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ON THE OPTIMALITY OF ORTHOGONAL ARRAY PLUS
ONE RUN PLANS1

BY RAHUL MUKERJEE

Indian Institute of Management

Much contrary to popular belief and even a published result, it is seen
that orthogonal array plus one run plans are not necessarily optimal,
within the relevant class, for general s � ��� � s factorials. A broad1 m
sufficient condition on s , . . . , s ensuring the optimality of such plans has1 m
been worked out. This condition covers, in particular, all symmetric
factorials and thus strengthens some previous results.

1. Introduction. Over the last two decades, there has been considerable
work on the optimality of fractional factorial plans based on orthogonal

Ž . Ž .arrays OA’s and related structures. Cheng 1980a pioneered research in
this area by proving the universal optimality of fractional factorial plans

Ž .given by OA’s of strength two. Mukerjee 1982 extended this result to OA’s of
general strength. Subsequent work focussed on the optimality of plans ob-

Ž . Ž .tained by adding one or more run s to an OA. Cheng 1980b again initiated
research in this direction and, in particular, proved that the addition of any
single run to a two-symbol OA of even strength yields an optimal fraction,
under a very wide range of criteria, for a 2m factorial. This work on the
optimality of OA plus one run plans was followed up by Kolyva-Machera
Ž . m1989 who considered OA’s of strength two for 3 factorials under the

Ž .D-criterion and Collombier 1988 who, with a complex parametrization,
Ž .reported an extension of Cheng’s 1980b result to general s � ��� � s1 m

Ž .factorials; see Mukerjee 1995 for a brief review of the work in this general
area.

As for OA plus one run plans, one might be inclined to believe that
Ž .Collombier’s 1988 result, obtained with a complex parametrization, can be

routinely translated to the practically more meaningful case of a real
parametrization. If so, then this would completely settle the issue of the
optimality of such plans. Unfortunately, there seems to be a serious gap in

ŽColombier’s proof, which is crucially based on the following claim see page 42
.of his paper ; if

s�1
1�2z � � exp 2� �1 j�s ,Ž .� 4Ý j

j�0
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Ž .where s � 2 is a positive integer and � , . . . , � are nonnegative integers0 s�1
such that � � ��� �� � 1 mod s, then the modulus of the complex num-0 s�1
ber z is at least unity. However, taking s � 5, � � 3, � � 1, � � 3,0 1 2
� � � � 2, we get � � ��� �� � 1 mod s but at the same time the modu-3 4 0 4
lus of z equals 0.382. This shows the incorrectness of the above claim, thus

Žinvalidating Collombier’s proof even under his complex parametrization and
m .even for symmetric s factorials where s is a prime or prime power and

rendering a translation of his approach to the case of a real parametrization
impossible.

Ž .Notwithstanding the above, Collombier’s 1988 final result seems to be
plausible, that is, one may still believe that even for general s � ��� � s1 m
factorials OA plus one run plans should be optimal and that only a rectifica-
tion of his proof is needed. Quite counter-intuitively, however, we find that
such optimality does not hold for arbitrary s , . . . , s in general. An example1 m
to this effect is shown in Section 3 after the necessary preliminaries are
presented in Section 2. This somewhat unexpected development makes the
problem far more nontrivial than what was originally believed and calls for a
study of conditions on s , . . . , s that ensure the optimality of OA plus one1 m
run plans. This has been taken up in Section 4 where we work directly with a
real parametrization and employ the Kronecker calculus for factorial ar-
rangements to derive a broad sufficient condition. In particular, this sufficient
condition covers all symmetric factorials and thus substantially strengthens

Ž . Ž .the earlier results due to Cheng 1980b and Kolyva-Machera 1989 .
While concluding this section, we remark that OA plus one run plans can

be of particular practical interest when the initial OA is saturated, that is,
� Ž .�attains Rao’s bound cf. Mukerjee and Wu 1995 . This is because if a

saturated OA of strength 2 t is augmented by one run then the resulting plan
is most economical in the sense of involving the minimum number of observa-
tions needed to get a resolution 2 t � 1 plan, which also allows the use of the
standard F-test for testing the significance of the relevant factorial effects.

2. Preliminaries.

Ž .2.1. The model. Consider a setup involving m � 2 factors F , . . . , F at1 m
Ž . ms , . . . , s � 2 levels, respectively. Let FF denote the set of the v � Ł s1 m j�1 j

Žlevel combinations represented by ordered m-tuples i ��� i 0 � i � s � 1;1 m j j
.1 � j � m . Let � be the treatment effect corresponding to i ��� i and �i ��� i 1 m1 m

be a v � 1 vector with elements � arranged lexicographically. We intendi ��� i1 m
Ž .to study resolution 2 t � 1 plans t � 1 and thus consider a linear model that

includes only the general mean and interactions involving t or less factors.
As usual, a main effect is a one-factor interaction. The following notation
facilitates an explicit presentation of the model.

Ž .For 1 � j � m, let P be an s � 1 � s matrix such thatj j j

2.1 P 1 � 0, P P� � s I ,Ž . j s j j j s �1j j
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where, for any positive integer � , 1 is the � � 1 vector with all elements�

unity and I is the identity matrix of order � . Let � be the set of binary�

Ž .m-tuples. For any x � x ��� x 	 �, define the a x � v matrix1 m
m

x x x xj 1 m2.2a P � P � P 
 ��� 
 P ,Ž . 
 j 1 m
j�1

Ž . m Ž . x jwhere 
 denotes the Kronecker product, a x � Ł s � 1 , and forj�1 j
1 � j � m,

1� , if x � 0,s jjx j2.2b P �Ž . j ½ P , if x � 1.j j

The v columns of P x correspond to the lexicographically ordered level
combinations and for any i ��� i 	 FF, let p x be the corresponding1 m i ��� i1 m

column of P x.
Define � as a subset of � consisting of those binary m-tuples which havet

�1 x Ž .at most t components unity. For x 	 � , let � � v P �. Then by 2.1 andt x
Ž .2.2 , � represents the general mean if x � 00 ��� 0, or a complete set ofx
orthogonal contrasts, each having squared norm v�1 and belonging to the

x1 x m Ž .interaction F ��� F , if x � 00 ��� 0; compare Gupta and Mukerjee 1989 ,1 m
Chapter 2. In fact, v�1P x �P x is the orthogonal projector on the space spanned
by 1 if x � 00 ��� 0, or the space spanned by contrasts representing thev

x1 x m Ž .interaction F ��� F if x 	 � � 00 ��� 0. Hence if we allow only the gen-1 m t
eral mean and interactions involving up to t factors in the model, then

2.3 � � v�1P x �P x� � P x �� .Ž . Ý Ý x
x	� x	�t t

Let Y be any observation corresponding to the level combinationi ��� i1 m
Ž .i ��� i . Then, in view of 2.3 , our linear model is given by1 m

�x2.4 E Y � � � p � ,Ž . Ž . Ž .Ýi � � �i i � � �i i � � �i x1 m 1 m 1 m
x	� t

where the p x and the parameters � are as explained above. As usual, wei � � �i x1 m

assume that the errors are uncorrelated and homoscedastic. In particular, if
� � Ž .s � ��� � s � 2, then with P � �1, 1 for each j, the model 2.4 is in1 m j

Ž .agreement with that in Cheng 1980b . We emphasize here that none of our
Ž .findings depends on the specific choice of P , . . . , P subject to 2.1 .1 m

2.2. More notation. For subsequent use, we introduce some more notation
and indicate a few related points. Let

� ��x �� �2.5 P t � . . . ,P , . . . , � t � . . . ,� , . . . ,Ž . Ž . Ž . Ž .x	� x	�xt t

Ž . � 00 � 01� 10 �� Ž .for example, if m � 2, t � 1, then P t � P , P , P � and � t �
Ž � � � . Ž . Ž . Ž .� , � , � �. By 2.1 , 2.2 and 2.5 ,00 01 10

2.6 P t �P t � W x ,Ž . Ž . Ž . Ý
x	� t
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Ž . xwhere for each x 	 � � � , the v � v matrix W is given byt

m
x x � x x j2.7a W � P P � W ,Ž . 
 j

j�1

with

1 1� , if x � 0,s s j� j jx x xj j j2.7b W � P P �Ž . �j j j ½ s I � 1 1 , if x � 1.j s s s jj j j

Ž .Following 2.5 , for each i ��� i 	 FF, let1 m
�Ž t . xp � . . . , p �, . . .Ž .i � � �i i � � �i x	�1 m 1 m t

Ž . Ž . Ž .be the column of P t that corresponds to i ��� i . Then by 2.6 , 2.7 , for1 m
any i ��� i 	 FF and k ��� k 	 FF,1 m 1 m

m
x jŽ t .� Ž t .2.8 p p � s 
 � 1 ,Ž . Ž .Ý Łi � � �i k � � �k j i k1 m 1 m j j

j�1x	� t

where 
 is a Kronecker delta. In particular, for any i ��� i 	 FF,i k 1 mj j

m
x jŽ t .� Ž t .2.9 p p � s � 1 � a x � a say .Ž . Ž . Ž .Ž .Ý Ł Ýi � � �i i � � �i j1 m 1 m

j�1x	� x	�t t

Ž . Ž .Note that by 2.5 , a is also the number of rows in P t or the number of
Ž .elements of � t .

2.3. Information matrix and optimality criteria. With reference to an
s � ��� � s factorial, let DD be the class of all designs or plans involving N1 m N
level combinations or runs which are not necessarily distinct. For any d 	 DDN

Ž .and i ��� i 	 FF, let r i ��� i be the number of times the level combina-1 m d 1 m
tion i ��� i appears in d. Also, let R be a v � v diagonal matrix with1 m d

Ž .diagonal elements r i ��� i arranged in the lexicographic order. Thend 1 m
Ž . Ž .from 2.5 it follows that, under the model 2.4 , the information matrix of d,

Ž .with reference to the parametric vector � t , is proportional to

2.10 II � P t R P t �.Ž . Ž . Ž .d d

Ž .Note that II is of order a � a and that by 2.9 ,d

2.11 tr II � Na for each d 	 DD .Ž . Ž .d N

We are now in a position to introduce the optimality criteria. For any
Ž .d 	 DD , denoting the eigenvalues of II by � , . . . , � , by 2.11 , � 	N d d1 da di

� � Ž .0, Na , 1 � i � a. Following Cheng 1980b , an optimality criterion of type 1
Ž . a Ž .is given by � II � Ý q � , where q is a real-valued function definedd i�1 di

� �over 0, Na such that:

� �1. q is continuous, strictly convex and strictly decreasing on 0, Na ; we
Ž . Ž .include here the possibility that lim q � � q 0 � �;�� 0�

Ž .2. q is continuously differentiable and q� is strictly concave on 0, Na .
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Any generalized criterion of type 1 is the pointwise limit of a sequence of
type 1 criteria. The class of generalized criteria of type 1, under which we
work here, is very wide and includes, in particular, the well-known D-, A-

Ž .and E-criteria; compare Cheng 1980b .
Ž .Cheng 1980b gave a sufficient condition for a plan to be optimal with
Ž .respect to the minimization of every generalized criterion of type 1. Since

Ž . Ž .tr II is constant over DD by 2.11 , the condition may be stated as follows ind N
the present context.

LEMMA 2.1. Let there exist a plan d 	 DD such that:0 N

Ž .i II has two distinct eigenvalues, the larger of which has multiplicityd0

unity;
Ž . Ž 2 . � Ž .42 Ž .ii tr II � tr II � a � 1 ;d d0 0
Ž . Ž 2 .iii d minimizes tr II over DD .0 d N

Then d is optimal in DD with respect to every generalized criterion of type 1.o N

2.4. Some other facts. For ease in reference, we now recall the defini-
Ž .tion of an orthogonal array OA and indicate some related facts. An

Ž . Ž .OA T, s � ��� � s , 2 t of strength 2 t � m is a T � m array, with elements1 m
� 4 Ž .in the jth column from the set 0, 1, . . . , s � 1 1 � j � m , in which allj

possible combinations of symbols appear equally often in every T � 2 t subar-
� Ž .�ray Rao 1973 . The rows of an OA represent the level combinations of an

Ž .s � ��� � s factorial. Suppose an OA N � 1, s � ��� � s , 2 t is available1 m 1 m
and let d 	 DD be obtained by adding any run, say i ��� i , to the N � 1o N 1 m

Ž . Ž .runs given by the rows of the array. As in Collombier 1988 , then by 2.10 ,

2.12 II � N � 1 I � pŽ t . pŽ t .� .Ž . Ž .d a i ��� i i ��� io 1 m 1 m

Ž . Ž .By 2.9 and 2.12 , the eigenvalue of II are N � 1 and N � 1 � a withd o

respective multiplicities a � 1 and 1. These eigenvalues, and hence the
behavior of d under any generalized criterion of type 1, do not depend ono
the particular run i ��� i that is added to an OA.1 m

Ž .Clearly, d satisfies condition i of Lemma 2.1. Also, using Rao’s bound foro
Ž .OA’s, N � 1 � a and hence, as in Collombier 1988 , it is easy to see that do

Ž .satisfies condition ii of this lemma as well. Hence d is optimal in DD witho N
respect to every generalized criterion of type 1 provided it satisfies condition
Ž .iii of Lemma 2.1. However, as seen in the next section, this is not always the

Ž .case. In fact, as Section 4 reveals, even when d satisfies condition iii , theo
verification can be quite nontrivial.

Ž 119 12 .3. An example. Let A be an OA 144, 2 � 3 , 2 which can be con-
structed as

� �A � A � D , 0 � A ,1 4 2

Ž 3 . Ž 11 12 .where A is an OA 4, 2 , 2 , A is an OA 36, 2 � 3 , 2 , D is a difference1 2
Ž .matrix D arising from a Hadamard matrix of order 36, 0 � 0, 0, 0, 0 �36, 36, 2 4
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Ž .and � represents the Kronecker sum; see Wang and Wu 1991 for more
details on this type of construction. Let d be a resolution three plan obtainedo
by adding any run to the array A. Then, with N � 145, a � 144, t � 1, as in
Section 2.4, the eigenvalues of II are seen to be 144 and 288 with respectived o

multiplicities 143 and 1. Hence,

3.1 tr II 2 � 3048192,Ž . Ž .d o

141 �13.2 det II � 5971968 144 , tr II � 0.996528.Ž . Ž .Ž . Ž .d do o

Without loss of generality, suppose the first row of the array A is 00 ��� 0
and consider a rival plan d obtained from A as follows: delete the run1
c � 00 ��� 0 given by the first row of A and then add the two runs c � 11 ��� 10 1
and c � 11 ��� 122 ��� 2, in c the first 119 levels being one and the rest being2 2

Ž .two. Then d , like d , involves 145 runs and, analogously to 2.12 ,1 o

3.3 II � 144I � � � � � � � � � � � � ,Ž . d 144 0 0 1 1 2 21

Ž .where � , � and � denote the columns of P 1 corresponding to the level0 1 2
Ž . Ž .combinations c , c and c , respectively. By 2.8 and 2.9 , taking t � 1,0 1 2

3.4 � � � � 108, � � � � �130 i � 1, 2 , � �� � 144 i � 0, 1, 2 .Ž . Ž . Ž .1 2 0 i i i

'Ž . Ž .By 3.3 and 3.4 , three of the eigenvalues of II are 180 and 198 � 2 1351 ,d1 'Ž .the corresponding eigenvectors being � � � and 99 � 1351 � �1 2 0
Ž .65 � � � , respectively. In addition, there is an eigenvalue 144 with multi-1 2

plicity 141, the corresponding eigenspace being given by the orthocomple-
� 4ment of the space spanned by � , � , � . Hence0 1 2

3.5 tr II 2 � 3045392,Ž . Ž .d1

141 �13.6 det II � 6084000 144 , tr II � 0.996438.Ž . Ž .Ž . Ž .d d1 1

Ž . Ž . Ž 2 .By 3.1 and 3.5 , d does not minimize tr II over DD . More importantly,o d 145
Ž . Ž .by 3.2 and 3.6 , it is inferior to d under both the D- and A-criteria. Thus1

this example shows that an OA plus one run plan is not necessarily optimal
with respect to every generalized criterion of type 1 within the class of plans
having the same number of runs. In the next section, we provide a broad
sufficient condition under which such optimality holds.

4. A sufficient condition.

4.1. Result.

Ž .THEOREM 4.1. Suppose there exists an OA N � 1, s � ��� � s , 2 t and1 m
let d 	 DD be obtained by adding any run to the N � 1 runs given by theo N
array. Then d is optimal in DD with respect to every generalized criterion ofo N
type 1 if

4.1 HCF s , . . . , s � 2 for each i , . . . , i , 1 � i � ��� � i � m ,Ž . Ž .i i 1 2 t 1 2 t1 2 t

where HCF stands for highest common factor.



R. MUKERJEE88

The example in Section 3 reveals that the conclusion of Theorem 4.1 may
Ž .not hold without the condition 4.1 . It is satisfying to note that Theorem 4.1

has a wide applicability. It completely settles the issue of optimality of OA
plus one run plans for symmetric sm factorials, even when s is not a prime or
prime power, by showing that such plans are, indeed, optimal with respect to
every generalized criterion of type 1. The same conclusion holds for many

Ž m1 m2 m1 m2asymmetric factorials of interest e.g., 2 � 4 factorials or 3 � 6
.factorials .

4.2. Proof. In the rest of this paper, we prove Theorem 4.1 using several
Ž .lemmas. As noted in Section 2.4, we have to verify that, under 4.1 , do

Ž 2 .minimizes tr II over DD . For d 	 DD , let r be a v � 1 vector withd N N d
Ž .elements r i ��� i arranged lexicographically. Also, for x 	 � , defined 1 m 2 t

x Ž .the v � v matrix W as in 2.7 .
The key considerations in our proof of Theorem 4.1 are as follows. In

Ž 2 .Lemma 4.1, we show that for every d 	 DD , tr II is a linear combination ofN d
the quantities r� W x r , x 	 � , where the combining coefficients are non-d d 2 t

Ž . � 00� � �0negative and do not depend on d. Then Lemma 4.2 a shows that r W rd d
is the same for all d 	 DD . Hence it suffices to show that the plan dN o

� x Ž .minimizes r W r over DD for each x � 00 ��� 0 	 � . Next, as a conse-d d N 2 t
Ž .quence of Lemmas 4.2 b , 4.3 and 4.4, we note that if for any d 	 DD and anyN

Ž . � x � x � x � Ž . Ž .x � 00 ��� 0 	 � , r W r � r W r then r W r � 0 cf. 4.13 and 4.192 t d d d d d do o� Ž .below . Lemma 4.5 shows that this is impossible under the condition 4.1 and
Ž .thus completes the proof of Theorem 4.1. In fact, for any x � 00 ��� 0 	 �2 t

Ž . � xand any d 	 DD , by 2.7 , the quantity r W r can be interpreted as v timesN d d
the sum of squares due to the factorial effect F x1 ��� F x m in a full s � ��� � s1 m 1 m
factorial where each level combination appears once and r plays the roled

Ž .of the observational vector. In view of this interpretation, under 4.1 , the
arguments underlying Lemma 4.5 are intuitively anticipated for t � 1, noting
that the elements of r are integers and that N � 1 mod s s for everyd i j
1 � i � j � m. Lemma 4.5 formalizes these arguments for general t.

At this stage, it is also possible to explain heuristically why the counterex-
Ž .ample in Section 3 worked. There condition 4.1 does not hold and the plan

d was so constructed that r� W x r � 0 for every x for which r� W x r can1 d d d d1 1 1 1

be interpreted as the sum of squares due to the interaction between a
two-level and a three-level factor in the sense described in the last paragraph.
Thus r� W x r became less than r� W x r for a large number of choices of xd d d d1 1 o o
Ž . Ž 2 . Ž 2 .� 00 ��� 0 	 � . This, in turn, yielded tr II � tr II and ensured the2 t d d1 o

superiority of d over d under the D- and A-criteria.1 o

LEMMA 4.1. For every d 	 DD ,N

tr II 2 � � x r� W x r ,Ž .Ž . Ýd d d
x	� 2 t

Ž .where the scalars � x are nonnegative and do not depend on d.
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Ž t . Ž .PROOF. For d 	 DD , recalling the definition of p , by 2.10 ,N i � � �i1 m

22 Ž t .� Ž t .4.2 tr II � r i ��� i r k ��� k p p ,Ž . Ž . Ž . � 4Ž . ÝÝd d 1 m d 1 m i � � �i k � � �k1 m 1 m

where the double sum extends over i ��� i 	 FF and k ��� k 	 FF. Let B be1 m 1 m
a v � v matrix with lexicographically ordered rows and columns such that

Ž .the i ��� i , k ��� k th element of B is1 m 1 m
2Ž t .� Ž t .4.3 b i ��� i , k ��� k � p p .Ž . Ž . � 41 m 1 m i � � �i k � � �k1 m 1 m

Ž . Ž .The matrix B does not depend on d and by 4.2 , 4.3 ,

4.4 tr II 2 � r� Br .Ž . Ž .d d d

Ž . Ž .Now by 2.8 and 4.3 ,
m

u �yj j4.5 b i ��� i , k ��� k � s 
 � 1 .Ž . Ž . Ž .ÝÝ Ł1 m 1 m j i kj j
j�1u , y	� t

But with any u � u ��� u 	 � and y � y ��� y 	 � , for 1 � j � m, we1 m t 1 m t
have

u �yj j4.6a s 
 � 1 � 1 if u � y � 0,Ž . Ž .j i k j jj j

4.6b � s 
 � 1 if u � 0, y � 1 or u � 1, y � 0,Ž . j i k j j j jj j

4.6c � s � 2 s 
 � 1 � s � 1 if u � y � 1,Ž . Ž . Ž .Ž .j j i k j j jj j

since 
 is a Kronecker delta. Note that for any u, y 	 � , there are at mosti k tj j
Ž . Ž .2 t choices of j for which either 4.6b or 4.6c can arise. Since s � 2 for eachj

j, it follows that for every u, y 	 � , the product on j of the left-hand side oft
Ž . m Ž . x j4.6 is a linear combination of � s 
 � 1 , over x � x ��� x 	 � ,j�1 j i k 1 m 2 tj j

the combining coefficients, possibly dependent on u and y, being all nonnega-
Ž . Ž .tive. Comparing with 2.7 , it follows from 4.5 that

4.7 B � � x W x ,Ž . Ž .Ý
x	� 2 t

Ž .where the scalars � x are nonnegative and, evidently, do not depend on d.
Ž . Ž .From 4.4 and 4.7 , the lemma follows. �

Ž . � x 2LEMMA 4.2. a For every d 	 DD , if x � 00 ��� 0 then r W r � N .N d d
Ž .b Let d be as defined in Theorem 4.1. Then for every x 	 � , x � 00 ��� 0,o 2 t

m
x j� xr W r � s � 1 .Ž .Łd d jo o

j�1

Ž . 00 ��� 0 � Ž .PROOF. Part a follows noting that W � 1 1 by 2.7 and thatv v
r� 1 � N for each d 	 DD .d v N

Ž .b Recall that d is obtained adding one run to an orthogonal array. Leto
Ž .r* i ��� i be the number of times i ��� i appears as a row of this array1 m 1 m

Ž .and r* be a v � 1 vector with elements r* i ��� i arranged lexicographi-1 m
cally. Then
4.8 r � r* � e,Ž . d o
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where e is a v � 1 unit vector. Since r* arises from an OA of length 2 t, from
Ž . x2.7 it is not hard to see that W r* � 0, whenever x 	 � and x � 00 ��� 0;2 t

Ž . � xcompare Mukerjee 1982 . Hence for any such x, r W r equals a diagonald do ox Ž . Ž .element of W by 4.8 and, by 2.7 , the result follows. �

Ž .LEMMA 4.3. Let h � h , h , . . . , h � be an s � 1 vector where s � 2. If0 1 s�1

� i , k : 0 � i � k � s � 1, h � h � 0 � s � 2,� 4Ž . i k

where � denotes the cardinality of a set, then h � h � ��� � h .0 1 s�1

PROOF. This lemma is similar to Lemma 2.1 in Chatterjee and Mukerjee
Ž .1993 on connected designs and can be proved by induction on s. �

Some more notation is needed for presenting the next lemma. Let g be a
Ž . Žpositive integer and s , . . . , s � 2 be integers. For 1 � j � g, let e 0 � i �1 g ji

1. Ž .s � 1 be the unit vectors of order s and Q be a matrix with s s � 1j j j j j2
Ž .rows and s columns, such that the rows of Q are given by e � e �,j j ji jk

0 � i � k � s � 1. Let w � Ł g s and h be a w � 1 vector. Then thej j�1 j
following lemma holds.

Ž .LEMMA 4.4. If among the elements of Q 
 ��� 
 Q h at most1 g
g Ž . Ž .Ł s � 1 � 1 are nonzero, then Q 
 ��� 
 Q h � 0.j�1 j 1 g

PROOF. For g � 1, the result is a consequence of Lemma 4.3. To apply
Ž .the method of induction, let the result hold for g � f � 1 . Consider g �

Ž .f � 1 and suppose among the elements of Q 
 ��� 
 Q h at most1 f�1
1f�1 fŽ . � Ž .4Ł s � 1 � 1 are nonzero. Denoting the � � Ł s s � 1 rows ofj�1 j 1 j�1 j j2

� 1Ž . Ž .Q 
 ��� 
 Q by � 0 � i � � � 1 and the � � s s � 1 rows1 f 1 i 1 2 f�1 f�12
� Ž .of Q by � 0 � k � � � 1 , then among the � � quantities,f�1 2 k 2 1 2

4.9 H � � � 
 � � h , 0 � i � � � 1, 0 � k � � � 1,Ž . Ž .ik 1 i 2 k 1 2
f�1Ž . � 4at most Ł s � 1 � 1 are nonzero. Hence writing L � 0, 1, . . . , � � 1j�1 j 1
�and L � i: i 	 L, among the H , 0 � k � � � 1, at least s � 1 are0 ik 2 f�1

4nonzero , then
f

4.10 �L � s � 1 � 1.Ž . Ž .Ł0 j
j�1

Consider now any fixed i 	 L � L . Among the H , 0 � k � � � 1, then0 ik 2
Ž .at most s � 2 are nonzero, that is, by 4.9 and the definition of the vectorsf�1

� Ž � .� , among the elements of � 
 Q h at most s � 2 are nonzero. But2 k 1 i f�1 f�1

4.11 � � 
 Q h � Q hŽ1. ,Ž . Ž .1 i f�1 f�1

Ž1. Ž � . Ž1.where h � � 
 I h. Hence among the elements of Q h at1 i s f�1f� 1

most s � 2 are nonzero. Since the result holds for g � 1, it follows thatf�1
Ž1. Ž .Q h � 0, that is, by 4.11 , H � 0 for every k. Thusf�1 ik

4.12 H � 0, 0 � k � � � 1 if i 	 L � L .Ž . ik 2 0
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Ž . Ž . Ž .Consider now any fixed k 0 � k � � � 1 . By 4.10 and 4.12 , among2
f Ž .the H , 0 � i � � � 1, at most Ł s � 1 � 1 are nonzero, that is, byik 1 j�1 j

Ž . � Ž4.9 and the definition of the vectors � , among the elements of Q 
 ��� 
1 i 1
� . f Ž .Q 
 � h, at most Ł s � 1 � 1 are nonzero. Sincef 2 k j�1 j

Q 
 ��� 
 Q 
 � � h � Q 
 ��� 
 Q I 
 ��� 
 I 
 � � h ,Ž . Ž . Ž .1 f 2 k 1 f s s 2 k1 f

Ž � .by induction hypothesis, it follows that Q 
 ��� 
 Q 
 � h � 0. As k is1 f 2 k
Ž .arbitrary, this yields Q 
 ��� 
 Q 
 Q h � 0, and the result follows by1 f f�1

induction. �

Ž .PROPOSITION 4.5. Let 4.1 hold. Then for every d 	 DD ,N

m
x j� xr W r � s � 1 ,Ž .Łd d j

j�1

whenever x 	 � and x � 00 ��� 0.2 t

PROOF. Without loss of generality, let x � x ��� x with x � ��� � x �1 m 1 g
1 and x � ��� � x � 0, where 1 � g � 2 t. Let w � Ł g s . Theng�1 m j�1 j

Ž .by 2.7 ,

4.13 r� W x r � h� Wh ,Ž . d d d d

where the w � 1 vector h and the w � w matrix W are given, respectively,d
by

4.14 h � I 
 ��� 
 I 
 1� 
 ��� 
 1� r ,Ž . Ž .d s s s s d1 g g�1 m

g
�4.15 W � s I � 1 1 .Ž . Ž .
 j s s sj j j

j�1

With Q , . . . , Q defined as in the context of Lemma 4.4, we have Q� Q �1 g j j
� Ž . Ž .s I � 1 1 , 1 � j � g. Hence by 4.13 and 4.15 ,j s s sj j j

4.16 r� W x r � �� � ,Ž . d d d d

where

4.17 � � Q 
 ��� 
 Q h .Ž . Ž .d 1 g d

If possible, suppose
gm

x j� x4.18 r W r � s � 1 � s � 1 .Ž . Ž . Ž .Ł Łd d j j
j�1 j�1

Ž .Since the elements of h and hence those of � are integers, then by 4.16 , atd d
g Ž . Ž .most Ł s � 1 � 1 elements of � are nonzero. By 4.17 and Lemma 4.4,j�1 j d

Ž . Ž .this implies that � � 0, that is, by 4.13 and 4.16 ,d

4.19 Wh � 0,Ž . d

noting that W is nonnegative definite.
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Ž .Now, by 4.15 ,

4.20 W � M 
 ��� 
 M ,Ž . Ý 1u g u1 g
u	U

where U is the set of binary g-tuples, u � u ��� u is a typical member of U1 g
and for 1 � j � g,

4.21 M � �1 1� , M � s I .Ž . j0 s s j1 j sj j j

Ž . Ž .By 4.14 and 4.21 ,
g g�M 
 ��� 
 M h � �1 1 1 r � �1 N1 ,Ž . Ž .Ž .10 g 0 d w v d w

Ž . Ž .as d 	 DD . Hence by 4.19 and 4.20 ,N

g
4.22 M 
 ��� 
 M h � � �1 N1 .Ž . Ž .Ž .Ý 1u g u d w1 g

u	U
u�00 ��� 0

Ž .Note that the elements of the vectors on both sides of 4.22 are integer-
Ž .valued. Since 4.1 holds and g � 2 t,

4.23 HCF s , . . . , s � n say � 2.Ž . Ž . Ž .1 g

ŽAs DD contains d which is obtained by adding one run to an OA N � 1,N o
. Ž . Ž .s � ��� � s , 2 t , clearly N � 1 mod s ��� s . Hence by 4.23 , no element of1 m 1 g

Ž .the vector in the right-hand side of 4.22 is an integral
Ž .multiple of n. On the other hand, by 4.21 , every element of M 
 ��� 
 M1u g u1 gg u j Ž .is an integral multiple of Ł s , and hence by 4.23 , every element in thej�1 j

Ž .left-hand side of 4.22 is an integral multiple of n. This contradiction shows
Ž .the impossibility of 4.18 and proves the lemma. �

PROOF OF THEOREM 4.1. By Lemmas 4.2 and 4.5, for each d 	 DD andN
x 	 � , we have r� W x r � r� W x r . Hence by Lemma 4.1, the plan d2 t d d d d oo o

Ž 2 .minimizes tr II over DD and the result follows using Lemma 2.1. �d N
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