includes study of the mapping rates. Here, I found small

but important effects of trimming. Specifically, assembling with

aggressively quality trimmed reads decreased the proportion of

reads that map concordantly. For instance, the percent of reads

successfully mapped to the assembly of 10 million Q20 trimmed

reads was decreased by 0.6% or approximately 1.4 million reads

(compared to mapping of untrimmed reads) while the effects

on the assembly of 100 million Q20 trimmed reads was more

blunted, with only 381,000 fewer reads mapping. Though the

differences in mapping rates are exceptionally small, when work-

ing with extremely large datasets, the absolute difference in reads

utilization may be substantial.

Analysis of assembly content painted a similar picture, with

trimming having a relatively small, though tangible effect. The

number of BLAST+ matches decreased with stringent trimming

(Figure 3), with trimming at PHRED = 20 associated with par-

ticularly poor performance. The maximum number of BLAST

hits for each dataset were 10 M = 27452 hits, 20 M = 29563 hits,

50 M = 31848 hits, 75 M = 32786 hits, and 100 M = 33338 hits.

When counting complete ORFs recovered in the different

assemblies, all datasets were all worsened by aggressive trim-

ming, as evidenced by negative values in Figure 4. Trimming at

PHRED = 20 was the most poorly performing level at all read

depths. The maximum number of complete ORFs for each dataset

were 10 M = 11429 ORFs, 20 M = 19463 ORFs, 50 M = 35632

ORFs, 75 M = 42205 ORFs, 100 M = 48434 ORFs.

Of note, all assembly files are available for download on

dataDryad (http://dx.doi.org/10.5061/dryad.7rm34).

DISCUSSION

Although the process of nucleotide quality trimming is com-

monplace in HTS analysis pipelines, particularly those involving

assembly, its optimal implementation has not been well defined.
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FIGURE 2 | (A) The number of unique kmers removed with various

trimming levels across all datasets. Trimming at PHRED = 5 results in a

substantial loss of likely erroneous kmers, while the effect of more and

less aggressive trimming is more diminished. (B) Depicts the

relationship between trimming and non-unique kmers, whose pattern is

similar to that of unique kmers.

FIGURE 3 | The number of unique BLAST matches contained in the

final transcriptome assembly is related to the strength of quality

trimming, with more aggressive trimming resulting in worse

performance. Data are normalized to the number of BLAST hits

obtained in the most favorable trimming level for each dataset.

Negative numbers indicate the detrimental affect of trimming. 10, 20,

50, 75, 100 M refer to the subsamples size. 10 M replicate is the

technical replicate, 10 M alt. dataset is the secondary dataset.

Though the rigor with which trimming is performed seems to

vary, there is a bias toward stringent trimming (Barrett and

Davis, 2012; Ansell et al., 2013; Straub et al., 2013; Tao et al.,

2013). This study provides strong evidence that stringent qual-

ity trimming of nucleotides whose quality scores are ≤20 results

in a poorer transcriptome assembly across the majority metrics.

Instead, researchers interested in assembling transcriptomes de

novo should elect for a much more gentle quality trimming, or

no trimming at all. Table 1 summarizes my finding across all

experiments, where the numbers represent the trimming level

that resulted in the most favorable result. What is apparent,

is that for typically-sized datasets, trimming at PHRED = 2 or

PHRED = 5 optimizes assembly quality. The exception to this

rule appears to be in studies where the identification of SNP

markers from high (or very low) coverage datasets is the primary

goal.
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FIGURE 4 | The number of complete exons contained in the final

transcriptome assembly is related to the strength of quality trimming

for any of the studied sequencing depths, Trimming at PHRED = 20 was

always associated with poor performance. Data are normalized to the

number of complete exons obtained in the most favorable trimming level for

each dataset. Negative numbers indicate the detrimental affect of trimming.

10, 20, 50, 75, 100 M refer to the subsamples size. 10 M replicate is the

technical replicate, 10 M alt. dataset is the secondary dataset.

The results of this study were surprising. In fact, much of

my own work assembling transcriptomes included a vigorous

trimming step. That trimming had generally small effects, and

even negative effects when trimming at PHRED = 20 was unex-

pected. To understand if trimming changes the distribution of

quality scores along the read, we generated plots with the program

SolexaQA (Cox et al., 2010). Indeed, the program modifies the

distribution of PHRED scores in the predicted fashion yet down-

stream effects are minimal. This should be interpreted as speak-

ing to the performance of the the bubble popping algorithms

included in TRINITY and other de Bruijn graph assemblers.

The majority of the results presented here stem from the anal-

ysis of a single Illumina dataset and specific properties of that

dataset may have biased the results. Though the dataset was

selected for its “typical” Illumina error profile, other datasets may

produce different results. To evaluate this possibility, a second

dataset was evaluated at the 10 M subsampling level. Interestingly,

although the assemblies based on this dataset contained more

error (e.g., Figure 1), aggressive trimming did not improve qual-

ity for any of the assessed metrics, though like other datasets, the

absolute number of errors were reduced.

In addition to the specific dataset, the subsampling procedure

may have resulted in undetected biases. To address these con-

cerns, a technical replicate of the original dataset was produced

at the 10 M subsampling level. This level was selected as a smaller

sample of the total dataset is more likely to contain an unrep-

resentative sample than larger samples. The results, depicted in

all figures as the solid purple line, are concordant. Therefore, I

believe that sampling bias is unlikely to drive the patterns reported

on here.

WHAT IS MISSING IN TRIMMED DATASETS? — The ques-

tion of differences in recovery of specific contigs is a difficult

question to answer. Indeed, these relationships are complex,

and could involve a stochastic process, or be related to differ-

ences in expression (low expression transcripts lost in trimmed

datasets) or length (longer contigs lost in trimmed datasets). To

investigate this, I attempted to understand how contigs recov-

ered in the 10 million read untrimmed dataset, but not in the

PHRED = 20 trimmed dataset were different. Using the informa-

tion on FPKM and length generated by the program EXPRESS, it

was clear that the transcripts unique to the untrimmed dataset

were more lowly expressed (mean FPKM = 3.2) when compared

to the entire untrimmed dataset (mean FPKM = 11.1; W =

18591566, p-value = 7.184e-13, non-parametric Wilcoxon test).

I believe that the untoward effects of trimming are linked to

a reduction in coverage. For the datasets tested here, trimming

at PHRED = 20 resulted in the loss of nearly 25% of the dataset,

regardless of the size of the initial dataset. This relationship does

suggest, however, that the magnitude of the negative effects of

trimming should be reduced in larger datasets, and in fact may

be completely erased with ultra-deep sequencing. Indeed, when

looking at the differences in the magnitude of negative effects

in the datasets presented here, it is apparent that trimming at

PHRED = 20 is “less bad” in the 100 M read dataset than it is in

the 10 M read datasets. For instance, Figure 2 demonstrates that

one of the untoward effects of trimming, the reduction of non-

unique kmers, is reduced as the depth of sequencing is increased.

Figures 3 and 4 demonstrate a similar pattern, where the nega-

tive effects of aggressive trimming of higher coverage datasets are

blunted relative to lower coverage datasets.

Turning my attention to length, when comparing uniquely

recovered transcripts to the entire untrimmed dataset of 10 mil-

lion reads, it appears to be the shorter contigs (mean length

857nt versus 954nt; W = 26790212, p-value < 2.2e-16) that are

differentially recovered in the untrimmed dataset relative to the

PHRED = 20 trimmed dataset.
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EFFECTS OF COVERAGE ON TRANSCRIPTOME ASSEMBLY—

Though the experiment was not designed to evaluate the effects

of sequencing depth on assembly, the data speak well to this issue.

Contrary to other studies, suggesting that 30 million paired end

reads were sufficient to cover eukaryote transcriptomes (Francis

et al., 2013), the results of the current study suggest that assem-

bly content was more complete as sequencing depth increased; a

pattern that holds at all trimming levels. Though the suggested

30 million read depth was not included in this study, all metrics,

including the number of assembly errors, as well as the number

of exons, and BLAST hits were improved as read depth increased.

While generating more sequence data is expensive, given the

assembled transcriptome reference often forms the core of future

studies, this investment may be warranted.

SHOULD QUALITY TRIMMING BE REPLACED BY UNIQUE

KMER FILTERING?—For transcriptome studies that revolve

around assembly, quality control of sequence data has been

thought to be a crucial step. Though the removal of erroneous

nucleotides is the goal, how best to accomplish this is less clear. As

described above, quality trimming has been a common method,

but in its commonplace usage, may be detrimental to assembly.

What if, instead of relying on quality scores, we instead rely on

the distribution of kmers to guide our quality control endeav-

ors? In transcriptomes of typical complexity, sequenced to even

moderate coverage, it is reasonable to expect that all but the most

exceptionally rare mRNA molecules are sequenced at a depth >1.

Following this, all kmer whose frequency is <2 are putative errors,

and should be removed before assembly, though this process may

result in the loss of kmers from extremely low abundance tran-

scripts or isoforms. This idea and its implementation are fodder

for future research.

In summary, the process of nucleotide quality trimming is

commonplace in many HTS analysis pipelines, but its optimal

implementation has not been well defined. A very aggressive strat-

egy, where sequence reads are trimmed when PHRED scores fall

below 20 is common. My analyses suggest that for studies whose

primary goal is transcript discovery, that a more gentle trimming

strategy (e.g., PHRED = 2 or PHRED = 5) that removes only the

lowest quality bases is optimal. In particular, it appears as if the

shorter and more lowly expressed transcripts are particularly vul-

nerable to loss in studies involving more harsh trimming. The one

potential exception to this general recommendation may be in

studies of population genomics, where deep sequencing is lever-

aged to identify SNPs. Here, a more stringent trimming strategy

may be warranted.
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