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Abstract

Random decision tree is an ensemble of decision trees.
The feature at any node of a tree in the ensemble is cho-
sen randomly from remaining features. A chosen dis-
crete feature on a decision path cannot be chosen again.
Continuous feature can be chosen multiple times, how-
ever, with a different splitting value each time. Dur-
ing classification, each tree outputs raw posterior prob-
ability. The probabilities from each tree in the en-
semble are averaged as the final posterior probability
estimate. Although remarkably simple and somehow
counter-intuitive, random decision tree has been shown
to be highly accurate under 0-1 loss and cost-sensitive
loss functions. Preliminary explanation of its high ac-
curacy is due to the “error-tolerance” property of prob-
abilistic decision making. Our study has shown that the
actual reason for random tree’s superior performance is
due to its optimal approximation to each example’s true
probability to be a member of a given class.

Introduction
Given an unknown target functiony = F (x) and a set of
examples of this target function{(x, y)}, a classification al-
gorithm constructs an inductive model that approximates the
unknown target function. Each examplex is a feature vector
of discrete and continuous values such as age, income, edu-
cation, and salary.y is drawn from a discrete set of values
such as{fraud, nonfraud}. A classification tree or decision
tree is a directed single-rooted acyclic graph (sr-DGA) or-
dered feature tests. Each internal node of a decision tree
is a feature test. Prediction is made at leaf nodes. Deci-
sion trees classify examples by sorting them down the tree
from the root to some leaf node. Each non-leaf node in the
tree specifies a test of some feature of that example. For
symbolic or discrete features, each branch descending from
the node specifies to one of the possible values of this fea-
ture. For continuous values, one branch corresponds to in-
stances with feature value≥ the threshold and another one
< the threshold. Different instances are classified by dif-
ferent paths starting at the root of the tree and ending at a
leaf. Some instances, e.g., with missing attribute values etc.,
may be split among multiple paths.w is the weight of an
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instancex; it is set to 1.0 initially or other real numbers pro-
portional to the probability thatx is sampled. Whenx splits
among multiple paths, the weight is split among different
paths usually proportional to the probability of that path.If
x has a missing value at an attribute test and the attribute has
value ‘A’ with probability 0.9 and value ‘B’ with probabil-
ity 0.1 in the training data,x will be classified by both path
‘A’and path ‘B’ with weights0.9w and0.1w respectively.
Since every path is unique and every possible split is dis-
joint, the sum of all weights at every leaf node is the sum of
the weight of every instance. A leaf is a collection of exam-
ples that may not be classified any further. Ideally, they may
all have one single class, in which case, there is no utility
for further classification. In many cases, they may still have
different class labels. They may not be classified any further
because either additional feature tests cannot classify better
or the number of examples are so small that fails a given
statistical significance test. In these cases, the prediction at
this leaf node is the majority class or the class label with the
most number of occurrences. Since each path from the root
to a leaf is unique, a decision tree shatters the instance place
into multiple leaves.

The performance of a decision tree is measured by some
“loss function” specifically designed for different applica-
tions. Given a loss functionL(t, y) wheret is the true la-
bel andy is the predicted label, an optimal decision tree is
one that minimizes the average lossL(t, y) for all exam-
ples, weighted by their probability. Typical examples of loss
functions in data mining are 0-1 loss and cost-sensitive loss.
For 0-1 loss,L(t, y) = 0 if t = y, otherwiseL(t, y) = 1.
For cost-sensitive loss,L(t, y) = c(x, t) if t = y, otherwise
L(t, y) = w(x, y, t). In general, when correctly predicted,
L(t, y) is only related tox and its true labelt. When mis-
classified,L(t, y) is related to the example as well as its true
label and the prediction. If the problem is not ill-defined, we
expectc(x, t) ≤ w(x, t, y). For many problems,t is nonde-
terministic, i.e., ifx is sampled repeatedly, different values
of t may be given. This is due to various reasons, such as
noise in the data, inadequate feature set, insufficient feature
precision or stochastic nature of the problem (i.e., for the
samex, F (x) returns different value at different time). It
is usually difficult to know or measure apriori if a problem
is deterministic. Without prior knowledge, it is hard to dis-
tinguish noise from stochastic nature of the problem. The
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optimal decisiony∗ for x is the label that minimizes the ex-
pected lossEt(L(t, y∗)) for a given examplex whenx is
sampled repeatedly and differentt’s may be given. For 0-1
loss function, the optimal prediction is the most likely label
or the label that appears the most often whenx is sampled
repeatedly. For cost-sensitive loss, the optimal prediction is
the one that minimizes the empirical risk.

To choose the optimal decision,a posteriori probability
is usually required. In decision tree, assume thatnc is the
number or weight of examples with class labelc at a leaf
node, andn is the total number or weight of examples at the
leaf. The rawa posteriori probability can be estimated as

P (c|x) =
nc

n
(1)

It is usually NP-hard to find the most accurate deci-
sion tree on a given training data. Most of the practical
techniques is to use “greedy” to approximate the simplest
model with various heuristics. For decision trees, typical
heuristics include information gain (Quinlan 1993), gini in-
dex (Mehta, Agrawal, & Rissanen 1996), Kearns-Mansour
criterion (Kearns & Mansour 1996) among others. After the
model is completely constructed, it is then further simplified
via pruning with different techniques such as MDL-based
pruning (Mehta, Rissanen, & Agrawal 1995), reduced error
pruning (Quinlan 1993), cost-based pruning (Bradfordet al.
1998), among others. Although no longer NP-hard, most of
these techniques still require significant amount of compu-
tation as well as storage. Most algorithms require multiple
scans of the training data and require data to be held in main
memory.

Random decision tree is proposed in (Fanet al. Nov
2003). It is an ensemble of decision trees trained randomly.
When training each tree, the splitting feature at each node
is chosen randomly from any “remaining” features. A cho-
sen discrete feature on a particular decision path (starting
from the root of the tree to the current node) cannot be cho-
sen again since it is useless to test the same discrete feature
more than once, i.e., each split path will have the same dis-
crete feature value. However, continuous features can be
chosen multiple times, each time with a different randomly
chosen spliting value. During classification, each tree out-
puts raw posterior probability. The probabilities from each
tree in the ensemble are averaged as the final posterior prob-
ability estimate. Although remarkably simple and somehow
counter-intuitive, random decision tree has been shown to be
highly accurate under both 0-1 loss and cost-sensitive loss
functions. Preliminary explanation provided in (Fanet al.
Nov 2003) is due to the “error-tolerance” property of proba-
bilistic decision making. Borrowing from (Fanet al. Nov
2003), assuming 0-1 loss function and a binary problem.
The probability threshold to predictx to be a member of
classy is 0.5, i.e., we predictx to be a member of classy
iff P (y|x) > 0.5. Under this situation, an estimated prob-
ability of 0.99 and 0.51 will have exactly the same effect,
predictingx to be a member ofy, since both 0.99 and 0.51
are higher than the decision threshold of 0.5.

Our study has shown that the actual reason for random
tree’s superior performance is due to its optimal approxima-
tion to each example’s true probability to be a member of

a given class. On the reliablity curve, the probability output
by random tree matches the true probability closely through-
out the range (between 0 and 1). However, the best single
decision tree (one trained with best spliting criteria suchas
information gain) matches well only at points close to either
0 or 1. In the range around 0.5, single best decision tree
either significantly over-estimates or under-estimates.

Random Decision Tree
The “canonical” form of random decision tree first builds
the structure ofN random decision trees without the data.
It then updates the statistics of each node by scanning the
training examples one by one. The feature set is provided
to construct the structure of the tree. At each node of the
tree, a remaining feature is completely randomly chosen de-
spite of the training data. A discrete feature can be used
only once in a decision path starting from the root of the
tree till the current node. Continuous features can be dis-
cretized and treated as discrete features. Another approach
is to pick a random dividing point (i.e.,< and≥ the divid-
ing value) each time that this continuous feature is chosen.
Since a different dividing point is picked whenever a con-
tinuous feature is chosen, it can be used multiple times in
a decision path. After the tree structures are finalized, the
dataset is scanned only once to update the statistics of each
node in every tree. These statistics are simply to track the
number of examples belonging to each class that are “clas-
sified” by each node. These statistics are used to compute
the posteriori probability (Eq. 1). Empty nodes are removed
from the random trees. To classify an example, thea poste-
riori probability output from multiple trees are averaged as
the final probability estimate. In order to make a decision, a
loss function is required in order to minimize the expected
loss when the same example is drawn from the universe re-
peatedly. When the number of features are small, generate
empty trees are realistic. However, when the number of fea-
tures are a large, generated empty trees before scanning the
data can lead to astronomical amount of memory usage. In
our implementation, we do not generate a node unless some
example in the training datasets will actually go there. In
other words, we do not generate empty nodes. On average,
we find that a random tree is about 2 to 3 times bigger than
a single best tree when stored in the Linux file system.

According to (Fanet al. Nov 2003), the minimal num-
ber of decision trees are 30. That is when thet-distribution
is nearly identical to normal distribution. When the distri-
bution of the data is extremely skewed, however, it usually
requires a sample size of about 50. They have also discussed
the depth of the tree. One heuristic suggested in (Fanet al.
Nov 2003) is to go about half of the number of features,
since that is when the combinations to sample half out of
n items maximizes in order to create diversity. One restric-
tion of the random decision tree as well as other state-of-the-
art decision tree learners (such as c4.5 and dti) is that they
all have a “single feature information gain bias”. In other
words, the data must have features with information gain in-
dividually but not “collectively.” An example to show “sin-
gle feature information gain bias” can be found in (Fanet al.
Nov 2003).
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Figure 1: donation: reliability plot of best and random tree

Experiment
Data Set
We have chosen three datasets in this study. The first one
is the famous donation dataset that first appeared in KDD-
CUP’98 competition. Suppose that the cost of requesting a
charitable donation from an individualx is $0.68, and the
best estimate of the amount thatx will donate isY (x). Its
benefit matrix (converse of loss function) is:

predictdonate predict¬donator
actualdonate Y(x) - $.0.68 0
actual¬donate -$0.68 0

The accuracy is the total amount of received charity minus
the cost of mailing. Assuming thatp(donate|x) is the es-
timated probability thatx is a donor, we will solicit tox
iff p(donate|x) · Y (x) > 0.68. The data has already been
divided into a training set and a test set. The training set con-
sists of 95412 records for which it is known whether or not
the person made a donation and how much the donation was.
The test set contains 96367 records for which similar dona-
tion information was not published until after the KDD’98
competition.

The second data set is a credit card fraud detection
problem. Assuming that there is an overheadv ∈
{$60, $70, $80, $90} to dispute and investigate a fraud and
y(x) is the transaction amount, the following is the benefit
matrix:

predictfraud predict¬fraud

actualfraud y(x) - v 0
actual¬fraud -v 0

The accuracy is the sum of recovered frauds minus investiga-
tion costs. Ifp(fraud|x) is the probability thatx is a fraud,
fraud is the optimal decision iffp(fraud|x) · y(x) > v.
The dataset was sampled from a one year period and con-
tains a total of .5M transaction records. The features (20

(a) unpruned best tree (b) pruned best tree
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Figure 2: adult: reliability plot of best and random tree

in total) record the time of the transaction, merchant type,
merchant location, and past payment and transaction his-
tory summary. We use data of the last month as test data
(40038 examples) and data of previous months as training
data (406009 examples).

The third dataset is the adult dataset from UCI repository.
We use the natural split of training and test sets. The train-
ing set contains 32561 entries and the test set contains 16281
records. The feature set contains 14 features that describe
the education, gender, country of origin, martial status, cap-
ital gain among others. Each data item indicates if an indi-
vidual earns more than $50K or less.

Decision Tree Learner
The experiments were based on C4.5 release 8 (Quinlan
1993). The single best tree is constructed by running C4.5
with all the default settings. It computes both the unpruned
and pruned decision trees. The random decision tree algo-
rithm is a modified version of C4.5 that does not compute in-
formation gain. It chooses remaining features randomly, i.e.,
discrete feature is chosen only once in a decision path and
continuous feature can be chosen multiple times yet with a
different splitting threshold. After a splitting feature is cho-
sen, the data items with the same feature values are grouped.
The procedure is run recursively until either the predefined
tree depth is met or the splitted node becomes empty.

Results
Reliability Plot “Reliability plot” shows how reliable the
“score” of a model is in estimating the empirical probability
of an examplex to be a member of a classy. To draw a
reliability plot, for each unique score value predicted by the
model, we count how many examples in the data have this
same score (e.g.,N ), and how many among them have class
labely (e.g.,n). Then the empirical class membership prob-
ability is simply n

N
. Most practical datasets are limited in
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(a) unpruned best tree (b) pruned best tree
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(a) depth = 0.5 (b) depth = 1.0

Figure 3: ccf: reliability plot of best and random tree

size; some scores may just cover a few number of examples
and the empirical class membership probability can be ex-
tremely over or under estimated. To avoid this problem, we
normally divide the range of the score into continuous bins
and compute the empirical probability for examples falling
into each bin.

The reliability plots for single best tree and random tree
are shown in Figures 1 to 3. Figure 1 is for the donation
dataset. There are 1000 bins of equal size; in other words,
each bin covers a range of 1.0/1000 = 0.001. Thex-axis is
the predicted score by the model and they-axis is the match-
ing empirical class membership probability measured from
the data. To visually compare the performance, we also draw
the perfect straight line where every score exactly matches
the true probability. The top two plots are for single best
unpruned decision tree. Since the default pruning procedure
of C4.5 deems every internal node of the unpruned decision
tree as statistically insignificant, the pruned decision tree has
just one useless node predicting everybody is a non-donor.
Since most points are within the range between 0 and 0.35,
we “enlarged” that area on a separate plot on the immediate
right. As we can see clearly that the single best unpruned
tree’s score is like a “cloud” that scatters around the per-
fect matching line. However, the random decision tree (with
depth of 0.5) matches the true probability very well. To sum-
marize these results, we usemean square error or MSE to
measure how closely the score matches the empirical proba-
bility. Assuming thatnj is the number of examples covered
in bin j, sj is the score or predicted probability andpj is

the empirical probability, thenMSE =

√
nj ·(sj−pj)2∑

nj

. The

MSE for single best unpruned tree and random tree are la-
belled on the top of each reliability plot. The MSE for single
best unpruned tree is 0.01611 while the MSE for random tree
is 0.01039.

The reliability plots for the adult and credit card fraud data

Single Best Unpruned Tree
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(a) training reliability plot (b) testing reliability plot

Random Trees with Depth = 0.5
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(a) training reliability plot (b) testing reliability plot

Figure 4: donation: reliability plot of best and random tree
show overfitting of single best tree and “non-overfitting” by
random tree

sets are shown in Figures 2 and 3 respectively (with bin size
100). As we can see clearly that both single best pruned and
unpruned tree’s posterior probability is far from the empiri-
cal class membership probability; the visual effect is thatthe
empirical probability scatters widely around the score value,
and this is particularly true in the middle range around 0.5.
However, the random tree’s probability estimates are very
close to the true empirical probability throughout the whole
range.

Overfitting

One interesting observation we have found is that random
decision tree doesn’t overfit the training data at all. To study
the effect of overfitting, we have run an additional test that
“trains on thetest data and then predicts on the same test
data” (called “training reliability plot”) and compare it with
the previous results of “training ontrain data and test on the
test data” (called “testing reliability plot”). The results on
donation and adult datasets are shown in Figures 4 and 5.
One important point is that the exact training reliability plot
of a single best tree should be the one where every unique
score falls exactly on the “perfect line”. Since the whole 0-
1 probability range is divided into equal sized bins and we
have finite number of examples, there will be some small er-
rors. Visually, some of the points may not be exactly on the
“perfect line”. However, this is sufficient for comparing sin-
gle best and random tree because they use exactly the same
bin size.

As we can see clearly from Figure 4 and 5, for the sin-
gle best decision tree, there is a big difference between the
training reliability plot and the testing reliability plot. The
training reliability plot on the left becomes much less than
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Single Best Unpruned Tree
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(a) training reliability plot (b) testing reliability plot

Random Tree with Depth = 0.5
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(a) training reliability plot (b) testing reliability plot

Figure 5: adult: reliability plot of best and random tree to
show overfitting of single best tree and “non-overfitting” of
random trees

perfect when the same model is tested on a different dataset,
as shown in the testing reliability plot on the right. In the
testing reliability plots, we can see that the “points” are scat-
tered widely around the perfect line. The MSE for training
and testing on the same dataset is 0.0051, and MSE for train-
ing and testing on a different dataset is 0.016. On the other
hand, the training and testing reliability plots for the ran-
dom tree are nearly identical for both the donation and adult
datasets.

Selectivity

One important, but often ignored, property of a model is its
“selectivity”. The problem of selectivity comes from the fact
that most models, especially decision trees, can only output
a discrete set of “unique probability values” since there are
only a limited number of terminal nodes and each node can
just output one probability value. This fact has a serious
practical consequence. With different threshold values, there
will be only a limited number of true positive and false posi-
tive values. When we draw the paired true positive and false
positive values on the ROC curve, we will actually never
see a continuous line ranging from (0,0) to (1,1). What we
will see is a discrete set of points that are scattered in this
range. Any areawithout a point is undefined. Some suggest
to draw a line connecting these defined points. However, the
area connecting the points are undefined; we cannot choose
any undefined point since there is actually no value there at
all. Due to this reason, it is practically not very useful to
connect points at all.

1The MSE is computed using binning, so it still has a non-zero
value

Plot with “points” to show broken ROC curve
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Compare: plot with lines that “connect” breaking points
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Figure 6: donation: exhaustive ROC plot of best and random
tree

We define “selectivity” to measure how good is an ROC
curve. It takes two facts into account. The first fact is
how uniform it is between consecutive false positive values.
When all available false positives spread evenly between 0-
1, the variance between consecutive values will be 0. In
other words, the lower this variance is, the more evenly false
positive values spreads. The second fact is how many unique
false positive values there are. The more unique values there
are, the more choices we can choose from. So we define
selectivity as the followingd = u

s
, wheres is the variance

between consecutive false positive values andu is the num-
ber of unique false positive values.

We have computed ROC curves for adult and donation
datasets exhaustively by choosing all unique probability val-
ues in posterior probability output as the decision threshold
and record its corresponding false positive and true positive
rates. Any duplicate entries are removed and the results are
shown in Figures 6 and 7. To show the idea of “selectivity”
clearly, we plot with “points” rather than “lines” on the two
top plots. This way, any areas in ROC without false positive
and true positive rates will be clearly exposed. In each ROC
curve, we have also shown the “selectivity” measure as de-
fined previously. The “selectivity” problem for single best
decision tree is clearly shown, particularly in the donation
dataset. For the donation dataset as shown in Figure 6, the
single best tree only has 11 broken clusters spread out the
range, while the random tree has visually continuous ROC
curve. The selectivity measure is 238 for single unpruned
tree and 23358 for random tree (100 times higher than 238).
As shown in Figure 7, the ROC curves for adult data have
similar phenomenon, but the single best tree’s ROC is not
as broken as that of the donation data. In the bottom part
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Plot with “points” to show broken ROC curve
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(a) Best Unpruned Tree (b) Random Tree Depth=0.5

Compare: plot with lines that “connect” breaking points
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Figure 7: adult: exhaustive ROC plot of best and random
tree

of Figure 6 and Figure 7, we plot the ROC curves of single
best unpruned tree and random tree in the same figure. For
visual clarity, we plot with “lines” to connect broken curves.
Strictly speaking, any points not in the top exhaustive ROC
curve is not defined. This is just to compare the difference in
true positive value for the same false positive value. As we
can see in the ROC curve, for the donation dataset, true pos-
itive of the random tree is mostly the same or slightly higher
than single best unpruned tree for the same false positive
value. For the adult data set, the random tree’s true positive
rate is consistently higher than that of single best unpruned
tree.

Related Work
Breiman has proposed the “random forests”
method (Breiman 2001). In random forests, random-
ness is injected by randomly sampling a subset of remaining
features (those not chosen yet by a decision path) and then
choosing the best spliting criteria from this feature subset.
The chosen size of the subset has to be provided by the
user of random forests. However, in random decision tree,
the spliting feature is randomly chosen from any remaining
features not chosen yet in the current decision path. There
is no information gain (or any other criteria) involved in
choosing this feature and when it will be chosen. In other
words, random decision tree doesn’t use any heuristics
to choose feature. The data is used to update the class
distribution in each node. However, in Breiman’s random
forests, information gain or other criteria is still used to
choose the best feature among randomly chosen feature
subsets. This has great impact on the efficiency between
training a random forest or a random tree since computing

any heuristics is expensive. Another important distinction is
that Breiman’s random forests performance simple voting
on the final prediction. In other words, each tree votes 1
on one of the class labels. The class labels with the highest
vote is the final prediction. However, random tree, each
tree output raw probability and the probability outputs from
multiple tree are averaged as the final probability. .

Conclusion
We have extensively studied the posterior probability es-
timation by previously proposed random decision method.
We have found that random decision tree can faithfully esti-
mate the empirical class membership probability. In the sta-
tistical reliability curve, the estimated probability by random
decision tree closely matches the empirical class member-
ship probability measured from the data. We also found that
random decision tree’s ability to estimate posterior proba-
bility does not overfit at all. The probability reliability curve
of the training set is very close to the reliability curve on
a unseen validation or test dataset. We have also studied
the “selectivity” of ROC curve and defined how to measure
“selectivity”. We have found that the ROC curve of random
decision tree is remarkably continuous throughout the range.
Comparing with random decision tree, a single best decision
doesn’t match the empirical class membership probability
well, overfits on the training data easily, and has broken or
discontinuous ROC curves.
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