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Abstract— We study the problem of sequential detection for
binary hypothesis testing using multiple sensors. We consider a
randomized sensor selection strategy in which one sensor can be
active at any given time step. We obtain an optimal sequential
test using dynamic programming. We also show that the optimal
sequential test corresponds to the Sequential Probability Ratio
Test (SPRT) when the sensor selection process is stationary.
Further, we prove that Wald-Wolfowitz theorem holds true for
sequential test with multiple sensors.

I. INTRODUCTION

With the advance in communication and processing tech-
nology, networks with distributed components are being pro-
posed widely. The different components of such distributed
systems work in cooperation to achieve a particular objective.
The class of hypothesis testing problems is one such appli-
cation [6] where multiple sensors collect information from
the environment. This collective information is used by the
system to infer the true hypothesis.

Using multiple sensors for detection may be desired as
different sensors may provide different “views of the world”.
For example, consider an object classification/detection prob-
lem where we need to classify/detect a three dimensional
object using multiple cameras located at different places.
The cameras view the object from different angles and
therefore, the collective information from the cameras can
be used to obtain more accurate and precise characteristics
of the object. The system also provides robustness because
if one camera fails, then other cameras can be used. Another
example can be a wireless sensor network which has multiple
sensors distributed over a geographical area and performing
detection collectively. Presence of multiple sensors increases
reliability, survivability and coverage of the system.

The use of multiple sensors introduces new challenges
like sensor management, sensor scheduling, sensor selection
and sensor fusion. We need to formulate a policy that
decides which sensor should collect information at what
time, and how this information should be combined to
obtain a final decision. Many works have focused on sensor
management.The problem of sensor management for linear
estimation has been widely considered (see, e.g. [1], [3], [5]
and the references therein). In [2], [6], the authors study
a decentralized detection problem where the fusion center
implements an optimal policy to combine information from
different sensors.

In the present work, we use a sequential detection rule
to perform a simple binary hypothesis testing using mul-
tiple sensors. Sequential tests are the class of tests where
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the number of observations are not fixed, but can vary
from one experiment to another. After each observation,
the experimenter has to decide whether to take one more
observation or to stop the experiment and make a decision.
More accurate decisions can be made by taking large number
of observations. However, there is a cost associated with
taking observations and sequential tests resolve the trade-
off between accuracy and experiment cost. A well known
example is the Sequential Probability Ratio Test (SPRT) [9]
developed by Wald. SPRT is optimal in the sense that for
a given error performance, it requires minimal number of
observations on an average [10]. We extend the conventional
SPRT to the case when multiple sensors are used for taking
observations.

There seem to be two main approaches in the literature
to solve sequential detection problems. One approach is
to formulate the sequential test as a solution to Bayesian
optimization problem [11], [12]. Dynamic programming is
applied to minimize the Bayesian cost. The dynamic pro-
gramming introduces complexity in the solution, but the
solution is optimal. SPRT is an example of tests obtained
through this approach. Another approach is to analyze the
sequential detection problem in asymptotic regime, where
the cost of taking observations is very small [12], [7].
Although this approach results in tractable solutions, the
asymptotically optimal results may not be optimal outside
the asymptotic regime. Further, there may be situations in
which there are limits on the average number of observations
from the sensors. For example, in a wireless sensor network
the sensors have limited energy and thus cannot take a large
number of observations. In such a scenario, the asymptotic
approach cannot be applied. Therefore, we take the dynamic
programming approach to solve the sequential detection
problem.

Many works ([3], [15], [14] and references therein) have
focused on sensor selection and management for detection
purposes. To manage the sensors, we choose a probabilistic
sensor selection strategy in which one sensor is chosen
randomly among multiple sensors at each time step. As
it has been shown in [1], a probabilistic sensor selection
strategy is a natural solution for wireless networks where
communication channels impose stochastic date loss from
sensors to fusion center. Further, for tractability, the sensor
selection probability distribution is assumed to be stationary
throughout the experiment. The sensors have different costs
of taking an observation that are constant throughout the
experiment. We formulate a Bayesian optimization problem
and obtain SPRT as an optimal solution to the problem. The
closest work to ours seems to be [8], where the authors



present a sensor selection strategy for multiple hypothesis
testing. However, they perform an asymptotic analysis and
obtain SPRT as a asymptotically optimal sequential test. An
important contribution of our work is that we show that SPRT
is optimal outside the asymptotic regime also using dynamic
programing. In [4], the authors present a deterministic sub-
optimal sensor selection strategy. It selects a subset of sensors
for each observation by heuristically using Kullback-Leibler
information. In contrast, our study shows that by choosing
the sensors in a probabilistic manner, we can obtain an
optimal and tractable sequential test that is similar to the
test performed with a single sensor.

The paper is organized as follows. In section II, we intro-
duce the notations, define the problem setup and introduce
the problem statement. In section III, we obtain an optimal
solution using the dynamic programming. In section IV, we
show that the optimal sequential test corresponds to an SPRT
and prove the existence of Wald-Wolfowitz theorem.

II. PROBLEM FORMULATION

We now formally define the problem setup. The notations
used here are motived from [11].

Notation: Random variable are denoted by uppercase
letters (eg. Z) and their realizations are denoted by low-
ercase letters (eg. z). Let Zji = (Zi, Zi+1, · · · , Zj) for
0 ≤ i ≤ j denote a sequence of random variables and
zji = (zi, zi+1, · · · , zj) denote a realization of this random
sequence. Let EZ [.] and EZ [.|y] denotes unconditional ex-
pectation w.r.t. Z and conditional expectation w.r.t. Z given
Y = y, respectively. Further, R+ denotes the non-negative
real line.

• Hypothesis Space: Let Φ = {θ0, θ1} denote the binary
hypothesis space or a set of all possible states of nature.
Let Θ denote the random binary hypothesis and θ denote
a realization of the random hypothesis. Let hypothesis
{θ0, θ1} be denoted by {H0, H1}. For example, H0 and
H1 may correspond to the hypothesis that the mean
of the observations is θ0 and θ1, respectively. Let the
a-priori probabilities of H0 and H1 be 1 − π and π,
respectively.

• Action Space: Let A denote the action space or the
set of all possible decisions available when the test is
stopped. Let a ∈ A denote a general state of nature.
For the given problem, A = Φ = {θ0, θ1}.

• Sensor Selection Space: Let K be the total number of
sensors available for taking measurements. Let S∞1 =
(S1, S2, · · · ) denote the random sensor selection se-
quence and Sji = (Si, Si+1, · · · , Sj) for 0 < i ≤ j
denote a subset of the random sequence. Sj denotes
the random sensor selected at time step j and the
sample space of Sj is the set S = {1, 2, · · · ,K}
for all j > 0. At each time step, a single sensor is
chosen with the stationary probability mass distribution

p = (p1, p2, · · · , pK) with
K∑
i=1

pi = 1, where pi is the

probability of selecting sensor i at any time step.

• Observation Space: Let X∞1 = (X1, X2, · · · ) de-
note the random observation sequence and Xj

i =
(Xi, Xi+1, · · · , Xj) for 0 < i ≤ j denote a subset
of this random sequence. The sample space of Xj is
denoted by X for all j > 0. At each time step, the
observation can be taken by any one sensor with the
probability distribution define above. Each observation
is assumed to be i.i.d. conditioned on the hypothesis
and selected sensor. Let f ji (xk) denote the probability
density of Xk under hypothesis Hi and sensor j for
i = 0, 1 and j = 1, 2, · · · ,K.

• Loss Function: Let L(θ, a) : Φ × A → R+ denote the
finite, non-negative loss function when the true state of
nature is θ and the terminal decision is a. For simplicity,
we assume a finite non-negative loss function

L(θ0, θ0) = 0 L(θ1, θ1) = 0,
L(θ0, θ1) = w01 L(θ1, θ0) = w10.

• Observation Cost: Let the cost of taking a measurement
from sensor j be dj for 1 ≤ j ≤ K. Each dj is con-
stant, finite, and non-negative. Let C∞1 = (C1, C2, · · · )
denote the random observation cost sequence and Cji =
(Ci, Ci+1, · · · , Cj) for 0 < i ≤ j denote a subset
of the random sequence. The random variable Cj is
distributed on the sample space C = {d1, d2, · · · , dK}
with the distribution p for all j > 0. Further, let the

mean observation cost be denoted by d̄ =
K∑
i=1

pidi.

• Stopping Rule: Let the stopping rule be
denoted by a sequence of functions ϕ =
(ϕ0, ϕ1(x1, s1), ϕ2(x2

1, s
2
1), · · · ) where ϕj : X j×Sj →

{0, 1}. Thus, at time step j, the rule ϕj decides to stop
or continue based on the observations collected and
the sensors used till that time step. If ϕj(x

j
1, s

j
1) = 1,

then the test is stopped, otherwise we continue
to take one more observation. The stopping rule
can be defined alternatively by a sequence of
functions ψ = (ψ0, ψ1(x1, s1), ψ2(x2

1, s
2
1), · · · ), where

ψj : X j ×Sj → {0, 1} is the stopping rule at time step
j, given that the test is not stopped till time step j − 1.
Formally,

ψj(x
j
1, s

j
1) =(1− ϕ0)(1− ϕ1(x1, s1))(1− ϕ2(x2

1, s
2
1))
(1)

· · · (1− ϕj−1(xj−1
1 , sj−1

1 ))ϕj(x
j
1, s

j
1).

• Stopping Time: The stopping time N can be define as

N = min{k : ϕk(xk1 , s
k
1) = 1} = {k : ψk(xk1 , s

k
1) = 1.}

• Terminal Decision Rule: When the test is stopped by
applying the stopping rule, a decision between the
available hypothesis is made by the terminal decision
rule(TDR) based on the available observations and the
sensors used. It is denoted by a sequence of functions
δ = (δ0, δ1(x1, s1), δ2(x2

1, s
2
1), · · · ) where δj : X j ×

Sj → A. The sequential detection rule is defined by
the pair (ϕ, δ).



• Risk Function: As discussed before, there exists a trade-
off between the accuracy and the observation cost as we
take more observations. To incorporate this trade-off, we
define the risk function as

R(π, (ϕ, δ)) = (2)
∞∑
j=0

EΘ,Xj
1 ,S

j
1

[
ψj(X

j
1 , S

j
1)
(
L(Θ, δj(X

j
1 , S

j
1))

+
j∑
i=1

Ci(Si)
)]
.

• Problem Statement: The goal is to find a sequential
detection rule (ϕ, δ) with the structure defined above,
that minimizes the overall risk R(π, (ϕ, δ)) of the
experiment. This solution is referred to optimal/Bayes
w.r.t. the risk R.

III. OPTIMAL SOLUTION VIA DYNAMIC PROGRAMMING

In this section, we solve the above optimization problem
through dynamic programming and derive an optimal se-
quential test. We first proceed by finding the optimal terminal
decision rule.

Theorem 3.1: Let δ̂j(x
j
1, s

j
1) denote the Bayes rule (op-

timal rule that minimizes the Bayes risk) for the bi-
nary hypothesis testing problem w.r.t. hypothesis space Φ,
the action space A, the observation space X , the sensor
space S and the loss function L based on observations
xj1 and selected sensors sj1. Then, for any fixed stop-
ping rule ϕ, the risk R(π, (ϕ, δ)) is minimized by δ̂ =
(δ̂0, δ̂1(x1, s1), δ̂2(x2

1, s
2
1), · · · ).

Proof: The risk in (2) can be expanded as

R(π, (ϕ, δ)) =
∞∑
j=0

EΘ,Xj
1 ,S

j
1

[
ψj(X

j
1 , S

j
1)L(Θ, δj(X

j
1 , S

j
1))
]

+
∞∑
j=0

EXj
1 ,S

j
1

[
ψj(X

j
1 , S

j
1)

j∑
i=1

Ci(Si))
]
.

The second summation term does not depend on δ and can
be ignored. The first summation term is minimized if we
choose δj for each j to minimize the term

EΘ,Xj
1 ,S

j
1

[
ψj(X

j
1 , S

j
1)L

(
Θ, δj(X

j
1 , S

j
1)
)]

= EXj
1 ,S

j
1

[
ψj(X

j
1 , S

j
1)EΘ

[
L
(

Θ, δj(X
j
1 , S

j
1)
)
| (xj1, s

j
1)
]]
,

which is minimized if we choose δj to minimize the term

EΘ

[
L
(

Θ, δj(X
j
1 , S

j
1)
)
| (xj1, s

j
1)
]
.

The above term corresponds to a Bayes risk given observa-
tions xj1 and selected sensors sj1 and thus, the fixed sample
size Bayes decision rule minimizes the given risk.

We observe that the optimal terminal decision rule is a
fixed sample size rule and is independent of the stopping
rule. If the test is stopped after taking k observations, then
the terminal decision is made independent of the stopping
rule, based on the the observations and selected sensors.

Now we find the optimal stopping rule. We truncate the
test at some finite time step J in the sense that at most J
observations are available for the test. Mathematically, it can
be stated as

ϕJJ(xJ1 ) = 1 or
J∑
j=0

ψJj (xj1) = 1,

where the superscript indicates that the test is truncated at
time step J .

We use dynamic programming to find the optimal trun-
cated stopping rule. Then, we let J → ∞ and obtain
the optimal non-truncated stopping rule. We minimize the
truncated risk using backward recursion which is described
as follows. Suppose we have taken J measurements. Then,
no more measurements can be taken and we incur a risk by
using the Bayes terminal decision rule based on (xJ1 , s

J
1 ). If

we reach J − 1 step, then we continue if the current risk
incurred based on (xJ−1

1 , sJ−1
1 ) is more than the expected

risk incurred given (xJ−1
1 , sJ−1

1 ), of taking one more mea-
surement and then stopping; otherwise we stop at J − 1
steps. Based on this comparison, we have found the optimal
ϕJJ−1. Now suppose that using this recursion, we have found
(ϕJi+1, · · · , ϕJJ). If we have taken i measurements, then we
continue if the current risk incurred based on (xi1, s

i
1) is more

than the expected risk given (xi1, s
i
1), of taking one more

observation and then using the stopping rule (ϕJi+1, · · · , ϕJJ)
from there on. In this way, we can find ϕJi recursively. We
now present the analysis formally.

The posteriori probability that θ1 is the true state of nature
given (xj1, s

j
1) is denoted by πxj

1,s
j
1

and is given by

πxj
1,s

j
1

=
π

j∏
i=1

fsi
1 (xi)

π
j∏
i=1

fsi
1 (xi) + (1− π)

j∏
i=1

fsi
0 (xi)

. (3)

As stated in Theorem 3.1, the optimal terminal decision
rule when the test is stopped is a fixed sample size Bayes
rule. For binary hypothesis testing, it can be stated as [11]

δ̂j(x
j
1, s

j
1) =


θ0 if πxj

1,s
j
1
<

w01

w01 + w10
,

any if πxj
1,s

j
1

=
w01

w01 + w10
,

θ1 otherwise.

(4)

Further, let the conditional minimum risk of stopping at time
step j and using the Bayes decision rule in (4) based on
(xj1, s

j
1) be denoted by Uj(x

j
1, s

j
1;π). It can be defined as

Uj(x
j
1, s

j
1;π) =


w10πxj

1,s
j
1

+
j∑
i=1

ci(si)

if πxj
1,s

j
1
<

w01

w01 + w10
,

w01(1− πxj
1,s

j
1
) +

j∑
i=1

ci(si) otherwise.

(5)
Note that the minimum risk depends explicitly on the a-
priori probability π. Further, let V Jj (xj1, s

j
1;π) denote the



conditional minimum risk based on (xj1, s
j
1) and using the op-

timal stopping rules (ϕ̂Jj , ϕ̂
J
j+1, · · · , ϕ̂JJ) for a test truncated

at time step J . We use dynamic programming to compute the
stopping rule and the conditional minimum risk recursively.

If we have obtained J measurements, then we stop
taking new measurements and clearly V JJ (xJ1 , s

J
1 ;π) =

UJ(xJ1 , s
J
1 ;π). If we are at step J − 1, then we can

either stop or continue. If we stop, we incur a risk
UJ−1(xJ−1

1 , sJ−1
1 ;π). If we continue, the expected risk will

be EXJ ,SJ
[UJ(XJ

1 , S
J
1 ;π)|(xJ−1

1 , sJ−1
1 )]. Thus, comparing

these two quantities, the stopping rule and minimum condi-
tional risk can be calculated as

ϕ̂JJ−1(xJ−1
1 , sJ−1

1 ) =


1 if UJ−1(xJ−1

1 , sJ−1
1 ;π)

≤ EXJ ,SJ
[UJ(XJ

1 , S
J
1 ;π)
|(xJ−1

1 , sJ−1
1 )],

0 otherwise,

V JJ−1(xJ−1
1 ,sJ−1

1 ;π) = min{UJ−1(xJ−1
1 , sJ−1

1 ;π),

EXJ ,SJ
[UJ(XJ

1 , S
J
1 ;π)|(xJ−1

1 , sJ−1
1 )].}

Continuing the recursion, if we have taken J − 2
measurements, then ϕ̂JJ−2 and V JJ−2 can be
obtained by comparing UJ−2(xJ−2

1 , sJ−2
1 ;π) with

EXJ−1,SJ−1 [V JJ−1(XJ−1
1 , SJ−1

1 ;π)|xJ−2
1 , sJ−2

1 ]. In general,
the dynamic programming recursion can be described as

ϕ̂Jj (xj1, s
j
1) =


1 if Uj(x

j
1, s

j
1;π)

≤ EXj+1,Sj+1 [V Jj+1(Xj+1
1 , Sj+1

1 ;π)|xj1, s
j
1],

0 otherwise,
(6)

V Jj (xj1,s
j
1;π) = min{Uj(xj1, s

j
1;π), (7)

EXj+1,Sj+1 [V Jj+1(Xj+1
1 , Sj+1

1 ;π)|xj1, s
j
1]},

with V JJ (xJ1 , s
J
1 ;π) = UJ(xJ1 , s

J
1 ;π). Thus, V J0 (π) denotes

the minimum risk of a sequential detection test that is
truncated at time step J .

We have found an optimal sequential test for a truncated
problem. Now, we intend to increase the truncation step J
and obtain the result for an non-truncated problem. First,
we show that the minimum unconditional risk sequence
{V J0 (π)}∞J=0 converges to a finite value.

Lemma 3.2: V J0 (π) is a non increasing function of J

V 0
0 (π) ≥ V 1

0 (π) ≥ V 2
0 (π) ≥ V 3

0 (π) · · · . (8)
Proof: We prove the lemma through induction on V k0 .

For k = 0, we have

V 1
0 (π) = min{U0(π),EX1,S1 [V 1

1 (X1, S1;π)]} ≤ U0(π)

= V 0
0 (π).

Thus, the statement is true for k = 0. Now, we assume that
it holds true for k = n, i.e. V n0 ≥ V n+1

0 . Then, we need to
prove that

V n+1
0 ≥ V n+2

0 . (9)

Using lemma 3.7, equation (9) can be restated as to prove

min{U0(π),d̄+ EX1,S1 [V n+1
0 (πX1,S1)]} (10)

≤ min{U0(π), d̄+ EX1,S1 [V n0 (πX1,S1)]}.

Since V n+1
0 ≤ V n0 , we have EX1,S1 [V n+1

0 (πX1,S1)] ≤
EX1,S1 [V n0 (πX1,S1)] and (10) follows directly, thus complet-
ing the induction.

Since V J0 (π) ≥ 0, the sequence in (8) converges to a finite
value V∞0 (π).

Theorem 3.3: If the loss function L(θ, a) is bounded, then
lim
J→∞

V J0 (π) = V∞0 (π).
Proof: The proof is similar as stated in [12] (theorem

5, chapter 7) and is omitted due to space constraints.
We showed that truncated Bayes risk converges to a finite

value. Thus, we know that a non-truncated Bayes test exists.
Now, we state an important property of the Bayes risk.

Lemma 3.4: The functions V J0 (π), V∞0 (π) and
R(π, (ϕ̂J , δ̂)) are concave functions of π ∈ [0, 1].

Proof: We give the proof for concavity of
R(π, (ϕ̂J , δ̂)). It uses the property that for a given sequential
decision rule (ϕJ , δ), R(π, (ϕJ , δ)) is linear in π. The proof
for other functions is similar. Consider π1 and π2 in [0, 1]
and 0 < α < 1. Then

R(απ1 + (1− α)π2, (ϕ̂J , δ̂))

= inf
(ϕJ ,δ)

R(απ1 + (1− α)π2, (ϕJ , δ))

= inf
(ϕJ ,δ)

{αR(π1, (ϕJδ)) + (1− α)R(π2, (ϕJ , δ))}

≥ α inf
(ϕJ ,δ)

R(π1, (ϕJδ)) + (1− α) inf
(ϕJ ,δ)

R(π2, (ϕJδ))

= αR(π1, (ϕ̂J , δ̂)) + (1− α)R(π2, (ϕ̂J , δ̂)).

The lemma follows from definition of concave function.
The sequential stopping rule in (6) has an abstract structure

and is not implementable. Note that the pair (Xk, Sk) are
i.i.d. give the hypothesis i with probability density psfsi (xk).
In remaining of the section, we show how to use this
conditional independence property to reduce the general test
to a more tractable sequential test structure. We start by
stating the independence property.

Lemma 3.5: If (Xn
1 , S

n
1 ) are i.i.d. with density psf

s
θ (x)

and π is the a-priori probability that θ is the true state of na-
ture, then the distribution of (Xn

j+1, S
n
j+1) given (Xj

1 , S
j
1) =

(xj1, s
j
1) is i.i.d. with density psf

s
θ (x) and πxj

1,s
j
1

being the
a-posteriori probability that θ is the true state of nature.

Proof: We apply Bayes theorem to find the conditional
density of (θ,Xn

j+1, S
n
j+1) given (Xj

1 , S
j
1) = (xj1, s

j
1)

P (θ,(Xn
j+1, S

n
j+1)|(xj1, s

j
1))

=
P ((Xj

1 , S
j
1)|(θ, (xnj+1, s

n
j+1))P (θ, (Xn

j+1, S
n
j+1)

P (Xj
1 , S

j
1)

=
P ((Xj

1 , S
j
1)|θ)P (θ)

P (Xj
1 , S

j
1)

P ((Xn
j+1, S

n
j+1)|θ)

= P (θ|(Xj
1 , S

j
1))P ((Xn

j+1, S
n
j+1)|θ).



The lemma states that when we have obtained the measure-
ments xj1 from sensors sj1, the only thing about the future
observations that changes is the probability of the hypothesis.
Thus, having j observations in hand does not change the
i.i.d. nature or the conditional distribution (given hypothesis)
of future observations (X∞j+1, S

∞
j+1). Only the hypothesis

probability changes from π to πxj
1,s

j
1
. It suggests that the

sequential test should depend only on this a-posteriori prob-
ability πxj

1,s
j
1

and it should be the sufficient statistics for
the stopping rule. We have already shown in (4) that this is
indeed a sufficient statistics for the terminal decision rule.

As shown in (6), the stopping rule depends upon the
the risks U and V . To show that πxj

1,s
j
1

is a sufficient
statistic for stopping rule, we show that Uj(x

j
1, s

j
1;π) and

V Jj (xj1, s
j
1;π) depend on (xj1, s

j
1) only through πxj

1,s
j
1

and a
common cost term. Following lemma states this result and
is a generalization of the corresponding lemma in [11].

Lemma 3.6: 1) πxj
1,s

j
1|(xk

j+1,s
k
j+1) = πxk

1 ,s
k
1
.

2) Uj(x
j
1, s

j
1;π) = Uj−1(xj2, s

j
2;πx1,s1) + c1(s1) =

· · · = U0(πxj
1,s

j
1
) +

j∑
i=1

ci(si).

3) V Jj (xj1, s
j
1;π) = V J−1

j−1 (xj2, s
j
2;πx1,s1) + c1(s1) =

· · · = V J−j0 (πxj
1,s

j
1
) +

j∑
i=1

ci(si).

Proof:
1) Using the definition of a-posteriori probability in (3),

we have
πxj

1,s
j
1|(xk

j+1,s
k
j+1) =

πxj
1,s

j
1

k∏
i=j+1

fsi
1 (xi)

πxj
1,s

j
1

k∏
i=j+1

fsi
1 (xi) + (1− πxj

1,s
j
1
)

k∏
i=j+1

fsi
0 (xi)

.

The result follows by substituting the value of πxj
1,s

j
1

from (3).
2) This part follows directly by using the definition of

Uj(x
j
1, s

j
1;π) in (5) and the result of part 1.

3) We prove the result by induction on the variable k =
J − j. For k = 0, j = J and since V JJ = UJ , part
3 becomes equivalent to part 2. Further, using lemma
3.5 we can rewrite (7) as

V Jj (xj1,s
j
1;π) = min{Uj(xj1, s

j
1;π), (11)

EXj+1,Sj+1 [V Jj+1(Xj+1
1 , Sj+1

1 ;π)|πxj
1,s

j
1
]}.

Now assume that the equalities in part 3 hold true for
J − j = k = n, i.e.

V JJ−n(xJ−n1 , sJ−n1 ;π) = V J−1
J−n−1(xJ−n2 , sJ−n2 ;πx1,s1)

(12)
+ c1(s1) = · · ·

= V n+1
1 (xJ−n, sJ−n;πxJ−n−1

1 ,sJ−n−1
1

) +
J−n−1∑
i=1

ci(si)

= V n0 (πxJ−n
1 ,sJ−n

1
) +

J−n∑
i=1

ci(si).

Then, if J − j = k = n+ 1 using (11), (12) and part
2 we have,

V JJ−n−1(xJ−n−1
1 , sJ−n−1

1 ;π)

= min{UJ−n−1(xJ−n−1
1 , sJ−n−1

1 ;π),

EXJ−n,SJ−n
[V JJ−n(XJ−n

1 , SJ−n1 ;π)|πxJ−n−1
1 ,sJ−n−1

1
]}

= min{U0(πxJ−n−1
1 ,sJ−n−1

1
),

EXJ−n,SJ−n
[V n+1

1 (XJ−n, SJ−n;π)|πxJ−n−1
1 ,sJ−n−1

1
]}

+
J−n−1∑
i=1

ci(si)

= V n+1
0 (πxJ−n−1

1 ,sJ−n−1
1

) +
J−n−1∑
i=1

ci(si).

Thus, the equality is valid for k = n + 1. The rest of
equalities in part 3 follow directly from part 1.

The following lemma presents a recursive expression to
calculate V J0 .

Lemma 3.7:

V J+1
0 (π) = min{U0(π), d̄+ EX1,S1 [V J0 (πX1,S1)]}.

Proof: The lemma can be proved using the definition
of V Jj in (7) and part 3 of lemma 3.6.

V J+1
0 (π) = min{U0(π),EX1,S1 [V J+1

1 (X1, S1;π)]}
= min{U0(π),EX1,S1 [V J0 (πX1,S1) + C1(S1)]}
= min{U0(π), d̄+ EX1,S1 [V J0 (πX1,S1)]}.

We now use these results to present an alternate form of
stopping rule that explicitly depends on the a-posteriori
probability πxj

1,s
j
1
.

Let ΩJ denote the set of all prior distributions π for which
the test is stopped without taking any observations. Using
lemma 3.7, we have

ΩJ , {π : V J0 (π) = U0(π)}. (13)

Theorem 3.8: The optimum stopping rule ϕ̂J =
(ϕ̂J0 , ϕ̂

J
1 (x1, s1), ϕ̂J2 (x2

1, s
2
1), · · · , ϕ̂JJ(xJ1 , s

J
1 )) for a problem

truncated at J is given by

ϕ̂Jj (xj1, s
j
1) =

{
1 if πxj

1,s
j
1
∈ ΩJ−j

0 otherwise.
(14)

Proof: From (6) and (7), the test is stopped at j if

V Jj (xj1, s
j
1;π) = Uj(x

j
1, s

j
1;π).

From lemma 3.6 the above condition is equivalent to

V J−j0 (πxj
1,s

j
1
) = U0(πxj

1,s
j
1
),

and the theorem follows from definition (13).
Thus, we see that the truncated stopping rule depends only
on πxj

1,s
j
1
. Now we generalize this result to obtain a non-

truncated stopping rule. Since V J0 (π) are non-decreasing
(lemma 3.2), the sets ΩJ satisfy

Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ · · · .



Further, since lim
J→∞

V J0 (π) = V∞0 (π), from definition (13)
we have

lim
J→∞

ΩJ = Ω∞ = {π : V∞0 (π) = U0(π)}. (15)

Also, lemma 3.7 can be generalized as

V∞0 (π) = min{U0(π), d̄+ EX1,S1 [V∞0 (πX1,S1)]}. (16)

Equation (16) represents the fundamental equation of dy-
namic programming for the sequential detection problem for
the randomized sensor selection.

As a result, the non-truncated stopping rule becomes

ϕ̂j(x
j
1, s

j
1) =

{
1 if πxj

1,s
j
1
∈ Ω∞

0 otherwise.
(17)

As we expected, the stopping rule depends only on whether
the posteriori probability πxj

1,s
j
1

is in the fixed set Ω∞ or
not. For a rigorous treatment of the limiting stopping rule,
see [11].

Although we have presented the optimal stopping rule
explicitly in terms of πxj

1,s
j
1
, we only have an abstract

characterization of the set Ω∞ in (15). To implement the
sequential test, we need to explicitly find this set of prior
distributions. In the next section, we show that the set Ω∞

can be characterized by two thresholds and the optimal
Bayesian sequential test corresponds to an SPRT.

IV. OPTIMAL SEQUENTIAL TEST AS AN SPRT
In this section, we show that the optimal sequential test

developed in the previous section can be reduced to SPRT
which can be easily implemented. We proceed by finding the
set Ω∞ explicitly. Let the term

W (π) , d̄+ EX1,S1 [V∞0 (πX1,S1)]

represent the minimum risk over all the sequential tests that
take at least one observation. Using this definition and (16),
the set Ω∞ can be equivalently defined as

Θ∞ = {π : U0(π) ≤W (π)}.

To characterize the set, we need to first characterize the
functions U0(π) and W (π). The function U0(π) can be easily
obtained through (5) and is made up of two linear parts

U0(π) =

w10π if π <
w01

w01 + w10
,

w01(1− π) otherwise.
(18)

Next, we proceed by stating some properties of W (π).
Lemma 4.1: The function W (π) is continuous and con-

cave in [0, 1] and W (0) = W (1) = d̄.
Proof: The proof of concavity of W (π) is similar to that

of lemma 3.4 and follows from the fact that it is a infimum
over class of functions that are linear in π. Continuity of
W (π) follows from its concavity. Further, from (16) and (18)
we have 0 ≤ V∞0 (π) ≤ U0(π) ≤ w10π. Using this relation,
we obtain

0 ≤ EX1,S1 [V∞0 (πX1,S1)] = W (π)− d̄
≤ w10EX1,S1 [πX1,S1 ] = w01π.

Thus, as π → 0, W (π)→ d̄. By symmetry, same arguments
can be made for π → 1.

Since, W (π) is concave, continuous and W (0) > U0(0),
the equation W (π) = w10π has at most one solution in
the interval [0, w01

w01+w10
]. Denote πL as the solution of this

equation if it exists. It a solution does not exist, then define
πL as w01

w01+w10
. Similarly, πU is defined as the solution of the

equation W (π) = w01(1−π) in the interval [ w01
w01+w10

, 1] if it
exists, otherwise it is defined as w01

w01+w10
. From the preceding

arguments, it follows that

0 < πL ≤
w01

w01 + w10
≤ πU < 1, (19)

and the set Ω∞ can be specified by the two thresholds as

Ω∞ = [0, πL] ∪ [πU , 1]. (20)

A. Sequential Probability Ratio Test

We define the standard Sequential Probability Ratio Test
(SPRT)[9] as a particular class of sequential decision tests.
Let the likelihood ratio based on measurements xj1 and sensor
sj1 be defined as

Lj(x
j
1, s

j
1) ,

j∏
i=1

psif
si
1 (xi)

psi
fsi

0 (xi)
=

j∏
i=1

fsi
1 (xi)
fsi

0 (xi)
. (21)

The likelihood ratio indicates which hypothesis is more
probable to occur. Then, SPRT with thresholds A and B,
denoted by SPRT (A,B) with 0 < A ≤ 1 ≤ B < ∞ is
defined by the stopping rule ϕ and terminal decision rule δ

ϕj(x
j
1, s

j
1) =

{
0 if A < Lj(x

j
1, s

j
1) < B,

1 otherwise.
(22)

δj(x
j
1, s

j
1) =

{
θ1 if Lj(x

j
1, s

j
1) ≥ B,

θ0 if Lj(x
j
1, s

j
1) ≤ A.

(23)

Thus, the test continues till the likelihood ratio stays between
the two thresholds. When the test is stopped, H1 is accepted
if Lj ≥ B and H0 is accepted if Lj ≤ A. We now show the
equivalence between the optimal sequential Bayes test and
SPRT.

Theorem 4.2: [11] The optimal sequential detection rule
(ϕ̂, δ̂) as given in (17) and (4) for πL ≤ π ≤ πU is equivalent
to SPRT (A,B), where

A =
(1− π)πL
π(1− πL)

and B =
(1− π)πU
π(1− πU )

. (24)

Proof: If πL ≤ π ≤ πU , then (A,B) satisfy 0 < A ≤
1 ≤ B < ∞. Using (20), the stopping rule in (17) can be
written as

ϕ̂j(x
j
1, s

j
1) =

{
0 if πL < πxj

1,s
j
1
< πU ,

1 otherwise.

Further, (3) can be rewritten as

πxj
1,s

j
1

=
πLj(x

j
1, s

j
1)

πLj(x
j
1, s

j
1) + (1− π)

.



Using the above relations and (24) , it is easy to see that
the relation πL < πxj

1,s
j
1
< πU is equivalent to A <

Lj(x
j
1, s

j
1) < B. Thus the stopping rules in (17) and (22)

are identical.
Further, using the relations in (19), it is easy to see that

the terminal decision rules in (4) and (23) are identical.
The equivalence of the optimal sequential detection rule

(ϕ̂, δ̂) and SPRT (A,B) allows a simple tractable form of
the test in terms of the thresholds. The thresholds πL(A)
and πU (B) depend upon the w01, w10, the sensor costs
d = (d1, · · · , dK) and the sensor selection probabilities
p = (p1, · · · , pK). However, the closed form expression of
πL and πU in terms of these quantities is not tractable. To
find the thresholds we use Wald’s approximations.

Let α0 = P (accept H1|H0 is true) denote the probability
of false detection and α1 = P (accept H0|H1 is true) denote
the probability of miss. Due to the structure of SPRT (A,B),
the thresholds A and B can be derived from these error
probabilities as follows.

α1 = P (LN ≤ A|H1) =
∞∑
j=1

∫
· · ·
∫

Qj

j∏
i=1

psi
fsi

1 (xi)dxi,

(25)

where Qj = {(xj1, s
j
1) : N = j, Lj(x

j
1, s

j
1) ≤ A}. For

(xj1, s
j
1) ∈ Qj , we have

∏j
i=1 f

si
1 (xi) ≤ A

∏j
i=1 f

si
0 (xi).

Thus we have

α1 ≤
∞∑
j=1

∫
· · ·
∫

Qj

A

j∏
i=1

psi
fsi

0 (xi)dxi = AP (LN ≤ A|H0)

= A(1− α0).

Similar argument gives

α0 = P (LN ≥ B|H0) ≤ 1
B
P (LN ≥ B|H1) =

1− α1

B
.

Thus we have the following inequalities

A ≥ α1

1− α0
and B ≤ 1− α1

α0
. (26)

.
It has been shown that for large number of observa-

tions (low error probabilities) the above inequalities can
be approximated with equalities. This is known as Wald’s
approximations. Thus, the thresholds of SPRT can be found
in terms of the desired error probabilities.

We now show that the standard Wald-Wolfowitz inequality
[10], which establishes the optimality of SPRT also holds
true for the proposed randomized sensor selection sequential
test. We extend the ideas presented in [11] to establish this
result. We rewrite the conditional risks as

R(θ0, (ϕ̂, δ̂)) = E
[
L(θ0, δ̂N (XN

1 , S
N
1 ))

]
+ E

[
N∑
i=1

Ci(Si)|(H0, ϕ̂)

]
,

R(θ1, (ϕ̂, δ̂)) = E
[
L(θ1, δ̂N (XN

1 , S
N
1 ))

]
+ E

[
N∑
i=1

Ci(Si)|(H1, ϕ̂)

]
,

where N is the random stopping time. Since Ci(Si) is an
i.i.d. random sequence and N depends on Cj1(Sj1) and is
independent of C∞j+1(S∞j+1), we have [13]

E

[
N∑
i=1

Ci(Si)|(Hj , ϕ̂)

]
= E[Ci(Si)]E[N |(Hj , ϕ̂)]

= d̄ E[N |(Hj , ϕ̂)] j = 0, 1.

Thus, the conditional risks can be rewritten as
R(θ0, (ϕ̂, δ̂)) = w01α0(ϕ̂, δ̂) + d̄ E[N |(H0, ϕ̂)], (27)

R(θ1, (ϕ̂, δ̂)) = w10α1(ϕ̂, δ̂) + d̄ E[N |(H1, ϕ̂)]. (28)

Now we state the Wald-Wolfowitz theorem.
Theorem 4.3: Let (ϕ̂, δ̂) be SPRT(A,B) and (ϕ, δ) be any

other sequential rule with random sensor selection for which

α0(ϕ, δ) ≤ α0(ϕ̂, δ̂) and α1(ϕ, δ) ≤ α1(ϕ̂, δ̂). Then,

E[N |(H0, ϕ)] ≥ E[N |(H0, ϕ̂)], and
E[N |(H1, ϕ)] ≥ E[N |(H1, ϕ̂)].

This result is intuitive and follows from the Bayesian
optimality of the (ϕ̂, δ̂) which is equivalent to SPRT(A,B)
as shown in theorem 4.2. To formally prove the statement,
we denote the explicit dependence of the thresholds and
W (π) on w = (w01, w10), p, d by πL(w, p, d), πU (w, p, d)
and W (π;w, p, d). To prove the theorem, we first prove the
following properties of the thresholds. These results are the
same as presented in [11].

Lemma 4.4: For fixed w and p, πL(w, p, d) and
πU (w, p, d) are continuous functions of d, and πL(w, p, d)→
0 and πU (w, p, d)→ 1 as d→ 0.

Proof: The threshold πL(w, p, d) can be defined by the
following properties

w10π < W (π;w, p, d) if π < πL(w, p, d) (29)
w10π = W (π;w, p, d) if π = πL(w, p, d)
w10π > W (π;w, p, d) if π > πL(w, p, d).

1) For a fixed π, w and p, W (π;w, p, d) is a nonde-
creasing and continuous function of {di}Ki=1. This
is because W (π;w, p, d) is the infimum of the risk
R(π, (ϕ

′
, δ
′
)), where (ϕ

′
, δ
′
) represents the class of

tests that take at least one observation. The risk
R(π, (ϕ

′
, δ
′
)) is linear and nondecreasing in {di}Ki=1

as in (27-28). Thus, W (π;w, p, d) is concave and
nondecreasing in {di}Ki=1 (by lemma 3.4) and hence
continuous.

2) For a fixed, w and p, πL(w, p, d) is a non-
decreasing function of {di}Ki=1. Suppose d

′
=

(d1, d2, · · · , di−1, d
′

i, di+1, · · · , dK), where d
′

i > di.
Then from part 1, we have

w10πL(w, p, d
′
) = W (πL(w, p, d

′
);w, p, d

′
)

≥W (πL(w, p, d
′
);w, p, d).



Thus, using (29) we have πL(w, p, d
′
) ≥ πL(w, p, d).

3) For fixed, w and p, πL(w, p, d) is a continuous function
of {di}Ki=1. The continuity of πL(w, p, d) follows from
the continuity of W (π;w, p, d) and the properties
stated in (29).

4) For a fixed w and p, πL(w, p, d) → 0 as d → 0.
This is because for negligible observation cost, we can
choose the observation sample size large enough to
make the error probabilities arbitrarily small. Thus,
W (π;w, p, d) → 0 as d → 0. Hence from (29),
πL(w, p, d)→ 0 as d→ 0.

5) Similar arguments can be made for πU (w, p, d) using
symmetry and πU (w, p, d) is continuous function of d
and πU (w, p, d)→ 1 as d→ 0.

Using the properties in the above lemma, we state the relation
between the thresholds and the test parameters π,w, p, d.

Lemma 4.5: For a given ε > 0 and 0 < A ≤ 1 ≤ B <∞,
there exist

1) π,w, p, d with 0 < π < ε such that (24) holds true,
and

2) π
′
, w, p, d with 1 − ε < π

′
< 1 such that (24) holds

true.
Proof: Choose w such that w01

w01+w10
< Aε and consider

the function
πL(w, p, d)

1− πL(w, p, d)
1− πU (w, p, d)
πU (w, p, d)

.

From lemma 4.4, it is a continuous function of d. As {di}Ki=1

become sufficiently large, the function becomes 1, since
πL = πU and as d → 0, it becomes 0. Therefore, there
exists a set {di}Ki=1 for which

πL(w, p, d)
1− πL(w, p, d)

1− πU (w, p, d)
πU (w, p, d)

=
A

B
,

Now, let us choose π = πL(w,p,d)
A+(1−A)πL(w,p,d) . Then we have

1− π
π

= A
1− πL(w, p, d)
πL(w, p, d)

= B
1− πU (w, p, d)
πU (w, p, d)

,

which is same as (24). Further, using (19) we have

π =
πL(w, p, d)

A+ (1−A)πL(w, p, d)
≤ πL(w, p, d)

A
≤

w01
w01+w10

A
< ε.

Part 2 follows by symmetry, thus completing the proof.
We now state the proof of theorem 4.3.

Proof: (of Theorem 4.3) Using lemma 4.5, we can find
π,w and d such that (24) is satisfied and π < ε. Since (ϕ̂, δ̂)
is equivalent to SPRT (A,B) (from theorem 4.2) and is the
optimal sequential rule, we have

0 ≤ R(π, (ϕ, δ))−R(π, (ϕ̂, δ̂))

= πw10(α1(ϕ, δ)− α1(ϕ̂, δ̂))

+ (1− π)w01(α1(ϕ, δ)− α1(ϕ̂, δ̂))
+ πd̄(E[N |(H1, ϕ)]− E[N |(H1, ϕ̂)])
+ (1− π)d̄(E[N |(H0, ϕ)]− E[N |(H0, ϕ̂)])
≤ πd̄(E[N |(H1, ϕ)]− E[N |(H1, ϕ̂)])
+ (1− π)d̄(E[N |(H0, ϕ)]− E[N |(H0, ϕ̂)]).

Since the above statement is valid for π arbitrarily close to
zero, we have E[N |(H0, ϕ)] ≥ E[N |(H0, ϕ̂)]. Further, using
symmetry and part 2 of lemma 4.5, we have E[N |(H1, ϕ)] ≥
E[N |(H1, ϕ̂)], thus completing the proof.

Thus, the stationarity of the probabilistic sensor selection
process results in SPRT being the optimal test, as it was the
case with single sensor case. With multiple sensors, we have
more degree of freedom to choose the sensors and improve
the test performance.

V. CONCLUSION

We have obtained an optimal test for binary hypothe-
sis testing using multiple sensors. When a single sensor
is chosen randomly at each time step with a stationary
distribution, the optimal test reduces to SPRT. Further, we
prove that Wald-Wolfowitz theorem can be extended for
the test involving multiple sensors. We plan to extend the
study by characterizing the average stopping time and the
experiment cost of the sequential test and optimizing it over
the sensor selection distribution. Thus, we plan to obtain a
sensor selection strategy that optimally balances the trade-off
between the sensor costs and the sensor performance.
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