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On the Optimality of Power Allocation for NOMA
Downlinks with Individual QoS Constraints

Zhaohui Yang, Wei Xu, Cunhua Pan, Yijin Pan and Ming Chen

Abstract—This letter investigates a power allocation problem
in a downlink single-input single-output (SISO) non-orthogonal
multiple access (NOMA) system. Our goal is to maximize the sum
rate of users subject to minimum user rate requirements. We
rigorously prove the optimal user decoding order, and show that
the sum rate maximization problem is convex which guarantees
the globally optimal solution. Further by analyzing the Karush-
Kuhn-Tucker (KKT) conditions, we reveal that the optimal power
allocation strategy is to allocate additional power to the user
with the best channel gain, while other users are allocated with
minimum power to maintain their minimum rate requirements.
Numerical results validate the performance gain by the proposed
NOMA compared to conventional schemes.

Index Terms—Non-orthogonal multiple access (NOMA), power
allocation, sum rate maximization.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been recog-
nized as a promising multiple access scheme for future com-
munication systems [1]–[3]. By using superposition coding
at transmitter and successive interference cancelation (SIC)
at users, NOMA can achieve higher spectral efficiency than
conventional orthogonal multiple access (OMA), such as time-
division multiple access (TDMA).

NOMA can simultaneously serve multiple users by splitting
them in the power domain. In [4], the ergodic sum rate and
the outage performance of single-input single-output (SISO)
NOMA were analyzed in a cellular downlink scenario with
randomly deployed users. The outage probability and diversity
order achieved by the cooperative NOMA were studied in
[5] where users with better channel conditions have prior
information about the messages of other users. Besides, the
authors in [6] investigated the impact of power allocation on
the fairness of a downlink SISO NOMA system and a new
power allocation scheme was proposed in [7] for a downlink
SISO NOMA system with two users.

Recently, energy efficiency (EE) optimization becomes at-
tractive especially for 5G networks, e.g., using NOMA serv-
ing multiple users. To maximize the EE, the authors in [8]
proposed an energy-efficient power allocation strategy which
involved the sum rate maximization problem. Although the
power allocation was optimized in [8], the authors treated the
sum rate maximization problem as a nonconvex multivariate
optimization problem via nonlinear programming approaches.
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In this paper, we revisit the sum rate maximization problem
in the downlink SISO NOMA system. We mathematically
prove that it is optimal for each user to decode the messages
of users with lower channel gains before decoding its own
message. Even with individual user quality of service (QoS)
constraints, we succeed in showing that the problem is convex.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a downlink NOMA system with one single-
antenna base station (BS) and M single-antenna users. The
channel gain between the BS and user m is denoted by
hm. Without loss of generality, the channels are sorted as
|h1|2 ≤ · · · ≤ |hM |2. According to the NOMA principle,
the BS simultaneously transmits signal s to all the users. The
transmitted signal s can be expressed as

s =

M∑
m=1

√
pmsm, (1)

where sm and pm are the message and allocated power for
user m, respectively.

The observation at user m is given by

ym =
M∑
l=1

√
plhmsl + nm, (2)

where nm represents the additive zero-mean Gaussian noise
with variance σ2. With NOMA, successive detection is carried
out at users. According to [4], the achievable rate of user m
can be given by

rm = log2

(
1 +

|hm|2pm
|hm|2

∑M
l=m+1 pl + σ2

)
. (3)

Denote Rm as the minimum rate requirement of user m.
Applying (3), rm ≥ Rm is equivalent to:

|hm|2
M∑

l=m

pl + σ2 ≥ 2Rm

(
|hm|2

M∑
l=m+1

pl + σ2

)
. (4)

Our objective is to optimize the power allocation in order
to maximize the sum rate under the total power constraint
and individual minimum rate requirements. Mathematically,
the sum rate maximization problem can be formulated as

max
ppp

M∑
m=1

log2

(
|hm|2am + σ2

|hm|2am+1 + σ2

)
(5a)

s.t.
M∑

m=1

pm ≤ Pmax (5b)

|hm|2am + σ2 ≥ 2Rm
(
|hm|2am+1 + σ2

)
, ∀m (5c)

ppp ≥ 000, (5d)

where ppp = (p1, · · · , pM )T , am =
∑M

l=m pl, m = 1, · · · ,M ,
aM+1 = 0, and Pmax is the maximum transmit power of BS.
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III. OPTIMAL POWER ALLOCATION
We first analyze the optimal decoding order for users. Then,

we prove that the rate maximization problem in (5) is convex,
and obtain the optimal power allocation in closed form.

It is widely assumed that each user should first decode the
messages of users with lower channel gains [2]–[8]. This kind
of choice is mainly assumed to simply guarantee the successful
decoding in SIC, whose optimum in terms of performance
is, however, rarely discussed. In the following theorem, this
choice is proved to be fortunately also the optimal solution for
achieving maximal sum rate with NOMA.

Theorem 1: To maximize the sum rate, the optimal de-
coding sequence is determined by the channel gain order.
Specifically, when the users are sorted in the ascending order
of channel gains, i.e., |h1|2 ≤ · · · ≤ |hM |2, the optimal
decoding order of user m is {1, 2, · · · ,m}.

Proof: Please refer to Appendix A.
Theorem 2: Problem (5) is a convex problem. There exists

at least one feasible solution to (5) if and only if the user rate
constraints satisfy the following condition:

M∑
i=1

(∏i−1
j=1 2

Rj

)
(2Ri − 1)σ2

|hi|2
≤ Pmax. (6)

Proof: Please refer to Appendix B.
Since problem (5) is convex, we can obtain the globally

optimal solution by solving the KKT conditions [9], [10]. The
Lagrangian penalty of problem (5) can be written by

L(ppp, α,βββ)=
M∑
m=1

log2

(
|hm|2am+σ2

|hm|2am+1+σ2

)
+α

(
Pmax−

M∑
m=1

pm

)

+
M∑

m=1

βm

(
|hm|2am + σ2 − 2Rm |hm|2am+1 − 2Rmσ2

)
,

where α and βββ = (β1, · · · , βM )T are, respectively, the non-
negative Lagrange multipliers associated with constraints (5b)
and (5c). The KKT conditions of problem (5) are listed as:

∂L
∂pm

=
1

ln 2

m∑
k=2

(
|hk|2

|hk|2ak + σ2
− |hk−1|2

|hk−1|2ak + σ2

)
+

|h1|2

(ln 2)(|h1|2a1 + σ2)2
− α+ β1|h1|2

+
m∑

k=2

(βk|hk|2 − βk−12
Rk−1 |hk−1|2)=0, ∀m (7a)

α

(
Pmax −

M∑
m=1

pm

)
= 0 (7b)

βm

(
|hm|2am+σ2−2Rm |hm|2am+1−2Rmσ2

)
=0, ∀m (7c)

(5b), (5c), (5d), α ≥ 0,βββ ≥ 000. (7d)

First, from (7a) with m = 1, we have

α =
|h1|2

(ln 2)(|h1|2a1 + σ2)2
+ β1|h1|2 > 0. (8)

Hence, further considering (7b), we can obtain
∑M

m=1 pm =
Pmax, equivalently

a1 = Pmax. (9)

Here, we assume that |h1|2< · · ·< |hM |2. The special case
with |hm−1|2= |hm|2 is considered later. Using (7a), we obtain

∂L
∂pm

− ∂L
∂pm−1

=
1

ln 2

(
|hm|2

|hm|2am+σ2
− |hm−1|2

|hm−1|2am+σ2

)
+βm|hm|2 − βm−12

Rm−1 |hm−1|2 = 0, m = 2, · · · ,M. (10)

Considering |hm−1|2 < |hm|2, we have
βm−12

Rm−1 |hm−1|2 − βm|hm|2

=
1

ln 2

(
1

am+ σ2

|hm|2
− 1

am+ σ2

|hm−1|2

)
>0, m=2, · · · ,M.(11)

Since βm ≥ 0 for all m = 1, · · · ,M , we have
βm−12

Rm−1 |hm−1|2 > βm|hm|2 ≥ 0. Thus, we can obtain
βM−1 > 0, · · · , β1 > 0, owing to the fact that the probability
of hm = 0 is zero for all m = 1, · · · ,M . If βM > 0, we
assure that the constraints in (7c) are satisfied via |hm|2am+
σ2−2Rm |hm|2am+1−2Rmσ2 = 0 for all m = 1, · · · ,M ,
which implies that the minimum rate constraints (5c) hold with
equality for all users. Thus, the optimal value of problem (5)
is
∑M

m=1 Rm, and the rate maximization problem (5) becomes
finding the linear feasible set, which can be effectively solved.
Since problem (5) can be easily solved when βM > 0, we
consider the case βM = 0 in the following.

Owing to that minimum rate constraints (5c) hold with
equality for all m < M , we find that the additional power is
allocated to the user with the highest channel gain and other
users are allocated with the minimum transmission power to
meet the minimum rate requirements. Now, it remains optimal
to solve constraints (5c) with equality for m < M . We have

am+1 =
am
2Rm

− (2Rm − 1)σ2

2Rm |hm|2
, ∀1 ≤ m < M. (12)

Using (9), it gives

am+1=
Pmax∏m
i=1 2

Ri
−

m∑
i=1

(2Ri−1)σ2

|hi|2
∏m

j=i 2
Rj

, ∀1 ≤ m < M.(13)

Recalling that am =
∑M

l=m pl, we can obtain

pm =

{
am − am+1 if m < M

am if m = M.
(14)

By inserting (13) into (14), we have

pm=


Pmax(2Rm−1)∏m

i=1 2Ri
+

σ2(2Rm−1)
|hm|22Rm

−
∑m−1

i=1
(2Rm−1)(2Ri−1)σ2

|hi|2
∏m

j=i 2
Rj

if m < M

Pmax∏M−1
i=1 2Ri

−
∑M−1

i=1
(2Ri−1)σ2

|hi|2
∏M−1

j=i 2Rj
if m = M.

(15)

Substituting (15) into objective function (5a), we can obtain
the optimal sum rate of problem (5) in closed form as

log2

(
1+

Pmax|hM |2

σ2
∏M−1

i=1 2Ri

−
M−1∑
i=1

|hM |2
(
2Ri−1

)
|hi|2

∏M−1
j=i 2Rj

)
+

M−1∑
m=1

Rm, (16)

where the first term is the rate of user M with largest channel
gain and the second term is the sum rate of all other users.

Now, we consider the special case with equal channel gains
remained to be discussed. Assume that there are two users
with the same channel gain, i.e., |hm−1|2 = |hm|2. Under this
case, we can define a new user, m′, with Rm′ = Rm−1+Rm,
and then calculate the optimal power allocation strategy, i.e.,
(p∗1, · · · , p∗m−2, p

∗
m′ , p∗m+1, · · · , p∗M )T for users {1, · · · ,m −

2,m′,m + 1, · · · ,M} according to (15). Based on (3), we
have
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log2

(
|hm−1|2am−1 + σ2

|hm−1|2am + σ2

)
+ log2

(
|hm|2am + σ2

|hm|2am+1 + σ2

)
= log2

(
|hm|2

∑M
l=m−1 pl + σ2

|hm|2am+1 + σ2

)
, (17)

which means that the sum rate of user m − 1 and user m
is determined by the sum power pm−1 + pm. In the optimal
power allocation strategy for user m− 1 and user m, we then
arbitrarily allocate power p∗m−1 and p∗m which satisfy p∗m−1+
p∗m=p∗m′ and the minimum rate constraints r∗m−1≥Rm−1 and
r∗m ≥Rm. 1) If m ̸= M , we find that r∗m′ =Rm′ =Rm−1+
Rm based on (12) with the optimal power allocation strategy.
Further from (17), we have r∗m−1+r∗m = r∗m′ = Rm−1+Rm.
Then, r∗m−1 = Rm−1 and r∗m = Rm, which indicates that the
optimal power for user m − 1 and user m can be presented
as (15). 2) If m = M , we observe that r∗m′ ≥ Rm′ according
to (5c) with the optimal power allocation strategy. If we set
r∗m−1 = Rm−1 and r∗m = r∗m′ −Rm−1, the optimal power for
user m− 1 and user m can also be presented as (15).

In summary, we conclude that the globally optimal power
allocation for problem (5) is determined in closed form in (15),
and the corresponding optimal sum rate is given in (16).

IV. NUMERICAL RESULTS

We consider that there are 10 users uniformly distributed
in a square area of size 300 m × 300 m. In modeling
the propagation environment, the large-scale path loss is
L(d) = 37 + 30 log(d), where the unit of d is meter, and the
standard deviation of shadow fading is 4 dB. The noise power
is assumed to be -104 dBm. We consider equal minimum rate
requirement, i.e., R1 = · · · = RM = Rmin.

The proposed optimal power allocation scheme for rate
maximization of NOMA is labeled as ‘OPA-NOMA’. We com-
pare the proposed algorithm with the fairness power allocation
scheme of NOMA [6], which is labeled as ‘FPA-NOMA’. For
the comparison between NOMA and conventional OMA, we
use a TDMA system [11, Sec. 5.3] as a baseline. The optimal
power allocation of TDMA system is labeled as ‘OPA-TDMA’.

In Fig. 1, we investigate the sum rate versus minimum rate
requirement. For both OPA-NOMA and OPA-TDMA, we find
that the sum rate decreases with the minimum rate requirement
due to the fact that the increase of minimum rate requirement
requires the BS to allocate more power to the users with worse
channel gains. For the FPA-NOMA, the sum rate remains the
same with the minimum rate requirement because that the rates
for all users are set the same to ensure user fairness [6]. The
proposed OPA-NOMA outperforms the FPA-NOMA in terms
of sum rate especially when the minimum rate requirement is
small. Moreover, the sum rate approaches zero faster for the
OPA-TDMA. This is because the transmission power of the
BS is not large enough for satisfying high rate demand by
TDMA, which implies that NOMA is more suitable for high
rate demand transmission.

V. CONCLUSION

In this paper, we have investigated the power allocation of
maximizing the sum rate of a SISO NOMA system. We prove
that it is optimal for each user to decode the messages of users
with poorer channel gains first. We also prove that this sum
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Fig. 1. Sum rate versus minimum rate requirement with Pmax = 30 dBm.

rate maximization problem is a convex problem, and we have
obtained the optimal power allocation in closed form.

APPENDIX A
Before proving Theorem 1, we present the following lemma.
Lemma 1: The optimal decoding order of user 1 is {1}.

Proof: There is an arbitrary strategy {D, ppp}, where D =
{D1, · · · ,DM}, Dm is the decoding order of user m. For
the sake of clear exposition, we temporarily first consider the
special case that there are only two users, i.e., M = 2. Assume
that D1 ̸= {1}, i.e., D1 = {2, 1}. Denote a new decoding
order set D′ = {D′

1,D′
2}, where D′

1 = {1}, D′
2 = {1, 2}.

In the following, we show that the sum rate with strategy
{D′, ppp} is no less than the sum rate with strategy {D, ppp},
which indicates that arranging decoding order strategy D
would always increase the sum rate with given power ppp.

With strategy {D, ppp}, the achievable rate of user 1 to detect
the message of user 2 and user 1 can be expressed as

r12=log2

(
1+

|h1|2p2
|h1|2p1+σ2

)
, r11=log2

(
1+

|h1|2p1
σ2

)
,

respectively. Then, we have∑
k∈D1

r1k = log2

(
|h1|2(p1 + p2) + σ2

σ2

)
. (18)

With strategy {D′, ppp}, the achievable rate of user k ∈ D1

to detect the message of user j ≤ k is

r′kj=log2

(
1+

|hk|2pj
|hk|2

∑M
l=j+1 pl+σ2

)
. (19)

Since |h1|2 ≤ |h2|2, we can obtain

r′11=log2

(
1+

p1

p2+
σ2

|h1|2

)
≤ log2

(
1+

p1

p2+
σ2

|h2|2

)
=r′21. (20)

Denote the achievable rate of user m with strategy {D, ppp}
and {D′, ppp} as rm and r′m, respectively. Then, to guarantee
the successful decoding order, we have

rm= min
l∈{s|m∈Ds}

rlm, r′m= min
l∈{s|m∈D′

s}
r′lm (21)

for m = 1, 2. Based on (18)-(21), we have

r′1+r′2=r′11+r′22=log2

(
1+

p1

p2+
σ2

|h1|2

)
+log2

(
1+

p2
σ2

|h2|2

)
(a)

≥ log2

(
1+

p1

p2+
σ2

|h1|2

)
+log2

(
1+

p2
σ2

|h1|2

)

= log2

(
|h1|2(p1 + p2) + σ2

σ2

)
= r12 + r11 ≥ r1 + r2,(22)

where (a) follows from the fact that |h1|2 ≤ |h2|2. From (22),
Lemma 1 can be proved for the special case with two users.
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The philosophy of proving the Lemma 1 for generally
multiple users, i.e., M > 2, is analogous to that of M = 2 ex-
emplified above. Specially, for M > 2, we assume that user 1
needs to decode n ≥ 1 users before decoding its own message,
and the decoding order of user 1 is D1 = {i1, i2, · · · , in+1},
where in+1 = 1. Let set {i1, i2, · · · , in+1} rearrange in
an increasing order {j1, j2, · · · , jn+1} where j1 = 1 and
j1 < j2 · · · < jn+1. Denote D′ = {D′

1, · · · ,D′
M} where

D′
jk

= {j1, j2, · · · , jk} for k = 1, · · · , n + 1, and D′
l = Dl

for all l ∈ {1, · · · ,M} \ D1. By using the same method in
(18)-(22), we can show that the sum rate with strategy {D′, ppp}
is no less than the sum rate with strategy {D, ppp}.

According to Lemma 1, we have proven that the optimal
decoding order of user 1 is {1}. Based on (20) and (21), we
can observe that the sum rate of the system is nondecreasing
if user k > 1 can decode the message of user 1. Hence, we
can prove that the optimal decoding order of user 2 is {1, 2}
by using the same method in (18)-(22). With the recursion
method, we can prove that the optimal decoding order of user
m is {1, · · · ,m}.

APPENDIX B
We first prove that problem (5) is convex. Since the con-

straints of problem (5) are linear, we only need to check that
the objective function (5a) is concave. In the following, we
show that the Hessian matrix in objective function (5a) is
negative semi-definite. Start with rewriting objective function
(5a) as

R = log2(|h1|2a1 + σ2)− log2(σ
2) +

M∑
m=2

[
log2(|hm|2am + σ2)− log2(|hm−1|2am + σ2)

]
,(23)

where R is the sum rate of the system. Since am =
∑M

l=m pl,
we have ∂am/∂pl = 1 for l ≥ m and ∂am/∂pl = 0 for
l < m. Then, the second-order derivative of R equals

∂2R

∂pm∂pl
=

1

ln 2

m∑
k=2

(
|hk−1|4

(|hk−1|2ak + σ2)2
− |hk|4

(|hk|2ak + σ2)2

)
− |h1|4

(ln 2)(|h1|2a1 + σ2)2
, ∀l=m, · · · ,M. (24)

From (24), we find that ∂2R/(∂pm∂pl) = ∂2R/∂p2m for any
l ≥ m. Therefore, denoting qm = ∂2R/∂p2m, the Hessian
matrix HHH of (5a) has the following structure:

HHH =


q1 q1 · · · q1
q1 q2 · · · q2
...

...
...

q1 q2 · · · qM

. (25)

Let us define TTT = −HHH . We show that TTT is positive semi-
definite through the fact that all the principal minors of TTT
are non-negative. According to (25), the m-th order principal
minor of TTT is

Tm=

∣∣∣∣∣∣∣∣
−q1 −q1 · · · −q1
−q1 −q2 · · · −q2

...
...

...
−q1 −q2 · · · −qm

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
−q1 −q1 · · · −q1
0 q1−q2 · · · q1−q2
...

...
...

0 0 · · · qm−1−qm

∣∣∣∣∣∣∣∣
= −q1

m∏
k=2

(qk−1 − qk) (26)

for all m = 1, · · · ,M . Since −q1 = |h1|4
(ln 2)(|h1|2a1+σ2)2 ≥ 0,

and for 2 ≤ k ≤ M ,

qk−1−qk =
|hk|4

(ln 2)(|hk|2ak + σ2)2
− |hk−1|4

(ln 2)(|hk−1|2ak + σ2)2

=
1

(ln 2)
(
ak + σ2

|hk|2

)2 − 1

(ln 2)
(
ak + σ2

|hk−1|2

)2 (b)

≥ 0,

where (b) holds because |hk|2 ≥ |hk−1|2, and we have from
(26) that Tm≥0 for m = 1, · · · ,M . Thus, matrix TTT is positive
semi-definite, which implies that HHH ≼ 000, and equivalently
function (5a) is concave. As a result, problem (5) is convex.

Then, we prove the feasibility condition for (5). To prove
this, we denote

Q=

min
ppp≥000

M∑
m=1

pm

s.t.
∑

|hm|2am + σ2 ≥ 2Rm
(
|hm|2am+1 + σ2

)
, ∀m.

From (5b), (5c), and (5d), we can find that problem (5) is
feasible if and only if Q ≤ Pmax. If there exists m such that∑

|hm|2am + σ2 > 2Rm
(
|hm|2am+1 + σ2

)
, we can further

strictly decrease am while keeping the inequality still valid.
Then, we can also sequently decrease am−1, · · · , a1. Since
Q = a1, we observe that constraints (5c) hold with equality
for all m, as otherwise Q can be further improved. Setting
constraints (5c) with equality yields

am+1 =
am
2Rm

− (2Rm − 1)σ2

2Rm |hm|2
, ∀1 ≤ m ≤ M. (27)

Owing to that aM+1 = 0, we can obtain aM = (2RM −1)σ2

|hM |2 . By
using the recursion method, we have Q =

∑M
m=1 pm = a1 =∑M

i=1
(
∏i−1

j=1 2Rj )(2Ri−1)σ2

|hi|2 . Hence, the feasibility condition
for (5) is achieved as (6).
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