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Abstract 

We consider scheduling problems with m machines in parallel and n jobs. The 

machines are subject to breakdown and repair. Jobs have exponentially distributed 

processing times and possibly random release dates. For cost functions that only 
depend on the set of uncompleted jobs at time t we provide necessary and sufficient 

conditions for the LEPT rule to minimize the expected cost at all t within the class of 

preemptive policies. This encompasses results that are known for makespan, and 

provides new results for the work remaining at time t. An application is that if the cyi 
rule has the same priority assignment as the LEPT rule then it minimizes the 

expected weighted number of jobs in the system for all t. Given appropriate 
conditions, we also show that the cy rule minimizes the expected value of other 

objective functions, such as weighted sum ofjob completion times, weighted number 
of late jobs, or weighted sum of job tardinesses, when jobs have a common random 
due date. 
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1. Introduction 

Consider m machines that operate in parallel and are subject to breakdown and repair. 
Their up times and down times are arbitrarily distributed. The machines are used to 

process n jobs, whose release dates, R1, - - *, R, are also arbitrarily distributed. Jobj has 

a processing time Pj, that is an exponentially distributed random variable with rate yj. 
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Each processing time is distributed independently of all other random variables in the 

model. Without loss of generality, we make the following assumption. 

(Al) 0 
1 
1 2 ' 

n. 

Let Q1, t be the indicator function for the event that jobj has been released by time t but is 

not yet complete, i.e. Qj, t is 1 or 0 as job j is or is not in the system at time t. Define 

Q, = 
(Q1,t, Q2,t,' 

' ', Qn,) as the state of the jobs at time t. A cost g(Qt) is associated 
with the system at time t, where g: (0, 1 )" '-> R. This cost depends only on the set of 

jobs in the system at t. 

Our main result is the following theorem. 

Theorem 1.1. Suppose (A 1) holds. Let 7r be the policy that schedules jobs according to 

priorities that are decreasing in their indices. Then within the class ofpreemptive policies, 
7r minimizes Eg(Q,), the expected cost at time t, for all t, and all processes of arrivals, 
machine breakdowns and repairs, if and only if the cost function g(x) satisfies 

(A2) g(x) - g(x - ep), 

(A3) gg(x - e,) > #pg(x 
- ep) + (Cu - p )g(x) for all a > fl, 

where ej is a row vector of n components, whosejth component is 1 and other components 
are 0. 

Note that since (Al) is assumed to hold, r is equivalent to the Longest Expected job 

Processing Time (LEPT) first rule. This rule is well known to stochastically minimize the 

makespan of jobs with exponentially distributed processing times that are processed on 

parallel machines; moreover, it is known to hold for an arbitrary arrival process (see Van 

Der Heyden (1981), Frederickson et al. (1981), Weiss (1982) and Weber (1982), (1983)). 
This result reappears as an application of Theorem 1.1 at the start of Section 2. Our 

proof of Theorem 1.1 is based on certain coupling techniques and is similar to the 

approach of Van Der Heyden. In Section 2 we shed some light on conditions (A2)-(A3), 

by providing further examples of cost functions for which they hold. 

In Section 3, we consider the special case g(x) -= 
I'.. cjxj. This is the case of weighted 

holding cost, in which a cost cj is incurred for each unit time job j remaining in the 

system. It is easy to check that this cost function satisfies (A2)-(A3) if and only if 

(A4) pici i 92C2 
i ' ' ' i 

-nCn 

i 0. 

Condition (A4) says that the order of increasing expected processing times is the same as 

the order of increasing values of cy. So if both (Al) and (A4) hold, nr and LEPT are the 

same and equivalent to the cp rule, which is defined as the preemptive rule that always 

processes a set of jobs whose values of cp are greatest. In the literature, a combination of 

conditions such as (Al) and (A4) is often called an 'agreeability condition'. In Section 3 

we show that the cp rule minimizes various objective functions, including 

(i) the expected weighted number of jobs in the system at an arbitrary time t; 

(ii) the expected weighted sum of job completion times; 



On the optimality of LEPT and cyi rules for machines in parallel 669 

(iii) the expected weighted number of late jobs when the jobs have a common random 

due date; 

(iv) the expected weighted sum of job tardinesses when the jobs have a common due 

date. 

The LEPT and cp rules have received a great deal of attention in the stochastic 

scheduling literature. If there is only a single machine, then there is no need for an 

agreeability condition. Various authors have considered the single-machine case and 

shown that the cp rule minimizes objective functions such as (i)-(iv) above; see Pinedo 

(1983), Baras et al. (1985), Buyukkoc et al. (1985) and Shanthikumar and Yao (1991). 

Optimality of the cjp rule for parallel machines requires an agreeability condition. 

Ross (1983) considered two machines in parallel, n jobs available at time 0 and no 

arrivals afterwards. For this setup he showed that under the agreeability conditions 

(Al) and (A4), the cui rule minimizes the expected weighted sum of completion times. 

Kampke (1987) extended Ross's result to m machines, and weakened the agreeability 
conditions to c, ... c, and (A4). Under the agreeability conditions cl ... ~ 
and p,(t,)c, > 

? ? pn(tn)c, for all t,, - - -, tn, Weber (1988) generalized Kampke's result to 

models in which the job processing times have hazard rates, p,(t),. . . , p,(t). Corollary 
3.1 in this paper generalizes Ross's result to m machines and an arbitrary arrival 

process. 
For more general cost functions, conditions (A2) and (A3) arise quite naturally. They 

have been considered by Weiss and Pinedo (1980), who investigated similar scheduling 
problems to those in this paper, but under the assumption that all jobs are present at the 

start. They showed that a policy minimizes the total holding cost incurred by time t if the 

expected total cost under that policy, say G(x), satisfies (A2)-(A3), with g replaced by G. 

They stated conditions on g that would be sufficient to guarantee optimality of the LEPT 

rule; however, these were incomplete and corrected by Kampke (1987), (1989) through 
the addition of(A3). (We note that Kampke was concerned with general list policies, not 

only LEPT. He therefore also required a submodularity condition that is not needed in 
Theorem 1.1.) The contribution of the present paper is to show that conditions (A2)- 
(A3) are sufficient to guarantee optimality of LEPT when there are arrivals and machine 
breakdowns and repairs. Also, conditions (A2)-(A3) are necessary, in the sense that they 
must hold if LEPT is to be optimal for all t and for every possible process of machine 
breakdown and repair. Our results also apply to models in which machines have 
different speeds, since this scenario can be approximated by rapidly alternating periods 
of breakdown and repair. This generalization has previously been made by Weiss and 

Pinedo, and also Kampke. 

2. The optimality of the LEPT rule 

To shed some light on the conditions (A2)-(A3) in Theorem 1.1, we first provide some 

examples that satisfy these conditions. We then prove Theorem 1.1. 

Example 2.1. Consider the indicator function 

gj(x) = 
{xji, x,>o)*- 
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It is clear that this function satisfies (A2)-(A3). It then follows from Theorem 1.1 that the 
LEPT rule minimizes P(j:.1 Qi, t > 0). Now let Zj be the completion time of job j. 
Conditioning on the event {Rj = rj,j = 1, 2, ..., n), we note that 

P(i 

Qi, t > 
0)= 

1 -P(Q, =0,i= 
1,2,...,j) 

=1-P (max (Zil{r<t) t) 

where 1(r,;t) equals 1 or 0 as the event [ri ~ t] does or does not occur. Considering the 

case j = n, we have that the LEPT rule stochastically minimizes the makespan of jobs 
arriving before t. Note that since the makespan is larger than t if there is a job arriving 
after t, 

P( max (Zi)~ t)=P( max (Zi) < t, t limax (ri)). 

Unconditioning the event {Rj = rj, j = 1, 2, ., n }) yields that the LEPT rule stochasti- 

cally minimizes the makespan. 

Example 2.2. Let V1,... , V,, be independent exponential random variables with 

mean 1/z1, . * , 1/n,. Consider the function g(x)= Ef(V1x, x,, V2x 2, , VnXn), where 

f: R u {0} ~() R. 

Theorem 2.3. Iff is 

(i) increasing, i.e. f(z') f(z2) for all z' z2 componentwise; 

(ii) arrangement increasing, i.e. f( . 
., z1, 

.. 
. z,* 

,..) - 
f(. . ., zj, . 

?, 
z,. . . ) for all 

i, j and zi 
•_ 

zj ; 

(iii) convex in each variable, i.e. f(z + (6, + 62)ei) + f(z) l f(z + c5ei) + f(z + c2ei) 

for all i and 65, 62 
i 0; 

(iv) submodular, i.e. f(z + ei +62ej) + f(z) f(z + 61ej) + f(z + 2ej) for all i #j 
and 6,, 2 

>-- 
0; 

then g(x) satisfies (A 2)-(A 3). 

Proof. It is clear that the increasing property off implies condition (A2). Chang 

(1992) has shown that (i)-(iv) imply (A3) when f is symmetric. His proof is easily 

adapted to the case that f is arrangement increasing. 

Let Vi,, be the remaining work of job i at time t. Since the job processing times are 

memoryless, V,t has the same distribution as the quantity V Q, Q. Using Theorem 2.3, 

we have the following corollary for the work remaining at time t. 

Corollary 2.4. Suppose (A 1) holds and fsatisfies (i)-(iv) of Theorem 2.3. Then the 

LEPT rule minimizes Ef(V, t, V2,,, t " ? 
, V,,t). 

Examples of functions that satisfy these four conditions are (i) f(z)= 

max(alz,,* , az,), with a 
>- 

a2 ' ' ' an, and zi; > 0 for all i, and (ii) f(z)= 
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S 

-pI 
hi(z,), with h,(z) >%, h, ,(z) for all z (see Definition 3.4) and h, (z) increasing convex 

for all i. For more examples, see Chang (1992) and Chang and Yao (1990). 
In fact, the LEPT rule not only minimizes the total amount of work at time t, 2:i=1 V,t,, 

in expectation, but also in the sense of stochastic ordering. The argument goes as follows. 

For a given problem, consider an auxiliary problem in which the number of available 

machines is truncated to 1 past t. Let M be the makespan of the auxiliary problem. 

Clearly, the total amounts of work are the same at time t, if in both problems the same 

scheduling policy has been used up to time t. Moreover, the total amount of work 

remaining at time t is max(M - t, 0). Since the LEPT rule stochastically minimizes the 

makespan for the auxiliary problem, it also stochastically minimizes the total amount of 

work remaining at time t for the original problem, taking into account that the maximum 

function is increasing. 
The rest of this section is devoted to the proof for Theorem 1.1. The proof takes the 

same approach as Van Der Heyden. It uses the uniformization technique and an 
inductive method that has been called 'forward induction' (see Walrand (1988), Section 

8.3). Using the well-known uniformization technique, our continuous-time optimiza- 
tion problem is transformed into a discrete-time one. We first show that i is optimal in 
one step and then take as an inductive hypothesis that 7r is optimal in k - 1 steps. A 

problem with k steps has k decision epochs. Denote the policies applied between these 

epochs as (a0, 
a1,.. 

. , ak-_). If we are able to show that (r, r,. . 
., 

7r) is better than 

(a, nt,..., rt), 
for any admissible policy a and any initial state, it follows from the 

induction hypothesis that 7r is optimal over k steps. As a result of applying different 

policies 7r and a at time 0, the states at step 1 are different. To show that (7r, r, * *, Ir) is 

better than (a, tr, 
- *, rt), we must show that starting from time 0 the states reached after 

applying 7r are better than those reached after applying a. Thus, the proof requires a 

partial ordering amongst the states. The appropriate partial ordering is contained in the 

following definition. Using it, we can establish inequalities that are similar to (3.3) and 

(3.4) in Van Der Heyden's paper. 

Definition 2.5 (partial sum ordering). Let x' = (x , x., . 
?, 

x ), i = 1, 2, be two 

vectors. We say that x' is smaller than x2 under partial sum, and denote this x' is x2, if 

iji x l 

, 
x2, for all 

l1= 1, 2, .. 
- -, n. 

The partial sum ordering is very similar to the weak majorization ordering (Marshall 
and Olkin (1979)). However, the weak majorization ordering of x' and x2 requires their 

components to be in decreasing order. The following property of the partial sum 

ordering is easy to prove (see Ross (1983), Lemma 3.4). Note that it does not require xj to 
be either 0 or 1. 

Lemma 2.6. If x' s x2, = 
1 

= 
Z 1 x/ and i p2 < ? ... <,, then 

Cf;_l 
,tj - 

z '_1u, 
!,jxjK. 

The next lemma gives a constructive characterization of the partial sum ordering. 
Consider two integer-valued vectors that are partial sum ordered. We show that the 

greater of the two vectors can be transformed into the lesser by a number of canonical 

steps, each of which either reduces some component by 1, or makes a transfer of 1 from a 
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lesser to a greater component. In the first case, we think of I as being 'transferred out' of 

the vector; in the second case 1 is transferred between two components. Informally, we 

call this the 'transfer property' of the partial sum ordering. A similar property holds for 

the weak majorization ordering (Muirhead (1903)). 

Lemma 2.7. Ifx' and x2 are two integer- valued vectors and x' -, x2, then x2 can be 

transformed into x' by a finite number of applications of the following two types of 

transfers: 

(i) x H x - ep, where xf > 0; 

(ii) x x + ea - ef, where a > fl and xf > 0. 

Moreover, if T is the combination of afinite number of transfers of the forms in (i) and 

(ii), then T(x) <P,, x. 

Proof. That T(x) 
P•, 

x is clear. Conversely, the transfer property is clear for n = 1, 
since the partial sum ordering in one dimension means x1 

<_ 
x22, and we need only make 

reductions of 1 to x1 to obtain x,. Thus, we can take as our induction hypothesis that x2 
can be transformed into x' when these are vectors of n - 1 components. If : 1%1 xJ < 

. x2, then there is a constant l such that 
-~2i' 

x? x < x 
=• 

xf . We can use 

the transfer x -* x - ef, fl l until i" 
• 

xi = f= , x. Thus, we only need to consider 

the case that IP., xf = 
I.,- 

x2. Nothathat x' 
_p, 

x2 implies x' > 2. If xI = x2, then 

the induction hypothesis can be applied to the first n - 1 components. If x) > x2, then 

we can find a constant I such that X2 > 0 and xj = 0, i = 1 + 1,..., n and repeatedly 

apply the transfer x2 h x2 + en - el until the nth component of the resulting vector 

equals xI. Once again, this leaves a case to which the induction hypothesis for n - 1 

applies. This completes the proof. 

In the following lemma, we show that the partial sum ordering is preserved under It 

(the LEPT rule). 

Lemma 2.8 (n-monotone). Consider two systems with different initial conditions. 

Let Qj,L be the indicator function for the event that job j is in the system i at time t, and 

Q = 
(Q,/, Q2t,',, .*, 

Q ,, t), i = 1, 2. Assume (A l) and Q <,< Q02. Then there exist two 
random vectors 

Q^t 
and e2 such that under nr we have (i) i 

=st Qi, i= 1, 2, and 

Proof. Let m(t) denote the number of machines available at time t and let 

(Mk, k 
- 

1} be the set of epochs that 
dmi(t) 

# 0. At each time Mk, one machine breaks 

down or one machine becomes available again following its repair. Consider the event 

{(R = r, j = I, .., n and Mk = mk, k 1. Let to = 0 and (tk, k - I} be the sequence of 

{r1, j = 1,. ., n and mk, k > }) after sorting in time. Clearly, between tk and tk+l there 

are no arrivals and the number of machines is constant. First, we show that we can 

construct two processes between to and t1 such that they satisfy conditions (i) and (ii) of 

this lemma. Using the standard coupling and uniformization technique (Keilson 

(1979)), we generate a Poisson process with rate A= m(to)j,,. Let {Zk, k ? 1} be its 

arrival epochs and define -o = 0. Generate a sequence of independent and identically 
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distributed (i.i.d.) random variables (Uk, k > 1) uniformly distributed over [0, 1]. 
Construct the uniformized Markov chains as follows: 

Qi = Q, i = 1, 2, 
and 

Qj,Tk+I = Qj, - jk for all Tk+1 
< 

tl 
where 

=i {kA1 IXk k A 
X 

and Xj, k = 1 ifjobj is served in system i at time Tk and XJ k = 0 otherwise. As desired, it 

is clear that Q =tQ, Q, i 2.Under , k j, k if = , 
k 

m(to) and X k = 0 

otherwise. Thus, 
.~l, 

X2k 
= min(m(to), 2 

2=Qk )}. From the induction hypothesis 
I 

I-1l, 
Tk 

= 
, 

I2 k it follows that 21=1 , X, k < =1 X2k, j = 1,Q 

., 
n. Since there 

"2 

f- 

^ 

I1 

^2 is at most one departure at Tk+1, 

=-1 

Ql, 
Tk+1, = 

QTTk+1 if 21 
l 
Tk 

?=1 

Tk 

Therefore, we need only consider the case that 1 ik = Tk. 
In such case, 

II X/, k 1 X, k and ~f= X1, k P= Xk , p = 1 P I ,' j - 1.From Lemma 2.6, it 

follows that IXk =1 
liXJ 

and thus CIJ = , k =1 _1,k . Therefore, we 

conclude that k1 
< 2 Observe that the partial sum ordering is also preserved 

when there is an arrival of the same type at both systems. By induction, we can construct 
two processes such that Q1 Ps Qt. 

Let 
Jt(Qo) d E(g(Q) IQo) be the expected cost at time t from the initial state Q0 

under the policy 7r. 

Corollary 2.9. Assume (A 1)-(A 3) hold, and Q 1 
<s Qj. Then scheduling under n we 

have 
Jt(Q1) 

t 
Jt(Q2) 

for all t ? 0. 

Proof. From (A2) and (A3), it follows that g(x - e,) E g(x - ef) for all a > p. Using 
the transfer property in Lemma 2.7 yields that g(x1) ? g(x2) ifx1 ,ps x2. It then follows 
from the ir-monotone property in Lemma 2.8 that J(Q ) ? 

Jt(Q2) if Q1 < Q2. 

Lemma 2.10. Under (A 1)-(A 3) and n, 

(1) it,Jt(Qo - e,,) pJt(Qo - ep) + (i, - 
pfl )J (Qo), 

for any initial state Q0 with Q,,o 
= Ql,o = 1 and a > p. 

Proof. To simplify the notations in the proof, we denote 
e,. 

= e, + e . We use the 
same construction as in the proof of Lemma 2.8. First, we show that (1) holds for all 

t E [to, t1). From (A3), it follows that (1) is satisfied at mo = 0. Now take as an induction 

hypothesis that (1) holds for tE 
[m0, 

Tk]. Let S(or Sa, Sp) be the set ofjobs served at time 0 

under at given the initial state Q0 (or Q0 - ea, Q0 - ep). Note that {rk+1 - Tk) is a 
sequence of i.i.d. exponential random variables. Analogous to Kolmogorov's backward 

equation, we have 
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J'k+I(Qo) 

X 
Jrk(Qo - ej) 

j 
(Q) jES 

Es 
A A 

Similarly, 

J'*k+ 1(eO 

- e) 
= 

Jk 
(eo 

- ea,j) kj+ -a jES, SJ (Qo-e,) +J,,(Qo-e.) 

and 

Jtk+(Qo - efi) = Jtk(Qo - ef,j) + 
Jk,,(Qo 

- 
ea) 

AjES' 

Consider the following four cases. 

Case 1: if Q, o 
> m (to). In this case, S = S = S . Thus, 

ZJ,,+l(Qo - e( ) - uJQ+,l(Qo - e f) - (eU - 
i 

a 
)J•-+l(Q0) 

= + 
((u Ji(Qo - 

e.) 

- aJ,, 
(Qo 

- 

e.iJ) 

- (Cu 
-- 

)J (Qo - ej )) 

+ (S aJ, (Qo - e) - J, j(Qo -)- U -f)J(Q)) 

>0. 

Case 2: Ifl. Qj,0, 5 m(to) and 21. 1Qj, 0> m (to). In this case, there exists a y such 

that i y<a and =I Q,:o< m(to), Y' ,0> m(to). Clearly, S = S = S U (}) \ 

{y + 1). Thus, 

aJ,,+,(eo - eQ ) 
-u1J,,?(Qo 

- eai) - (~U -iti 
)Jk+l(Qo) 

= XI ( 
kuGJk(Qo- ea,j)- lJk(Qo -e e,j )-(au - )Jk(Qo - )) 

jeS 
\ (p)f 

A - X i., 

+ A (USaJk(Qo 
- ea) 

- 
Jk(Qo - ef) - - )J,(Q)) 

(Uui JT,1(Qo - ea,8) - ,A+1],,(Qo 
- eay+ )- (U - 

A+, 
)Jr,(Qo - ef+)) 

>0. 

Case 3: CIf. 
Qj,o, 

m(to) and f. , Qj,, > m(to). Analogous to the proof of Case 2, 

there exists a 7 such that a 
< 7 

< n and CI_ 
Qj, 

o 
- 

m(to), f:2~' Q, o > m(to). Clearly, 

S = S, u {a} \ {y + 1} = Sp U {fl} \ {y + 1}). Thus, 
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a•J 
rk+,(Qo 

- ea) - tJfjrk+,(Qo - ep ) - 
(Ya - l )Jk+(Qo) 

S- u 
S +in jo-s ( a Jrk(QO - e ) - JLkk(QO 

- efq) - (ora - 
2U )Jk(Qo)) A 

+ tak 
a(JtCu(Qon- eo,)ti+ 

hlJak(Qo - el, ,)- La -4 
J 
)Jk(Qo - eY+o)) 

+ 
(+lJ .(Q foeYP+ 

I(QkeP)- 

e,+)- ( 

- 

(/r+ 

-f)Jrk(Qo)) A 

>0. 

Cwhease 4:(t) , then it follows m(t). Clearly, all the same argument, with served and S =replaced by 

from the same argument, with- e replaced by (Qo e, tha- 
() holds for all )J(Q [t, 

+ AjE 
(!JYaJrk(Q?_ 

e.) - 
J,,Jk(Qo - efi)- (Pa -Ufl)Jrk(Qo)) 

+ I'a 
l 

i(J,(Q0e- 

e.) - Jk(QO - ep)). A 

Since Q0 - 
e- e 

)e>_- 
J,( - e)( - e) from Corollary 2.9. 

It then follows 

from these four cases that (1) holds for t 0.[t0, t). 

Now take as the induction hypothesis that (1) holds for all t E [t0, tk). If tk is an epoch 
where 

dmn(t) 
=# 0, then it follows from the same argument, with 

me(to) being replaced by 

m (tk), 
that (1) holds for all t E [t0, tk + ,). If tk is the arrival epoch of job]j, then it follows 

from the same argument, with 
Q0 

replaced by Qo + ej, that (1) holds for all t E [to, tk +1). 

Thus, (1) holds for any t 
_-> 

0. 

Proof of Theorem 1.1 (sufficient condition). Again, we transform the continuous- 

time problem into a discrete-time one by using uniformization. Let {tk, k > 0} be 

defined as in the proof of Lemmas 2.8 and 2.10. Recall that tk is either an arrival epoch or 

an epoch when a machine breaks down or becomes available. Generate a sequence of 

independent Poisson processes, N1(t), 1 > 0 with rates Ai(y) = 
ym(t)lu, for some y 

_ 
1. 

Let (rt,, k 
- 

1} be the arrival epochs of the lth Poisson processes and define o,0 = 0. 

Observe that the ZI,k'S are epochs when a job completion may occur in the coupling 

scheme we presented in the proof of Lemmas 2.8 and 2.10. Analogous to the proof of 
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Pinedo (1983), Theorem 1, we first show that 7r is optimal within the class of policies 
W(y), where W(y) consists of all policies that allow preemption only at time epochs 

{tt + Tl,k, k 
_> 

0, 1 0) with tt + zT,k <t+,1. Then it follows from a continuity argument 
as y -- oo that 7r is Optimal among all the policies. 

To simplify the notation, let {(;', k 
- 

0} be the sequence of {t1 + TIk, k, k O0, 1 0) 
after sorting. We use induction on ({ }). First, we show In is optimal in a single step for all 

initial states Q0. If rT is the arrival epoch ofjobj, then the state of jobs at Tr is Q0 + ej for 

any policy. This implies the costs at z are the same for any policy. If z is an epoch that a 
machine breaks down or becomes available, i.e. dm (t) z 0, then the state of jobs at Ti is 

Qo for any policy. Again, this implies the costs at T" are the same for any policy. Thus, it 
suffices to consider the case that Tz is not a point of { tk, k i 1). Consider a policy 
a E EW(y). Let Xj0 be the indicator function of the event that job j is served at time 0 

under a policy a and let Xg = (X10,... X n,0). Let XK be the corresponding quantity 
under In. Since the policy n schedules jobs according to priority of the lowest index, we 
have that Xg <,, Xg for any policy a in W(y). From Lemma 2.7, it follows that Xg can be 
reached from Xg through a finite number of applications of the following two types of 

transfers: (i) x + x - ep and (ii) x - x + e, - ep, a > f. Thus, we only need to compare 
the expected cost at z for two policies a' and a2 with X' = T(Xg), where T is of the 

form (i) or (ii). Now let Q1'' be the states of jobs at ZT under the policy a', i = 1, 2. It 

suffices to show that 

(2) E(g(Q 

•') 

Qo) > E(g(Q 02) Q0). 

Case 1: The first type of transfer. In this case, X'l = X'2 - ef for some fi. This is 

equivalent to inserting idle time into a machine. Clearly, we have Q`> Q)'. It then 

follows from (A2) that (2) holds. 

Case 2: The second type of transfer. In this case, Xa = X•2 + ea - ep for some a > f. 
(Clearly, we assume 

X,0'o 
= 1 and Xa,o = 0.) The only difference between a' and a2 is 

that a2 puts the low-index job fl into service instead of the high-index job a. Now define 

Si = (j : Xj' = 1} as the set of jobs served at time 0 under policy ai. Then for i = 1, 2, 

(3) 
P(Q•f 

= Qo - e 
I Q0) 

= , jS' 

A0o(y) Ao(Y)- 
E 

/I 
jEs' , j 4 Si. 

Thus, we have from (A3) that 

E(g(Q I') Qo) - E(g(Q 2)I Qo) 

= 
1 (uag(Qo - e,) - gpg(Qo - ep) - (J. - /p )g(Q0)) 

> 0. 
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Therefore, 7 is optimal in a single step. 
Take as the induction hypothesis that 7r is optimal over k - 1 steps. Now we would 

like to show that the policy that applies a2 at time 0 and then applies In after Tr is better 

than the policy that applies al at time 0 and then applies In after Tz. Now let Qa, i = 1, 2, 
be the states of jobs at zr under these two policies. It suffices to show that 

(5) E(g(Q a'Qo) I E(g(Q fz ). 

Again, we only have to consider the case that Tr is not a point of { tk, k > 1). For the first 

type of transfer, we have that Q,' > Q1. This implies Q, > 
Q-,. 

It then follows from 

Corollary 2.9 that (5) holds. Analogous to (4), we have from the transition probabilities 
of the uniformized Markov chains that for the second type of transfer, 

E(g(Qa') I Qo) - E(g(Q'2) I Qo) 

= 
Ao (i.J,;;(Qo - e.) - JiJ ,',(Q0 - ep) - (.a - Ip,)Jr;, ,(Q0)) zIk(y) 

where 
J,,, ,(Qo) 

= 

E(g(Q,,) 
I Q,,). From Lemma 2.10 and the induction hypothesis, it 

follows that 
7r 

is optimal within W(y). A continuity argument then completes the proof 
that the conditions in Theorem 1.1 are sufficient for optimality of r. 

(Necessary condition). We would like to show that if the policy r minimizes the 

expected cost for all t and any realization of machine breakdowns and repairs then (A2) 
and (A3) must hold for all initial states Q0. This means we may consider a problem with 1 

machines available at time 0, where I=/C,=, = 

Qi,. 
Clearly, the policy 7r begins by 

assigning to machines all jobs whose index is not larger than ft. Call this set of jobs S. 

Then the expected cost of the policy n after a very small amount of time 3t is 

(6) E g(Q0- e)uidt + (1- iEpidt) g(Qo) + o(3t). 

Now consider a policy a' which schedules jobs having indices smaller than fl on to I - 1 
machines and keeps the Ith machine idle. Let a' be the policy that is the same as 7r but 

schedules job a instead of job fl, a > ft. The expected costs of the policies a' and a2, after 
a very small amount of time St, can be computed similarly. It is easy to see that the 

difference between the expected costs of the policies n and a' at time 3t is 

(7) g(Qo - ep),p&t - g(Qo),pdt 
+ o(St). 

The optimality of n for all t, when there are I machines available at time 0, implies that 

the quantity in (7) must not be greater than 0. Letting 3t -* 0 yields (A2). Similarly, the 

difference between the expected costs of the policy ir and a2 at time st is 

(8) g(Qo - ep)lpuSt 
- g(Qo)up3St - g(Qo - ea)uaOt + g(Qo)jpS3t + o(3t). 

The optimality of r implies that the quantity in (8) must not be greater than 0. Letting 

6t -* 0 yields (A3). 
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3. The optimality of the cy rule 

In this section, we consider the cost function g(x) = 
•_,1 

cjxj. In other words, for each 

unit time that jobj remains in the system, a cost cj is incurred. Assuming the agreeability 
condition (A4) of Section 1, we use Theorem 1.1 to establish optimality criteria for the cy 
rule. Recall that the cy rule is the preemptive policy that orders jobs in increasing 

priority according to increasing values of cy. Under (A4), the cy rule results in the same 

order as the LEPT rule. The objective functions that are considered in this section 

include the expected values of (i) the weighted number of jobs in the system at an 

arbitrary time t, (ii) the weighted sum of job completion times, (iii) the weighted 
number of late jobs when the jobs have a common random due date, and (iv) the 

weighted sum of job tardinesses when the jobs have a common due date. 

Corollary 3.1 (minimization of the expected weighted number ofjobs at arbitrary time 

t). Assume (A 1) holds. Let Ir be the policy that schedules jobs according to priorities that 

are decreasing in their indices. Then r minimizes E[ I ~, cjQ, t], the expected weighted 
number ofjobs, for all t (t > 0), and all processes of arrivals, breakdowns and repairs, if 
and only if (A 4) is satisfied. Preemption need only occur at the release of a new job. 

Proof. For g(x) = I..", cixi, it is easy to see that (A2)*c >-c 0 and that (A3)c c,: > 

In fact, Corollary 3.1 also follows immediately from the known result that LEPT 

minimizes the makespan stochastically. Recall, Vj,, = Qj,,/j. Observe that the objective 
function is an arrangement increasing function of the expected work remaining at time t, 
i.e. 

EEcjQj, t 

= E jt 
c 

V;, 
(cipi - c 

E 

, , j-1 j-1 i-i j-1 

where we take cn+ ,n+, 
= 0. Since LEPT minimizes the expected work remaining at 

every time t, it is clear that the summation on the right-hand side above is minimized by 
LEPT. 

It is clear that without the agreeability condition (Al), the ci rule itself cannot be 

optimal. Counterexamples can be found, even under Kampke's weaker agreeability 
condition of cl, >.. c, and (A4). Consider the following set of jobs: cjyj = 1, 

j=1,***,n-l,1, j=n-1, j=l,*..,n-1, 9 ,=? and cj=1I(n-1), j= 
1, 2, ... , n. There are two machines and all n jobs have a common (fixed) due date at 2. 

Take n very large. The first n - 1 jobs require a total amount of processing equal to 1. 

The variance in this total amount goes to 0 as n tends to 0o. It is clear that job n will start 

under the ci rule at time ?. It is also clear that starting job n (the large job) at time 0 

significantly increases the probability that it is completed by time 2, and therefore 

maximizes the expected number of jobs completed by the due date. For an example in 

which the ci rule does not minimize the expected sum of the weighted completion times, 

consider again two machines and the same set of jobs as the one described above and all 

n jobs available at time 0. Now, instead of a due date at time 2, a second batch of jobs 
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arrives at time 2. It is clear that the cy rule does not minimize the expected sum of the 

weighted completion times. It is necessary to start the long job at time 0 in order to 

maximize the expected machine utilization before time 2. 

Corollary 3.2 (minimization of the expected weighted number of late jobs). Assume 

(A 1) and (A 4) hold, and the jobs have a common due date, D. Let Zj be the completion 
time ofjob j. Let Uj be the indicator function for the event [Zj 

>= 
Dj]. Then 7 minimizes 

E[ 

•-. 

, 
cjUj ]. 

Proof. Consider the event (Rj 
= 

rj, j 
= 

1,... , n, D = d). On this event, Uj 
= Q, dif 

rj < d and 1 if rj 
_ 

d. Applying Corollary 3.1 completes the proof. 

Remark 3.3. Corollary 3.2 is an extension of Pinedo and Rammouz (1988), 
Theorem 2, to parallel machines. Pinedo (1983), Theorem 8, also showed that if 

Jl 
_:2 - "-,, 

cl c2 
_-... _-> 

cn, and the common due date D has a concave 

distribution function, then the SEPT rule minimizes E[ i=1, cjUj]. Corollary 3.2, states a 

different set of conditions under which the LEPT rule is optimal. 
The following definition is useful in obtaining a result for more general weighted 

functions of completion times. The subsequent corollary extends Pinedo and Rammouz 

(1988), Theorem 1, to parallel machines. 

Definition 3.4 (Pinedo and Rammouz (1988)). Let F,(t) and F2(t) be two increasing 

functions. F, is said to be steeper than F2 if F,(t2) - F1(t1) - F2(t2) - F2(tl) for all t, < t2. 

We denote this by F1 > F2. 

Corollary 3.5 (minimization of the expected weighted sum ofjob completion times). 

Suppose (A 1) and (A 4) hold, and Fj(t), j = 
1,.-, 

n are increasing functions, such that 

Fl , F2 s 
- . > , F,. Then 7r minimizes E[ 1j, cjFj(Zj)]. 

Proof. It is noted in Pinedo and Rammouz (1988) that Corollary 3.2 is equivalent to 

minimizing E[ 
if.•, 

cjF(Zj)], where F(t) is the distribution function of the common due 

date D. Thus, 7t minimizes E[2 
CI 

cjF(Zj)] for all F increasing. Note that 

E[;-1 
cFj(Z1)]-- 

= 

•I1 
Bi with B, = 

Zn•1i-i 

c=E[Fn+,_i(Zj) 
- Fn+2_i(Zj)], and taking 

F,n + (t) = 0. Now Fj , Fj +, implies that Fj - Fj1, is increasing. Combined with the fact 
that F, is increasing, this implies that 7t minimizes B,, i = 1,. ., n, and thus that it 

minimizes the sum of the B 's. 

Corollary 3.6 (minimization of the expected weighted sum ofjob tardinesses). The 

tardiness of job j, Tj, is defined as max(Zj - Dj, 0). Suppose (A 1) and (A 4) hold, and 

D, : D2 _ ? ? ? 
5 D, a.s. Then n minimizes E[ I=1 cj Tj]. 

Proof. Consider the event (D1 = d), j = 1,. ., n). The objective function is equiva- 

lent to E[2J.. c?FI(Z,)], with F1(t) = max(t - di, 0) (Pinedo and Rammouz (1988)). 

Clearly, the Fj(t)'s are increasing and F1 >, FJ, . An application of Corollary 3.5 

completes the proof. 

Remark 3.7. Pinedo (1983), Theorem 3, showed that ifD, 
- 

D2 
- ? ? ? _ 

D, a.s. and 

(A4) is satisfied, then r minimizes E[ I, c? T ] for a single-machine problem with all the 
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jobs present at time 0. Corollary 3.6 is an extension of that theorem to parallel machines 

with release dates. 

In the following two corollaries, we consider the special case that all jobs are present at 

time 0. A static list policy is one that assigns jobs to machines in the order of a fixed 

permutation of their indices. Clearly, the set of static list policies is a subset of the 

dynamic policies we have considered thus far, and n, which under (Al) assigns jobs in 

the order 1,. *.., n, is optimal amongst all static list policies when (Al) and (A4) are 

satisfied. In the following two corollaries the conditions needed in Corollaries 3.2 and 

3.6 are relaxed from the strong sense (a.s.) to the weak sense (distribution). These 

corollaries generalize Pinedo (1983), Theorems 4 and 2, to parallel machines. Recall that 

a random variable X is stochastically smaller 
- s 

than Yif P(X > t) < P(Y > t) for all t. 

Corollary 3.8 (minimization of the expected weighted number of late jobs). Assume 

(A 1) and (A 4) hold, and due dates Dj, j 
= 1, - - , n, have a common distribution function 

F(t). Let Uj be the indicator function for the event that job j is late. Then 7r minimizes 

E[ J', cj Uj] amongst all the static list policies. 

Proof. Let a = 
(al, 

a2,. ., a,) } be a permutation of (1, 2, 
? 
- , n } and suppose the 

jobs are scheduled according to the static list policy that assigns jobs to machines in 

priority order a,, q2,.. , a,. Under these circumstances, let Q1, be the indicator 

function for the event that job j is in the system at time t and let Uf' be the indicator 

function that job j is late. From Corollary 3.1, it follows that under (Al) and (A4) 

n n 

(9) Z 
EcjfQ 

t_ 

< 
EcjQj,. j=1 j=1 

All the jobs are present at time 0, so U;J = Q J. Since the order in which jobs will be 

assigned to machines is determined at time 0, it follows that QTt, is independent of the 

due date Dj. (This is not true if the policy is dynamic.) We have 

(10) EQO = f EQtdF(t). 

Combining (9) and (10) completes the proof. 

Corollary 3.9 (minimization of the expected weighted sum of job tardinesses). As- 

sume (A 1) and (A 4) hold and due dates satisfy 
D1 

<st D2st ' st Dn. Let Tj be the 

tardiness ofjob j. Then 7r minimizes E[ 1~ , cj Tj] among all static list policies. 

Proof. Again, let a be a permutation of { 1, 2, . , n } and define 
Q7, 

as above. Let Tf 
be the tardiness of job j when jobs are processed under the static list policy defined by a. 

All the jobs are present at time 0, so T7 = SJ Qr ,dt. Again, Qf, is independent of DI and 

we have 

ETJ = f f EQ 
,t dtdF(s) 

= 
• 

Fl(t)EQftdt, 
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where Fj(t) is the distribution function of the due date of job j, Dj. Analogous to the 

proof of Corollary 3.5, E[ Cj., cj Tf] = 
= i B,, where 

0 n++-i 

B = 
0(Fn+-i(t)- 

Fn+2-i(t)) cEQtdt 
0 

j=1 

and we define F+,,(t) = 0. The assumption D, st D2 st< 
S t Dn implies F,(t) > 

F2(t) > 
? 

- 
? 

> Fn(t) 0 O. It follows from Corollary 3.1 that 7t minimizes Bi, i = 1, * *, n, 

and thus minimizes the sum of the Bi's. 
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