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Abstract. A proof of the optimality of the eigenfunctions of the Laplace–Beltrami operator (LBO) in repre-
senting smooth functions on surfaces is provided and adapted to the field of applied shape and data
analysis. It is based on the Courant–Fischer min-max principle adapted to our case. The theorem
we present supports the new trend in geometry processing of treating geometric structures by using
their projection onto the leading eigenfunctions of the decomposition of the LBO. Utilization of this
result can be used for constructing numerically efficient algorithms to process shapes in their spec-
trum. We review a couple of applications as possible practical usage cases of the proposed optimality
criteria. We refer to a scale invariant metric, which is also invariant to bending of the manifold. This
novel pseudometric allows constructing an LBO by which a scale invariant eigenspace on the surface
is defined. We demonstrate the efficiency of an intermediate metric, defined as an interpolation be-
tween the scale invariant and the regular one, in representing geometric structures while capturing
both coarse and fine details. Next, we review a numerical acceleration technique for classical scaling,
a member of a family of flattening methods known as multidimensional scaling (MDS). There, the
optimality is exploited to efficiently approximate all geodesic distances between pairs of points on a
given surface and thereby match and compare between almost isometric surfaces. Finally, we revisit
the classical principal component analysis (PCA) definition by coupling its variational form with a
Dirichlet energy on the data manifold. By pairing the PCA with the LBO we can efficiently handle
cases that go beyond the scope defined by the observation set that is handled by regular PCA.
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1. Introduction. The field of shape analysis has been evolving rapidly in recent decades.
The constant increase in computing power has allowed image and shape understanding algo-
rithms to efficiently handle difficult problems that could not have been practically addressed
in the past. A large set of theoretical tools from metric geometry, differential geometry, and
spectral analysis has been imported and translated into action within the shape and image
understanding arena. Among the myriad operators recently explored, the Laplace–Beltrami

operator (LBO) is ubiquitous. The LBO is an extension of the Laplacian to nonflat multi-
dimensional manifolds. Its properties have been well studied in differential geometry, and it
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was used extensively in computer graphics. It is used to define the heat equation, which models
the conduction of heat in solids, and is fundamental in describing basic physical phenomena.
In its more general setting, the LBO admits an eigendecomposition that yields a spectral

domain that can be viewed as a generalization of the Fourier analysis to any Riemannian
manifold. The LBO invariance to isometric transformations allowed the theories developed
by physicists and mathematicians to be useful for modern shape analysis. Here, we justify
the selection of the leading eigenfunctions in the spectral domain as an optimal subspace for
representing smooth functions on a given manifold. It is used for solving and accelerating
existing solvers of various problems in data representation, information processing, and shape
analysis. As one example, in section 4 we pose the dilemma of metric selection for shape
representation while interpolating between a scale invariant metric and the regular one. Next,
in section 5 it is shown how the recently introduced spectral classical scaling can benefit from
the efficacy property of the suggested subspace. Finally, in section 6 we revisit the definition
of the celebrated principal component analysis (PCA) by regularizing its variational form with
an additional Dirichlet energy. The idea is to balance between two optimal subspaces, one
for the data points themselves, captured by the PCA, and one optimally encapsulating the
relation between the data points as defined by decomposition of the LBO.

2. Notation and motivation. Consider a parametrized surface S : Ω ⊂ R
2 → R

3 (with or
without boundary) and a metric (gij) that defines the affine differential relation of navigating
with coordinates {σ1, σ2} in Ω to a distance measured on S. That is, an arc length on S

expressed by σ1 and σ2 would read as ds2 = g11dσ
2
1 + 2g12dσ1dσ2 + g22dσ

2
2 . The LBO acting

on the scalar function f : S → R is defined as

−∆gf =
1√
g

∑

ij

∂i
(√

ggij∂jf
)
,(2.1)

where g is the determinant of the metric matrix, and (gij) = (gi,j)
−1 is the inverse metric,

while ∂i is a derivative with respect to the ith coordinate σi. The LBO operator is symmetric
and admits a spectral decomposition (λi, φi), with λ1 ≤ λ2 ≤ · · · , such that

∆gφi = λiφi,

〈φi, φj〉 = δij ,(2.2)

where 〈u, v〉 =
∫

S
uv

√
gdx, and ‖u‖22 =

∫

S
|u|2√gdx. In case S has a boundary, we add

Neumann boundary condition

∂φi

∂ν
= 0 on ∂S.(2.3)

Being defined by the metric rather than the explicit embedding makes the LBO and its spec-
tral decomposition invariant to isometries and thus a popular operator for shape processing
and analysis. For example, the eigenfunctions and eigenvalues can be used to efficiently ap-
proximate diffusion distances and commute time distances [31, 7, 13, 14, 12] that were defined
as computational alternatives to geodesic distances and were shown to be robust to topology
changes and global scale transformations. At another end, Lévy [24] proposed manipulatingD
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the geometry of shapes by operating in their spectral domain, while Karni and Gotsman [21]
chose the eigenfunctions as a natural basis for approximating the coordinates of a given shape.
Feature point detectors and descriptors of surfaces were also extracted from the same spectral
domain. Such measures include the heat kernel signature (HKS) [37, 17], the global point
signature (GPS) [34], the wave kernel signature (WKS) [4], and the scale-space representation
[41]. It was exploited for dimensionality reduction in shape matching and recognition; see, for
example, [33].

Given two surfaces S and Q and a bijective mapping between them, ρ : S → Q, Ovsjanikov
et al. [27] emphasized the fact that the relation between the spectral decomposition of a
scalar function f : S → R and its representative on Q, that is, f ◦ ρ−1 : Q → R, is linear. In
other words, the geometry of the mapping is captured by ρ, allowing the coefficients of the
decompositions to be related in a simple linear manner. The basis extracted from the LBO was
chosen in this context because of its intuitive efficiency in representing functions on manifolds
and thus far justified heuristically. The linear relation between the spectral decomposition
coefficients of the same function on two surfaces, when the mapping between manifolds is
provided, was exploited by Pokrass et al. [30] to find the correspondence between two almost
isometric shapes. They assumed that the matrix that links between the LBO eigenfunctions of
two almost isometric shapes should have dominant coefficients along its diagonal, a property
that was first exploited in [23].

One could use the relation between the eigenstructures of two surfaces to approximate non-
scalar and nonlocal properties of the manifolds [1]. Examples of such functions are geodesic
distances [22, 39, 35, 26, 38], which serve as an input for the multidimensional scaling (MDS)
[8], the generalized multidimensional scaling (GMDS) [11], and the Gromov–Hausdorff dis-
tance [25, 10]. Using the optimality of representing surfaces and functions on surfaces with
a truncated basis, geodesic distances can now be efficiently computed and matched in the
spectral domain.

In classical signal processing, a low pass filter version of a given signal in a Fourier sense
is traditionally associated with the Karhunen–Loève transform, resorting to covariance func-
tions and stochastic processes. The same nondeterministic viewpoint motivated the geometry
processing community. For example, in [6] the optimality of the LBO eigenfunctions for mesh
compression was explored from a statistical perspective, relating between the LBO and the
covariance matrix of the distribution of mesh geometries. In a different domain, the eigenvec-
tors of LBOs approximated from sampled data were often used in manifold learning. In [5]
the LBO decomposition of sampled data manifolds was shown to well represent the geometric
structure of the data, while in [42], a way to estimate the number of required eigenfunctions
to represent a sampled manifold was presented. See also [36, 18, 15] for related efforts.

Among the myriad reasons that motivated the selection of the spectral domain for shape
analysis the following are often emphasized:

• The spectral domain is isometric invariant.
• Countless signal processing tools that exploit the Fourier basis are available. Some

can be generalized to shapes for representation, processing, analysis, and synthesis.
• Most interesting functions defined on surfaces are smooth and can thus be well ap-

proximated by their projection onto a small number of eigenfunctions.
• For most articulated objects in nature the problem of finding correspondences betweenD
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the shapes of the same object in different poses appears to have simple formulations
in the spectral domain.

Still, a rigorous justification for the selection of the basis defined by the LBO was missing in
the geometry processing arena. Along the same lines, combining the eigenstructure of the LBO
with classical data representation and analysis procedures that operate in other domains like
the PCA [20], MDS [8], and GMDS [11] was yet to come. Here, we review recent improvements
of tools that make use of the decomposition of the LBO and introduce new procedures that
utilize the proven optimality of this space. We provide a theoretical justification for using the
LBO eigendecomposition in many shape analysis methods. With this property in mind, we
demonstrate that it is possible to migrate algorithms to the spectral domain while establishing
a substantial reduction in complexity.

3. Optimality of the LBO eigenspace. In this section we provide a theoretical justifica-
tion for the choice of the LBO eigenfunctions by proving that the resulting spectral decompo-
sition is optimal in approximating functions with L2 bounded gradient magnitudes. Let S be
a given Riemannian manifold with a metric (gij) and an induced LBO, ∆g, with associated
spectral basis φi, where ∆gφi = λiφi. It is shown, for example in [2], that for any f : S → R,
the representation error

‖rn‖22 ≡
∥
∥
∥
∥
∥
f −

n∑

i=1

〈f, φi〉φi

∥
∥
∥
∥
∥

2

2

≤ ‖∇gf‖22
λn+1

.(3.1)

Our next result asserts that the eigenfunctions of the LBO are optimal with respect to estimate
error (3.1).

Theorem 3.1. Let 0 ≤ α < 1. There is no integer n and no sequence {ψi}ni=1 of linearly

independent functions in L2 such that

∥
∥
∥
∥
∥
f −

n∑

i=1

〈f, ψi〉ψi

∥
∥
∥
∥
∥

2

2

≤ α‖∇gf‖22
λn+1

∀f.(3.2)

Proof. Recall the Courant–Fischer min-max principle; see [9, Problems 37 and 49] and
[40]. We have for every n ≥ 0,

λn+1 = max
Λ

codimΛ=n

min
f∈Λ
f �=0

{‖∇gf‖22
‖f‖22

}

.(3.3)

That is, the min is taken over a linear subspace Λ ⊂ H1(S) (where H1(S) is the Sobolev space
{f ∈ L2, ∇gf ∈ L2}) of co-dimension n and the max is taken over all such subspaces.

Set Λ0 = {f ∈ H1(S); 〈f, ψi〉 = 0, i = 1, 2, . . . , n}, so that Λ0 is a subspace of co-
dimension n. By (3.2) we have that for all f �= 0, f ∈ Λ0,

‖∇gf‖22
‖f‖22

≥ λn+1

α
,
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and thus

X0 = min
f∈Λ0

f �=0

{‖∇gf‖22
‖f‖22

}

≥ λn+1

α
.(3.4)

On the other hand, by (3.3),

λn+1 ≥ X0.(3.5)

Combining (3.4) and (3.5) yields α ≥ 1.

For the convenience of the reader we present in Appendix A a direct proof of a special
case of the above result which does not make use of the Courant–Fischer min-max principle.
The above theorem proves the optimality of the eigenfunctions of the LBO in representing H1

functions on manifolds. In the following sections we apply the optimality property for solving
various shape analysis problems.

4. Scale invariant geometry. Almost isometric transformations are probably the most
common ones for surfaces and volumes in nature. Still, in some scenarios, relations between
surfaces should be described by slightly more involved deformation models. Though a small
child and an adult are obviously not isometric, and the same goes for a whale and a dolphin,
the main characteristics are morphometrically similar for mammals at large. In order to
extend the scope of matching and comparing shapes, a semilocal scale invariant geometry was
introduced in [3]. There, it was used to define a new LBO by which one can construct an
eigenspace which is invariant to semilocal and obviously global scale transformations.

Let (gij) be the regular metric defined on the manifold. In [3], the scale invariant pseu-

dometric (g̃ij) is defined as

g̃ij = |K|gij ,
where K is the Gaussian curvature at each point on the manifold. One could show that
this metric is scale invariant and that the same goes for the LBO that it induces, namely
∆g̃f = − 1√

g̃

∑

ij ∂i
(√

g̃g̃ij∂jf
)
. A discretization of this operator and experimental results

that outperformed state-of-the-art algorithms for shape matching, when scaling is involved,
were presented in [3] . Specifically, the scale invariant geometry allows finding correspondence
between two shapes related by semilocal scale transformation.

Next, one could think of searching for an optimal representation space for shapes by inter-
polating between the scale invariant metric and the regular one. We define the interpolated
pseudometric to be

ĝij = |K|αgij ,
where (ĝij) represents the new pseudometric, K is the Gaussian curvature, and α ∈ [0, 1] is
the metric interpolation scalar that we use to control the representation error. In our setting,
ĝ depends on α and represents the regular metric when α = 0 or represents the scale invariant
one when α = 1.

Figure 1 depicts the effect of representing a triangulated shape’s coordinates projected
to the first 300 eigenfunctions of the LBO with a regular metric (left), the scale invariant
one (right), and the interpolated pseudometric with α = 0.4 (middle). The idea is to useD
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only a part of eigenfunctions to approximate smooth functions on the manifold, treating the
coordinates as such. While the regular natural basis captures the global structure of the
surface, as expected, the scale invariant one concentrates on the fine features with effective
curvature. The interpolated one is a good compromise between the global structure and the
fine details. Note again that each shape at the bottom row reflects the optimal reconstruction
with respect to a different metric.

Figure 1. Top: A given horse model. Bottom: The horse coordinates projected to the first 300 LBO
eigenfunctions using a regular metric (left), an intermediate one (middle), and a scale invariant one (right).

We emphasize again that once a proper metric is defined, the Laplace–Beltrami eigenspace
is the best possible space for approximation of smooth functions. Next, we exploit this prop-
erty to reformulate classical shape analysis algorithms such as MDS in the spectral domain.

5. Spectral classical scaling. MDS [8] is a family of data analysis methods that is widely
used in machine learning and shape analysis. Given an m ×m pairwise distance matrix D,
the MDS method finds an embedding of points of Rk, given by an m× k matrix X, such that
the pairwise euclidean distances between every two points, each defined by a row of X, is as
close as possible to their corresponding input pair given by the right entry in D. The classical
MDS algorithm minimizes the following functional:

X = argmin
X∈Rm×k

∥
∥
∥
∥
XXT +

1

2
JD2J

∥
∥
∥
∥
F

,(5.1)

where D2 is a matrix such that (D2)ij = D2
ij , and J is a centering matrix defined by J =

I − 1
m
11

T , where I is the identity matrix, 1 is a vector of ones, and ‖ · ‖F is the Frobenius
norm. The solution can be obtained by a singular value decomposition (SVD) of the matrix
JD2J. This method was found to be useful when comparing isometric shapes using their inter-
geodesic distances [16, 10] and texture mapping in computer graphics [43]. The computation
of geodesic distances as well as the SVD of an m × m matrix can be expensive in terms of
memory and computational time. High resolution shapes with more than 104 vertices are
difficult to handle with this method.D
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In order to reduce the complexity of the problem, it was proposed in [2] to compute
geodesic distances between a small set of sample points and then interpolate the rest of the
distances by minimizing a biharmonic energy in the spectral domain. We find a spectral
representation of the matrix D2 = ΦαΦT , where Φ represents the matrix that discretizes
the spectral domain. We then embed our problem into the eigenspace of the LBO, defining
X = Φβ, where β is an n× k matrix, and n ≪ m in order to reduce the overall complexity.
Note that here Φ is truncated to an m × n matrix, so that only the first n eigenvectors are
used. X is obtained by minimizing

min
β

∥
∥
∥
∥
ΦββTΦT +

1

2
JΦαΦTJ

∥
∥
∥
∥
F

.(5.2)

Experimental results of shape canonization comparing shapes flattened with spectral classical
scaling to regular classical scaling results were presented in [2]. The spectral approach outper-
formed the classical scaling in terms of time and space complexities, which led to overall better
accuracy for the spectral version; see Figure 2. In the next section we introduce a novel design
of functional spaces that benefit from both the LBO and the classical PCA, while extending
the scope of each of these measures.

Figure 2. MDS flat embedding: Result of regular MDS (middle) and the spectral MDS (right) of the given
horse surface (left). Here, the target embedding space is k = 3, the number of surface points is m = 8000, and
the number of eigenfunctions used for the analysis is n = 150.

6. Regularized PCA. When dealing with an articulated object, we would like to have a
model that is robust to possible realizations or poses of the object in the three-dimensional
world. To that end, we revisit the definition of the classical PCA and regularize its structure
exploiting the intrinsic geometry of the given manifold. The resulting basis defined on the
manifold allows us to synthesize and analyze surface intrinsic as well as extrinsic properties,
such as a smooth texture painted on the surface and the surface coordinates, as well as features
and signatures that could be useful for alignment and recognition. Here again, we use the fact
that the eigenfunctions provided by decomposition of the LBO depict the optimal basis for
smooth functions on a given manifold. Combining this property with a basis optimized for
the minimal projection error on a set of given functions defined on the manifold, we build a
continuous intrinsically regularized version of the classical PCA. We provide quantitative and
qualitative empirical evidence supporting the efficiency of the proposed novel construction.
Note that a related regularized PCA promoting a different geometric model recently appeared
in [19]; see also [32] for a nongeometric smooth PCA construction.D
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In the field of machine learning, PCA [28] is a basis designed to capture a different kind
of structure. It provides an orthonormal basis that minimizes, in a Frobenius L2 sense, the
projection error of a given set of features. The PCA basis is extracted one element at a time
in a greedy manner such that each new direction is orthonormal to the previous one and
sequentially minimizes the error of representation by projection. Each basis element is also
referred to as a moment of the given dataset.

When projecting functions defined on the shape into the LBO eigenfunctions while limiting
the number of basis functions, the resulting representation error can be significant. Yet,
resorting to the eigenfunctions provided by a PCA of the underlying manifold coordinates,
considered at various poses, would make little sense if our goal were to represent functions
defined on the manifold itself. The elements provided by a PCA basis capture the nature
of continuous functions for given sets of corresponding points, or corresponding surfaces, in
the embedding space defined by a specific coordinate system. At the other end, the LBO
basis optimally represents continuous smooth functions defined on the intrinsic geometry of
the shape manifold, that is, the embedded space.

In this section we marry the LBO eigenfunctions with a regular PCA. The result is a simple
eigenvalue problem that naturally balances between surface representation in the embedding
space and smooth functions defined on the surface itself. We demonstrate our construction
with several numerical examples justifying the proposed PCA regularization by the LBO
model that is defined through a Dirichlet energy.

The regularized PCA provides an efficient representation for a family of continuous func-
tions defined for a given set of isometrically similar manifolds. It is demonstrated to efficiently
represent out-of-sample functions using just a few projections onto the proposed basis. An
example of such functions are the surface coordinates as used in our numerical experiments.

Given the set of functions {fi}ki=1, where fi : S → R, the principal components of the set
are defined by an orthonormal basis {ψi} optimized with respect to the truncation error

k∑

i=1

∥
∥
∥
∥
∥
∥

fi −
n∑

j=1

〈fi, ψj〉ψj

∥
∥
∥
∥
∥
∥

2

2

(6.1)

for any given n or in its geometric flavor,

k∑

i=1

∥
∥
∥
∥
∥
∥

fi −
n∑

j=1

〈fi, ψj〉ψj

∥
∥
∥
∥
∥
∥

2

g

.(6.2)

Note that now the functions we are trying to model are assumed to belong to a given set, and
no assumption about their smoothness with respect to the underlying manifold is assumed.

Next, assume that we have information about the manifold given by ∆g and that the
functions we deal with have bounded gradient ‖∇gf‖22 on the manifold. The functional that
would produce the eigenfunctions of the LBO as the minimization of the truncation error
defined in (3.1) is the Dirichlet energy

n∑

j=1

‖∇gψj‖2g.(6.3)
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In fact, feeding in the eigenfunctions of the LBO, namely {φi}, into the above measure we
obtain

n∑

j=1

‖∇gφj‖2g =

n∑

j=1

〈∆gφj , φj〉g

=
n∑

j=1

〈λjφj , φj〉g

=

n∑

j=1

λj .(6.4)

Here, the only knowledge about the functions we would like to represent by {ψi}ni=1 is the fact
that their gradient magnitude on S is bounded.

In a discrete setting, PCA [20] is the process of extracting a low rank orthonormal ap-
proximate representation from a given set of vectors {xi}ki=1, sometimes referred to as data
points, that in our setting approximate the continuous functions {fi}ki=1. Given a set of k
vectors xi ∈ R

m, the PCA algorithm finds an orthonormal basis of n ≤ k vectors defined by
{Pj}ni=j by minimizing

min
P

k∑

i=1

‖PPTxi − xi‖22

such that (s.t.)

PTP = In.(6.5)

Here, the quantity PPTxi is the projection of the vector xi onto the orthonormal basis P.
Thus, the term ‖PPT xi−xi‖22 represents the error of projecting xi onto P. It is straightforward
to show that

‖PPTxi − xi‖22 =
(
PPTxi − xi

)T (
PPTxi − xi

)

= xTi PPTP
︸ ︷︷ ︸

=In

PTxi − 2xTi PPTxi + xTi xi

= xTi xi − xTi PPTxi
= xTi xi − trace(xTi PPTxi)
= xTi xi − trace(PPTxix

T
i ).(6.6)

Thus, the minimization problem is equivalent to

max
P

k∑

i=1

trace(PPTxix
T
i )

s.t.

PTP = In.(6.7)

Denoting

k∑

i=1

xix
T
i = XXT ,(6.8)
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where X is the matrix whose columns account for the xi’s, our problem can be written as

max
P

trace(PPTXXT )

s.t.

PTP = In.(6.9)

The solution of this problem is obtained by an SVD of the matrix X.

In a geometric setting, the PCA problem reads as

min
P

k∑

i=1

‖PPTAxi − xi‖2g

s.t.

PTAP = In,(6.10)

where A is a discretization matrix of
√
g, the square root of the determinant of the metric

(gij), which quantifies the volume element as defined by the given parametrization. For a
triangulated surface, A is given by a diagonal matrix whose Aii element is the sum of areas
of all triangles that share the surface vertex i.

As for the discrete Dirichlet energy, one can show that for one vector Pj , which will later
define the jth column of P, we have

‖∇gPj‖2g = (LPj)
TAPj,(6.11)

where L = A−1W is a discretization matrix of the LBO; see Appendix B.

The term (LPj)
TAPj can be written as

(LPj)
TAPj = P T

j WTA−TAPj = P T
j WPj = trace

(
WPjP

T
j

)
.(6.12)

Using this notation, the formulation of the discrete geometric PCA can be approximated by

max
P

trace
(
PPTAXXTA

)

s.t.

PTAP = In,(6.13)

while the optimally smooth basis is obtained by

min
P

trace
(
PPTW

)

s.t.

PTAP = In.(6.14)

Next, we would like to combine both measures, namely the energy defined by the data pro-
jection error (PCA) and the Dirichlet energy (LBO) of the representation space. A straight-
forward addition of the energies would lead to a numerical challenge; see, for example, [19].D
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Here, we propose a different strategy. We use the fact that the solution of (6.14) is equivalent
to that of

max
P

trace
(

PPTW̃−1
)

s.t.

PTAP = In,(6.15)

where W̃−1 represents the pseudoinverse matrix of W.
Exploiting this property, the regularized-PCA problem can be defined as

max
P

trace
(

PPT
(

AXXTA+ µW̃−1
))

s.t.

PTAP = In.(6.16)

In this setting, the matrix M = AXXTA+ µW̃−1 is symmetric and positive definite.
Classical algorithms performing a numerical eigendecomposition of a given matrix M

usually produce the eigenvectors one by one sorted by the magnitudes of their corresponding
eigenvalues. Several numerical optimization libraries such as ARPACK, LAPACK, and EIGS
implement the Arnoldi iteration algorithm to extract the eigenvector associated with the
eigenvalue of largest magnitude. The core operation in these methods is a multiplication of
the matrix we would like to decompose by a vector. Therefore, these methods are particularly
efficient when the input is a sparse matrix. Here, we show how to adapt such a method to
our problem. We virtually deal with two matrices, the low rank AXXTA and the sparse one
W. Decomposition of their combination as given in (6.16) using off the shelf solvers would be
inefficient. In order to resolve these issues, we recall that several implementations of Arnoldi
iterations that find the eigenvectors of a given matrix M do not require the explicit matrix
but rather a function whose input is a vector y and whose output is the product My.

Performing an economy-sized SVD of the matrix X (whose size is m × k) such that
X = UDVT , where U is an m × m orthonormal matrix, D is an m × k diagonal matrix,
and V is an k × k orthonormal matrix, we have

AXXTA = AUD2UTA = ŨD2ŨT ,(6.17)

where Ũ = AU.
Next, given the vector y, the matrix vector multiplication (ŨD2ŨT +W̃−1)y can equiva-

lently be written as Ũ(D2(ŨT y)) + W̃−1y, for which the numerical multiplication procedure
reads as follows.

Algorithm 1. Compute Ũ(D2(ŨT y)) + W̃−1y.

input y
v ← ŨT y

v ← D2v

v ← Ũv

Compute u by solving y = Wu in a least squares sense.
return (v + u)
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The above computation is extremely efficient. First, we calculate ŨT y, where here Ũ is
truncated to an m × k matrix (k is equal to the number of PCA input functions, k ≪ m)
that yields an k × 1 vector. This operation has a complexity of O(km). Then, we multiply
the result by D2, which is effectively a k × k matrix, an operation that takes O(k2). Finally,
the result is multiplied by Ũ in O(km). The overall computational complexity is O(km), and
the same holds for space complexity. The second phase consists of solving a sparse system
(with O(m) effective elements), which can be efficiently executed with classical algorithms
such as the EIGS function in MATLAB. The proposed method efficiently converges and can
provide one hundred eigenvectors in a couple of seconds for a triangulated surface with about
104 vertices.

6.1. Experimental results. In our first example, we consider a set of smooth functions
defined on a smooth manifold. This set is composed of several heat kernel signatures (HKSs)
evaluated at various times [37]. In this setting, time refers to an intrinsic scale at which the
signature is computed, while the signature itself could be thought of as a smoothed version
of the Gaussian curvature. Noise was then added to these functions, which were used to
construct the PCA basis and our regularized-PCA basis. Next, we selected other smooth
functions that belong to the same family, namely signatures taken at new time scales, and
computed the representation error using the regular PCA and the proposed regularized PCA.
The representation error as a function of the signal to noise ratio (SNR) is shown in Figure 3.
Notice the significant advantage of using the regularized PCA compared to its nonregularized
version.

Figure 3. Mean square error of functions represented by PCA and its regularized version.

Next, we consider five different poses of a cat which are approximately isometries. We
computed an orthonormal basis that minimizes the reconstruction error of the coordinates
extracted from two shapes of the cat presented at the top. These six coordinate vectors provide
us with six functions defined on the surface. We then computed the regularized version that
accounts for efficiently representing continuous smooth functions on the manifold. Figure 4
exemplifies the superiority of the regularized PCA in this extreme case. In another exampleD
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the benefits of this hybrid model in representing out of sample information are demonstrated
in Figure 5.

In the next example, shown in Figure 6, the 300 coordinate functions of 100 postures of
a hand, two of which are presented in the box in the first row, were utilized to construct a
100-sized PCA basis. This basis was then used to reconstruct the open hand posed at the top
right, the result of which is shown on the bottom left. The first 100 eigenfunctions of the LBO
reconstruction of the same hand, shown in the middle of the second row, demonstrate the
power of the LBO in reconstructing the smooth structure of the shape rather than its details.
The reconstruction with the 100 eigenfunctions obtained for the regularized PCA provides an
almost perfect reconstruction, as depicted on the bottom right.

In this section we demonstrated that while smooth functions are indeed important as far
as data about the manifold goes, in some instances, additional information about the manifold
could and should be utilized. At the other end of the spectrum, PCA procedures allow us to
greedily construct an efficient basis for a set of given functions representing such additional
information, such as the coordinates of shapes in different poses that are treated as functions
on the surface. These, seemingly opposite, basis generation strategies were unified into a
coherent basis construction framework that enjoys the benefits of both. The LBO was shown
to be a natural regularizer for the PCA, while the PCA of a given set of known functions was
shown to steer the basis provided by the LBO into one that better represents functions far and
beyond the scope of the available training functions captured by a regular PCA. The proposed
model allowed us to design an alternative basis which is efficient to construct, related to the
spectral domain but whose properties can be tuned to fit specific information about the data.

7. Conclusion. A theoretical support for the selection of the leading eigenfunctions of the
LBO of a given shape as a natural domain for morphometric study of surfaces was provided.
The optimality result motivates the design of efficient shape matching and analysis algorithms.
It enabled us to find the most efficient representations of smooth functions on surfaces in
terms of both accuracy and complexity when projected onto the leading eigenfunctions of
the LBO. Our optimality criterion is obviously defined with respect to a given metric. In
shape representation, the choice of an appropriate metric is probably as important as the
selection of the most efficient subspace. This was demonstrated in approximating the fine
details and the general structure of a shape of a horse in section 4 using a regular metric, a
scale invariant metric, and a metric interpolating between the two. Spectral classical scaling
and its generalized version benefit from the presented optimality result, as does the novel
regularized PCA presented in the previous section. In both cases it was demonstrated that
the decomposition of the LBO provides a natural subspace within which to operate.

The provably optimal representation space allows us to construct efficient tools for com-
putational morphometry—the numerical study of shapes. Revisiting the optimality criteria
obviously leads to alternative domains and hopefully better analysis tools that we plan to
explore in the future.

Appendix A. Alternative proof.

Theorem A.1. Given a Riemannian manifold S with a metric (gij), the induced LBO, ∆g,

and its spectral basis φi, where ∆gφi = λiφi, and a real scalar value 0 ≤ α < 1, there is noD
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Figure 4. Reconstruction of the original cats (second row) by projecting the coordinates to the first leading
100 vectors of the Laplace–Beltrami eigenbasis (third row) , to the PCA trained with two shapes (fourth row),
and (bottom) to the regularized-PCA basis trained with the two cats (at the top).
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Figure 5. Reconstruction of the dog shapes in the second row by projecting their coordinates to the first
100 eigenfunctions of the Laplace–Beltrami eigenbasis (third row), to the PCA basis trained with the two shapes
from the first row (fourth row), and to the 100 basis functions of the regularized-PCA basis trained with the two
dogs from the first row (bottom/fifth row).D
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Figure 6. Top left box: Two out of the 100 hand poses whose coordinates were used to construct the
PCA. Top right: The hand we wish to reconstruct. Bottom left: PCA reconstruction. Bottom middle: LBO
reconstruction. Bottom right: Regularized-PCA reconstruction result.

orthonormal basis of functions {ψi}∞i=1 and an integer n such that

∥
∥
∥
∥
∥
f −

n∑

i=1

〈f, ψi〉ψi

∥
∥
∥
∥
∥

2

2

≤ α
‖∇gf‖22
λn+1

∀f.(A.1)

To prove the optimality of the LBO eigenbasis, let us first prove the following lemma.
Lemma A.2. Given an orthonormal basis B = {b1, b2, . . .} of a Hilbert space V and an

orthogonal projection operator P of V such that

‖Pv‖ ≤ k‖v‖ ∀v ∈ span {bi, 1 ≤ i ≤ n},(A.2)

where 0 < k < 1, then

dim(ker(P )) ≥ n.(A.3)

Proof. Let us denote

B1 = {bi, ‖Pbi‖ < 1},
B2 = {bi, ‖Pbi‖ = 1},
P1 = ker(P ),
P2 = im(P ).

(A.4)

Because the operator P is orthogonal and the basis B is orthonormal, we have

V = B1

⊕

B2 = P1

⊕

P2(A.5)

and

B⊥
1 = B2,

P⊥
1 = P2.

(A.6)
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By definition, we have that

B2 ⊂ P2.(A.7)

Then,

B⊥
2 ⊃ P⊥

2 ,(A.8)

and since B⊥
2 = B1 and P⊥

2 = P1, we have

P1 ⊂ B1.(A.9)

Now, assume that

dim(P1) = dim(ker(P )) < n ≤ dimB1.(A.10)

Then, P1 �= B1, and we can find a vector u ∈ P⊥
1 such that ‖u‖ = 1 and u ∈ B1. Since

P⊥
1 = ker(P )⊥ = P2, it follows that

‖Pu‖ = 1.(A.11)

But, this contradicts the fact that u ∈ B1 because u ∈ B1 implies

‖Pu‖ < 1.(A.12)

Then,

dim(ker(P )) ≥ n.(A.13)

Equipped with this result we are now ready to prove Theorem A.1.

Proof. Assume that there exists such a basis, {ψi}. Then, the representation of a function
f in the eigenbasis of the LBO can be written as

f =

∞∑

i=1

〈f, φi〉φi =

∞∑

i=1

βiφi.(A.14)

We straightforwardly have

‖∇gf‖22 =
∞∑

i=1

λiβ
2
i ,(A.15)

and it follows that

α
‖∇gf‖22
λn+1

=
∞∑

i=1

αλi

λn+1
︸ ︷︷ ︸

λ̃i

β2
i =

∞∑

i=1

λ̃iβ
2
i .(A.16)
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Moreover,

∥
∥
∥
∥
∥
f −

n∑

i=1

〈f, ψi〉ψi

∥
∥
∥
∥
∥

2

2

≤ α
‖∇gf‖22
λn+1

≤
∞∑

i=1

λ̃iβ
2
i .(A.17)

Then, replacing f with
∑n+1

j=1 βjφj , we have

∥
∥
∥
∥
∥
∥

n+1∑

j=1

βjφj −
n∑

i=1

〈
n+1∑

j=1

βjφj , ψi

〉

ψi

∥
∥
∥
∥
∥
∥

2

2

≤
n+1∑

j=1

β2
j λ̃j ≤

(
n+1
max
j=1

λ̃j

)
⎛

⎝

n+1∑

j=1

β2
j

⎞

⎠ ,(A.18)

and since λ̃i < 1 for all i, 1 ≤ i ≤ n+ 1, we can state that there is a set of n+ 1 orthonormal
vectors φi belonging to an orthonormal basis whose projection error (over the space spanned
by ψi) is smaller than one. According to the previous lemma, the original assumption leads
to a contradiction because the dimension of the kernel of the projection on the space spanned
by ψi, 1 ≤ i ≤ n, is n.

Appendix B. Cotangent weight approximation for ∆g. The cotangent weight discretiza-
tion [29] is widely used in the field of shape analysis as an approximation for an LBO operator
L on a triangulated surface. The discrete LBO is defined as

L = A−1W,(B.1)

where W is the famous cotangent weight matrix

Wξη =

⎧

⎪⎨

⎪⎩

∑

τ
(ξ,τ)∈E

(cot γξτ + cot βξτ ) if ξ = η,

−(cot γξη + cot βξη) if ξ �= η, (ξ, η) ∈ E,

(B.2)

where γξη and βξη are defined as shown in Figure 7, and E represents the set of edges in the
triangulated surface.

Figure 7. Cotangent weight construction of the LBO about the vertex ξ.
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