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On the Optimality of the Gridding Reconstruction
Algorithm

Hossein Sedarat* and Dwight G. Nishimura

Abstract—Gridding reconstruction is a method to reconstruct The gridding algorithm consists of two main steps: normal-
data onto a Cartesian grid from a set of nonuniformly sampled jzation and local averaging. In the first step, the measured data
measurements. This method is appreciated for being robust and is normalized to compensate for the nonuniform sampling den-

computationally fast. However, it lacks solid analysis and design itv. Th lization fact K d it fi
tools to quantify or minimize the reconstruction error. Least Sity. The normalization tactors, known as density compensation

squares reconstruction (LSR), on the other hand, is another factors (DCF's), are inversely proportional to the local sampling
method which is optimal in the sense that it minimizes the recon- density. Therefore, the measurements taken from densely sam-
struction error. This method is computationally intensive and, in  pled regions are multiplied by small numbers and those from
many cases, sensitive to measurement noise. Hence, it is rarelysparsely sampled regions are multiplied by large numbers. This

used in practice. A . .
Despite their seemingly different approaches, the gridding and normalization scheme ensures that despite the nonuniform sam-

LSR methods are shown to be closely related. The similarity be- Pling pattern, the measurement space is uniformly weighted.

tween these two methods is accentuated when they are properly In the second step, the grid data is calculated by averaging the

expressed in a common matrix form. It is shown that the gridding neighboring samples. This step is formally expressed as the con-

algorithm can be considered an approximation to the least squares volution of the normalized data with an interpolating kernel.

method. The optimal gridding parameters are defined as the ones - ; .

which yield the minimum approximation error. These parameters The |nterpqlat|ng kernel_ IS rjormally chosen to have a bell shape

are calculated by minimizing the norm of an approximation error ~ t0 emphasize the contribution of the samples closer to the grid

matrix. This problem is studied and solved in the general form of points.

approximation using linearly structured matrices. . Much of the research in the area of gridding reconstruction
This method not only supports more general forms of the grid- ¢ concentrated on the calculation of DCF’s based on various

ding algorithm, it can also be used to accelerate the reconstruction definiti f the local ling densitv. S fth d
techniques from incomplete data. The application of this method to  A€TMILIONS 0T the local sampling density. Some of theé propose

a case of two-dimensional (2-D) spiral magnetic resonance imaging Methods derive the sampling density from the analytical expres-
shows a reduction of more than 4 dB in the average reconstruction sion of the trajectory along which the samples are taken [14],

error. [15]. Later work in this area allows multiple trajectories with
Index Terms—Gridding reconstruction, image reconstruction, Crossovers [16], [17]. In another approach, the space of mea-
matrix approximation, nonuniform sampling. surements is transformed to another space in which the sampling

pattern is uniform [18]. The determinant of the Jacobian of the
transform operator is used as a measure of the local sampling
density. There are also other methods in which the sampling
HE problem of reconstructing data onto a Cartesian grighace is partitioned into several cells, each cell representing
from a set of nonuniformly sampled measurements arisg neighborhood associated with a sample point. The area of
in many disciplines ranging from radio astronomy [1] to variousach cell is used as the DCF for the corresponding sample point
modalities of medical imaging [2]-[4]. In addition to some alf19]-[21]. More recently and based on the work described in
gorithms developed for specific sampling patterns, such as {ii-3], Pipeet al.[22] have suggested an iterative algorithm which
tered back projection for radial sampling [5], [6], many othetfies to satisfy a necessary condition for correct reconstruction.
methods try to solve this problem for a general sampling pattern.An efficient implementation of the gridding algorithm re-
These methods are based on some form of interpolation, suclgases an interpolating kernel with narrow width. Interpolation
nearest neighbor, bilinear transform, local averaging, and fixedth any kernel other than &nc(-) function results in a mag-
kernel interpolation [7]-[11]. Perhaps the most general methaiiude modulation in the Fourier domain. This effect is com-
in this category is the gridding reconstruction algorithm [12hensated by multiplying the Fourier transform of the data by a
[13]. This method is computationally fast, robust to measurgroper deapodization function. Jacksetnal. [13] have exten-
ment errors, and intuitively appealing. Hence, it is widely useglvely studied various kernels and compared them in terms of
in practice. the relative amount of aliasing energy that they deposit inside
the field of view (FOV). A more recent study suggests that a

. . _ better performance may be achieved by fine tuning the kernel
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rithm, there are other reconstruction technigues that are expli ‘}y '}y
itly designed to minimize the energy of the reconstruction erro
[24], [25]. These so-called least squares methods take advanta
of the linear relationship between the grid data and the san
pled points to find the minimum error solution. Least square: K K
techniques are normally computationally complex and typically > x =X
ill-conditioned for highly dense sampling patterns and, thus, ar
sensitive to noise and measurement errors.

In this paper, we establish the relationship between the gric
ding algorithm and the least squares method. These two reco
struction techniques reveal their similarities when they are ex (a) (b)
pressed in a common matrix form. We show that the gridding al
gorithm can be derived from the least squares method by prop Kk Kk
matrix approximation. This approximation is intended to sim-
plify the implementation of the gridding algorithm by replacing
the unstructured matrices in the least squares method with ¢
agonal or band matrices. The optimal gridding parameters al T e
obtained by minimizing the average error of approximation. We { Ky oor e Ct M
present a method to solve this problem in the more general fori ot oLliiany e
of approximation using linearly structured matrices. tror ot

This method is applied directly to derive a closed-form so-
lution for the optimal DCF’s. This derivation requires only in-
formation about the sampling coordinates and does not rely ¢
the analytical expression of the sampling trajectory. Aninterpre (c) (d)
tation of the optimal compensation factors indicates that th Ie 1. The sampling patterns known as (a) 2DFT, (b) PR, and (c) spiral are
factors are indeed inversely related to the sampling density ad&ﬂ*monly used in 2D MR imaging. (d) Variable-density 2DFT (VD-2DFT)
suggests a new approach in the calculation of the local samanother nonuniform sampling pattern with predictable properties but no
pling density. We show that our proposed method can be eadif§ctical applications.
extended to minimize a weighted average of the approximation
error. The weighting function can be chosen to emphasize a subed in 2-D MR imaging: 2-D Fourier transform (2DFT), pro-
space of the acquisition space or for a better reconstruction géation reconstruction (PR), and spiral. With a uniform sampling
portion of the grid data. pattern, as in the case of the 2DFT trajectory, the image can

We also present a method to obtain the optimal interpolatithg reconstructed easily by taking the inverse FFT of the raw
kernel and deapodization function. The joint optimization dfata. However, whek-space is not uniformly sampled, as in
these two functions is inherently a nonlinear problem and ratHéR and spiral, the reconstruction algorithm needs to derive the
hard to solve directly. We propose an iterative algorithm thgtid points from the acquired data prior to the inverse FFT op-
reduces this problem to a linear problem in each step allowiggation.
the application of our matrix approximation technique. Our Fig. 1(d) shows another nonuniform sampling pattern which
methodology can be used to generalize the gridding algorithisivery similar to a 2DFT trajectory, except for the central sec-
We study examples of such cases in interpolation with t@n of k-space where the sampling density is higher. We refer
shift-variant kernel and extensions of gridding in reconstructida this sampling pattern as the variable-density 2DFT trajec-
from incomplete data. Finally, we present some of our resutyy (VD-2DFT). Although this sampling pattern has never been
from a case of 2-D spiral magnetic resonance (MR) imaging.used in practice, it provides a simple example with predictable
properties that is used to verify some of the results of this paper.

With a finite imaging FOV, the Nyquist sampling theorem
relates the acquired trajectory data to the desired grid points as

This section presents an overview of both the gridding and
the least squares reconstruction (LSR) methods. The goal is m(r;) = Zsinc(w ~ kym(E;) 1)
to express these two techniques in a common frame work and ‘ Lo
thereby establish their relationship. Although the discussion is
presented in the context of data acquisition and reconstructisherem(-) is the data irk-spacex;.« = 1,..., L} is the set
in MR imaging, the final results hold for other applications asf trajectory points, andk;,j = 1,...,N} is the set of grid
well. points. For simplicity, allkk-space points are normalized to the

MR raw data consists of several measurements of the imdg@V. It is assumed that the image has limited resolution, thus
in the Fourier domain, or better known in the MR communitg finite number of grid points at the center/ofspace can rep-
ask-space [4], [26]. These measurements are discrete samplssent the image uniquely. This assumption may theoretically
of the Fourier transform of the image taken over a sampling treentradict the earlier assumption of having an image with fi-
jectory ink-space. Fig. 1(a)—(c) shows three trajectories widehjite FOV. However, with a proper coveragekespace, the grid

Il. BACKGROUND
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points at higher spatial frequencies can justifiably be ignoredtechniques are closely related. To establish this relationship, the
many practical cases where the energy of the image is domiidding reconstruction of (2) is rewritten in a matrix form as
nantly concentrated at the centerke$pace [27]. Normally, the A .
number of trajectory point§L) is not smaller than the size of m=T"Dp (®)
the grid (V). . ' TET
Equation (1) provides a method to interpolate the trajecto\{ll\)/{her?m’ p andT _are defined as_ before .ada.LXL N [d”], IS .
: . e diagonal density compensation matrix with the DCF's as its
data from the grid samples. The problem of image reconstruac—
o ) . ) . . . iagonal elementsl;; = d(x;).
tion in MR is the inverse: the available data is the nonuniform ; . . .
. To obtain a similar form for LSR (4) is rewritten as
measured data over tihespace trajectorym(;)) and the un-
knowns are the samples on the rectangular gridk,)). The m=T"Pu (6)
gridding reconstruction method tries to solve this problem by
interpolating the grid points back from the trajectory data. In itwshere the compensation matri,.; is defined as
simplest form, this method uses the same interpolating kerdeél = 7(T*T)~%1*. Comparing (5) and (6), it is clear
used in (1), i.e., theinc(-) function. However, to take into ac- that gridding and LSR have very similar forms. In fact, one can
count the nonuniform sampling density/ospace, the measure-consider the gridding algorithm as a special form of LSR where
ments are normalized by the so-called DCF’s prior to the intehe compensation matri¥ is approximated with a diagonal
polation. matrix D. This approximation allows fast calculation of the
The gridding operation can be expressed as compensated data. This calculation has a complexity on the
order of L2 in LSR and only on the order df in gridding (L is
Lo the number of trajectory samples).
k;) =Y sinc(k; — mi)ym(ri)d(r;) 2)
=1 lIl. OPTIMAL DENSITY COMPENSATION

where 7(k;) denotes the calculated grid data as;) is Up to this point, the relationship between the gridding recon-
the DCF at trajectory poink;. The DCF’s are inversely pro- struction algorithm and the LSR method has been established.
portional to the local sampling density at their correspondingoreover, it has been shown that the gridding method can be
k-space points. considered as an approximation to LSR. To introduce the no-

Another method of reconstruction is least squares reconstruen of optimality to gridding reconstruction, one needs to show
tion (LSR). Equation (1) indicates a linear relationship betwegfow to do this approximation optimally. In this section, we pro-
the measured trajectory data and the unknown grid points. Thisse a method to obtain the optimal DCF’s such that the error
linear relationship can be easily inverted to obtain the grid dadae to the gridding approximation is minimum.

from the measured samples. lsat = [m;] denote theV x 1 The reconstruction error due to the gridding approximation is
vector of grid points withm; = m(k;) andu = [11;] denote the

L x 1 measurement vector with; = m(x;). We can rewrite e=T1"(P—D)p. (7)

(1) as

The goal is to find a diagonal matri& that optimally approx-
p=Tm 3) imates the compensation matdX in the sense that the norm
of error vectore is minimized. The error vector depends not
whereT = [t;;] is the L x N interpolation matrix witht;; = only on the choice_ o_f r_natri)D but also on the vector of mea-
sinc(r; — k;). Note that thejth column of T consists of the surements:. To minimize the error for all possible measure-
trajectory samples of the interpolating kernel centered atthe MeNtS, the norm of error matri = 7™ (P — D) has to be min-
grid point ;. imized. Note that, by definition, th.e norm.qf a matrix |nd|.ca.tes
LSR solves this linear equation for a grid vector that yields tH#W much the length of a vector is amplified when multiplied
minimum measurement error. This solution can be expressed¥that matrix [28]. Thus, by minimizing the norm of the error
terms of the pseudoinverseBiderived from the singular values Matrix 7™ (£ — D), one can assure that the approximation error
of that matrix [28]. When the interpolation matrix is full rankWill b& minimum for all possible measurement vectors.

this solution can be expressed as Appendix | presents a method on optimal matrix approxima-
tion. We apply the method described there to find the optimal
m=(T"T)"‘T*p (4) density compensation matriz. The final result is
_ [L(T*T)~YT*);; )
wherel™ denotes the complex conjugate transpose of the ma- iy = i i=1...L (8)

*].. ’
trix 7°. This method of reconstruction is optimal in the sense that [T}

it results in minimum error, hence the name least-squares recaned the average squared error of approximation is obtained as

struction. LSR can be ill-conditioned with highly over-sampled . .

trajectories. In such cases, the problem should be regularized by _ e — 2 ok 2 "

taking into account the effect of noise and measurement error. ‘= Z[T(T D70 = Y AT ©)
The LSR and the gridding reconstruction equations (2) and =t =t

(4) are obtained by different approaches and they seemingltere[A];; anda;; both denote thé:, j)** element of matrix

have different forms. Nevertheless, these two reconstructian
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To ensure that the solution of (8) always exists, we need to
show that the denominator is nonzero and the numerator is well
defined. Thet! diagonal elements &F7* can be expressed as

~
[TT*]ii = sinc?(k; — k). (10)
j=1

This is the amount of energy thatsac(-) kernel centered at
the " trajectory point deposits on the grid points. This factor
is always greater than zero and, more specifically, for a grid of
infinite extent this factor is equal to unity. For a finite grid size
and for sample points close to the centekedpace these values
are very close to one, but for samples at the eddesggace they
may be smaller than one but always greater than zero.

The other term of concern i&*7)~! in the numerator of
(8). When the condition number of the interpolation maffix
is large, which may be the case for highly over sampled tra-
jectories, the calculation dff*7)~* is numerically unstable.
However, the whole numerator, which represents a projection
operator to the range space of the matffixis independent of
the condition number of that matrix. To confirm this fact, we
start with the singular value decomposition of maffias

DI P
r=o[%a

whereO ., and{2y « v are unitary matrices and is a diag-
onal matrix with the singular values @f on the diagonal. After
some basic matrix manipulations, the numerator of (8) can be
re-expressed as

* — 1 1 0 *
T(T*T)~'T _@{O O}@
wherel! is an identity matrix with dimensions similar . This
equation indicates that the numerator in (8) is independent of the
singular values df'. It also presents a stable method to calculate
that numerator.

The optimal DCF's are calculated for the VD-2DFT, PR, and
spiral trajectories of Fig. 1. We assume an oversampling factor
of four at the center of-space in the VD-2DFT trajectory. The
optimal DCF's for this trajectory is shown in Fig. 2(a). These
factors are close to unity everywhere except at the center of 0 K| 0.5
k-space where they take values closé td. As expected, these
values are inversely proportional to the local sampling densitgig. 2. The optimal DCF's for (a) VD-2DFT and (b) PR trajectories (contour

For a PR trajectory with fine sampling pattern, the local sarfloY. (c) The optimal (solid) and conventional (dashed) DCF's for the spiral

. LT . . trajectory.
pling density is inversely proportional to the distance from the
k-space origin. Therefore, the DCF’s at edehpace point are
conventionally chosen to be proportional to the distance of ththe center ok-space where the sampling density is higher and
point from the origin. This fact is also well known from thelarger at the periphery df-space where the local sampling den-
theory of tomography and the Radon transform [29]. The thresity is lower.
dimensional 3-D contour plot of Fig. 2(b) shows that the optimal The optimal DCF’'s for a spiral trajectory are plotted in
DCF’s also endorse this linear relationship. The small variatiokgg. 2(c). This figure shows that the conventional DCF's
of the optimal DCF's for points on a constant radius is due tbtained analytically by Meyest al.[16] are very close to the
the fact that unlike the sampling pattern of PR trajectory, theptimal values. Note the difference between the two DCF's at
Cartesian grid pattern does not have a circular symmetry. Cahe k-space origin. While the analytical expression assumes
sequently, the average distance between trajectory samplesamdhfinite sampling density at origin resulting in a zero DCF,
grid points is angle dependent. Hence, the optimal DCF’s ctre optimal DCF is nonzero complying with the fact that the
vary for points on a constant radius. This variation is smaller sampling density at the origin is finite.
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A. Interpretation (a)

[oYo)nl01a1nTo1n AlA1n10 6 A A A0 SORREAELILI LY LI FIIAREBRANE OOOOOCOOOOCOOROOO0

In the previous section, we presented a method to obta
the DCF’s that are optimal in the sense that they minimiz
the average approximation error in the gridding reconstructio
algorithm. We also showed that, for some typical trajectories
these factors are very close to what is expected and also to wi
is obtained through other conventional methods. However, w
have not shown that the optimal factors obtained from (8) carr
the notion of density compensation in any way. This sectio
presents an argument to indicate that the optimal DCF's a™
in fact inversely related to the local sampling density. The
conventional methods for calculating the DCF's use variou
definitions for sampling density, all of which are intuitively
appealing. The argument in this section leads to yet anoth
definition for local sampling density which is derived from the
optimization procedure of the previous section. -0 kx

We start with (8). As discussed in the previous section, the de-

nominator in this equation is equal or very close to one. The@g' 3.

(FOV * sample_time)

50

(a) A nonuniform 1-D sampling pattern. (b) The corresponilisgace

fore, for simplicity, we discard this term and rewrite this equa—e loctty
tion as
1
dii ~ [T(T*T)™1T*);
= [[(T*T) 1T*w);
~ O O O 0O 00000000 CO0CO0OC OO0 OO0 O 0 O O
wherew; is the unity vector with all zero elements except for (a)
a 1 at thei*! position. The matrixl’(7*7T)~17* represents a d
projection operator which projects the vectgrinto the range Oﬁﬁ)
space of the matrif’. This equation indicates that tii¢ DCF 6 00600000 %o@ooodp 90000090000 0 0 0 o
can be obtained by projecting the corresponding unity vecto
into the range space @f and taking theé*" element of the pro- (b)
jected vector. The range spacefis nothing but all the pos- d
sible measurements that satisfy the FOV constraint in the obje« QIE a
O O O 0 0CO00000 0000000 0 O O O O O

domain. Ink-space, this range space consists of all signals the
have smooth variations such that their inverse Fourier transforr.. (c)

have a finite support confined in the FOV. Therefore, the opera- _ _
Fig. 4. To calculate the DCF at a pointinspace, a delta function center at

t!on _Of p!‘OJeCtlon into the range afis Equwalen.t toa Iow—pass that point (a) is projected into the spacekloBpace signals which satisfy the
filtering in k-space. On the other hand, the unity veatprep- FoV constraint. The projected function (b) has a low-pass waveform which can

resents a Kronecker delta lﬂspace centered at. Thus, the be approximated with a rectangular function witmonzero samples (c). The
optimal DCF at a certain point ir-space is obtained by a propef™Pitude of this functiorid, ) represent the DCF.
low-pass filtering of a delta function centered at that point and
measuring the amplitude of the resulting waveform at the sarfhe number of large samples is greater when the local sampling
point. density at origin is higher. We approximate this low-pass
To illustrate these operations, we use a simple one-dimesignal with a rectangular waveform shown in Fig. 4(c). This
sional (1-D) trajectory with the sampling pattern shown iwaveform exhibits a constant amplitude fosamples close to
Fig. 3(a). The local sampling density for this trajectory ishe origin and zero for other samples. The number of nonzero
high at the center and approaches unity at the periphery saimples: is directly related to the sampling density at origin.
k-space. Thek-space velocity for this trajectory is shownThe projected signal not only satisfy the FOV constraint, but it
in Fig. 3(b) and is assumed to have a saturated exponendo is the closest signal, in Euclidean distance, to the original
profile. To obtain the DCF at the origin, we start with the deltdelta function. This distance for the approximated waveform
function of Fig. 4(a) and project that to the rangeZaf The is easily expressed &% — dy)? + (n — 1)d3. This distance is
resulting waveform is the low-pass signal shown in Fig. 4(bininimized fordy, = 1/n indicating that the optimal DCF'’s are
The corresponding DCF is the amplitude of this signal at thie fact inversely related to the local sampling density.
origin denoted asl,. Unlike the original delta function, the This discussion not only justifies the fact that the conventional
low-pass waveform cannot have sharp variations. Thus, thE€F’s are close to the optimal values, but it also provides a new
final waveform shows smooth transition from large samplaetefinition of local sampling density which yields the optimal
close to thek-space origin to small samples farther from originDCF's.
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B. Generalized Compensation Factors (a)

In the previous section, we proposed a method to calculate P SN
DCF's such that the average approximation error in the gridding T

algorithm is minimized. This method is easily generalizable and 4 //’ l.""' \:\\
can be used to minimize a weighted average of the approxima- ,/” \\“l""ll', \\\
tion error. This is done by minimizing the norm of a weighted /”/ \‘“‘l"""ll ?’ >
error matrix,E,,, which is obtained by pre- or post-multiplying /”’ \“‘“ " I

the error matrix of (7) by some weighting matrices as

E, = WT*(P — D)W,.

W is the left weighting matrix that provides weighting for the
grid data and can be used, for instance, to emphasize a partic-
ular region of interest in the image and reduce the reconstruction
error in that region. The right weighting matriX,. introduces
weighting into the measured data and can be used, for instance,
to impose some constraints on the measured data. The optimal
diagonal matrixD, which is obtained by minimizing the norm of
weighted error matrix, is called the weighted compensation ma-
trix and its diagonal elements are referred to as weighted com-
pensation factors (WCF).

A weighting scheme of particular interest is with; = [
andW,. = 7. With these weighting matrices the image is uni-
formly weighted in the object domain but the measured data is
weighted with the interpolation matrik. As discussed before, -1
this matrix spans the space of all possible measurement vec- 0 k| 0.5
tors that satisfy the FOV constraint in the object domain. There-
fore, with this weighting scheme the error is minimized for th€ig. 5. The optimal compensation factors which minimize the average
measurement vectors that can be obtained from ObjeCtS with Eﬁ@nstructlon error in the PSF for (a) the PR trajectory and (b) the spiral

rajectory (optimal factors: solid line, conventional factors: dashed line).
specified FOV while ignoring all other vectors. This weighting
scheme also minimizes the average reconstruction error in the
point spread function (PSF). This is because each column ofFig. 5 shows the weighted compensation factors for the PR
T* PT represents the PSF at the corresponding grid point adad the spiral trajectories. Note that unlike the DCF’s, which
thus the weighted error matri&* (P — D)7 represents the grid- are always positive, these compensation factors can take neg-
ding error in the PSF. It is worth noting that the WCF's obtainegtive values and consequently do not carry the notion of den-
from this weighting scheme are the ones discussed by Rosenfity compensation. Nevertheless, the conventional DCF's are
[25]. very close to the optimal WCF's, suggesting that the reconstruc-

Using the results of Appendix I, we can show that the WCFton error using the conventional DCF’s should be close to a
for this particular weighting scheme are the solution to the faminimum. To confirm this fact, we have calculated the average
lowing linear equation: signal-to-error ratio (SER) in the PSF using the optimal WCF’s

and the conventional DCF’s for both trajectories. The SER is
Ad =10 defined as the signal amplitude, which is one for the PSF, to
the root-mean-square value of the error. This definition resem-
wherea;; = |[T7*];;]? andb; = [T'T™];;. The solution to this bles the common definition of SNR in the MR community. The
problem can be ill-conditioned, in which case some form of re&ER for the PR trajectory is calculated as 30.2 dB using the con-
ularization may be necessary for a numerically stable solutiomentional DCF’s and 32.4 dB using the optimal WCF’s. These

These compensation factors have been calculated for thembers for the spiral trajectory are 29.6 and 31.8 dB, respec-
VD-2DFT trajectory. Note that, the set of sample points itively.

VD-2DFT includes all the grid points. The calculated WCF for Gridding with the weighted compensation factors is only one
the trajectory points that coincide with grid points is one angay of generalizing the conventional gridding algorithm. The
the WCF for all the other points is zero. This result is expectguoposed approach of the previous section allows other exten-
because, in the absence of noise, knowing the sampling poisitsns to the gridding algorithm which otherwise may not be
on the grid can uniquely express the image and the exaHainable intuitively. For instance, another way of generaliza-
trajectory points off the grid do not add any extra informatiortion is to approximate the compensation matfxof (6) with
Therefore, with these compensation factors, the image a@smatrix that has a structure other than diagonal. In the sim-
reconstructed perfectly and the error in the PSF will be zenplest form, this structure should be sparse so that the resulting
This also explains the fact that the approximation error usimdgorithm remains fast. An interesting structure, which is a di-
these WCF's is zero. rect extension to the conventional diagonal form, is the band
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structure. With this form, the compensated measurements are
obtained as the linear combination of the local samples. The ap- H="H,
proximation error with a band matrix is smaller than the error in

conventional gridding with a diagonal matrix because the band
structure provides extra degrees of freedom in the optimization A
problem. This improvement, however, comes with a price in re- find optimal ¢/
construction time which in turn restricts the maximum width of while fixing #
the band. The optimal band matrix can be easily obtained with
the method of Appendix I. This method is studied further in Sec-
tion IV in a more general form and in the context of gridding

y

with finite kernels. f'nc_i °P_t'_ma' H
while fixing ¢/
IV. OPTIMAL SHIFT-VARIANT INTERPOLATING KERNEL
no
A fast implementation of gridding reconstruction requires
an interpolating kernel with a narrow width. For this reason, calculate converge?
asinc(-) function, which has large side lobes, is seldom used error -
in practice. Note that, the interpolation operatiorkispace is yes

equivalent to multiplication by the inverse Fourier transform of
the kernel in the object domain. Withsénc kernel, the image end

is multiplied by a rectangular function which will not affect

the image inside the FOV. However’ interpo|ating with Othé?lg 6. _An_ iterativg algorithm for joint optimization of the interpolation and
kernels generally results in a roll off in the intensity of thgeapodization matrices.

image. To compensate for this effect, the reconstructed image

has to be deapodized by dividing the image by the inver&educes the problem to a linear problem in each iteration. The
Fourier transform of the kernel. This modified form of theélgorithm starts with an initial guess for the interpolation matrix

gridding algorithm can be expressed as H and iterates on the following two steps until it converges to a
stationary point. In the first step, the optimal deapodization ma-

F-1 {Z‘Lfl h(k — ﬁi)m(ﬁi)d(ﬁi)} trix U is calculated by fixing the interpolation matrix found in
m(k) =F = (11) the previous step. Using this deapodization matrix, the optimal
interpolation matrix is found in the second step. By assuming

that one of the matrices is known in each step, the problem be-
where 7{-} denotes the Fourier transform operator &t#) comes linear in terms of the unknown matrix allowing the appli-
represents the interpolating kernel. cation of the approximation method of Appendix I. Moreover,
Jacksornet al. [13] have studied the effect of various kersince the norm of the error matrix reduces after each step, it is
nels on the reconstructed image. They have shown that #igiranteed that this method converges to a local minimum. To
Kaiser-Bessel function is a proper kernel which results injgcrease the chances of reaching the global minimum, this algo-
small aliasing error. This section presents a method to find thghm has to be repeated for different initial settings. The con-
optimal interpolating kernel and deapodization function thentional values of the interpolation and deapodization matrices
minimizes the gridding approximation error. We follow theyre found to be proper starting points in many practical cases.
same StepS taken in the calculation of the Optlmal DCF's in the|t is worth noting that since the 0n|y structure imposed on
previous section. First, we rewrite (11) in a matrix form as  the interpolation matrix is a band structure, the optimal inter-
polating kernel can in fact be shift variant. Therefore, although
the width of the kernel is fixed, its shape can vary from one

where is the Fourier transform matrix ankiz v is a new point of k-space to another. The intuitive approach of the con-

interpolation matrix. For a finite width kernel, the interpolatioﬁ’ent'onal gnddmg algorithm does not support shift-variant ker-
matrix has a band structure. The diagonal matfix. v repre- nels and cannot interpret the relationship between these kernels

sents the deapodization matrix with the inverse Fourier trar%h-'\(/jvthr(]a deapoc:.izgti;m func:]iog. he 1D  of Fia. 3
form of the kernel on its diagonal. e have applied this method to the 1-D example of Fig. 3(a).

The optimal interpolation and deapodization matrices thgpe optimal shift-variant kernels of widtlyFOV and the cor-

minimize the gridding approximation error can be obtained t{ﬁsponding deapodization function have been calculated using
minimizing the norm of the error matrix the proposed iterative algorithm. For the initial condition, we

have used a Kaiser—Bessel function with shaping factgr ef
E=QUQ*H*D —T*P. 4.2054. This shaping factor has been found to be the best in con-
ventional gridding for this particular kernel width [13]. The al-
This expression consists of the productidfand U, thus the gorithm converges after only a few iterations. Fig. 7(a) shows
joint optimization of these two matrices is not a linear problertihe optimal interpolating kernel at the center/etpace and
and the method of Appendix | is not directly applicable. Theig. 7(b) shows the optimal deapodization function. The con-
block diagram of Fig. 6 illustrates an iterative algorithm thatentional interpolating kernel and the corresponding deapodiza-

= QUQ H" Dy (12)
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08 (",‘) use prior knowledge about the temporal behavior in the spatial
frequency domain [37]-[39] and feature-recognizing MRI that
uses the salient features derived from similar images [40]. The
practical use of some of these reconstruction techniques is hin-
dered partially because of their often complex reconstruction
algorithm.

In many of these techniques, the prior information can be
represented as an affine constraint on the image in the following
form

m = Cx + my, (13)

wherem is the vector of grid points to be reconstructed, is
a vector that is known in advance, amds an unknown vector.
Cnxp is the constraint matrix with a rank @ < N. This
matrix reduces the degrees of freedom of the problem fkoto
P, thus allowing an incomplete set of acquired data to represent
the image uniquely. For instance, in partial FOV reconstruction
Cio 7 The optimal (solid) and ional (dashed) interoolating k vvlhereaportion of the image is assumed to be known in advance,
T o (e et K88k, represens the Fourier transform of the known partaid
deapodization function. the pixel values of the unknown section afids the matrix that
mapse to a full FOV image and calculates its Fourier transform.
tion function are also plotted in dashed line for the sake of com-The combination of (3) and (13) forms a framework
parison. The average relative error of approximation using tHeat can express many reconstruction techniques. The min-
full sinc kernel is—20.4 dB. This error is only due to the DCFiImum-squared-error solution under this framework is expressed
approximation and is the minimum error that one can get &g
tuning the interpolating kernel. With conventional gridding, this
error is as high as-14.9 dB. Using the optimal values, the ap-
proximation error reduces t616.8 dB.

m = (C*T*TC) C*T* (u — Tmy). (14)

This solution, like LSR, suffers from high complexity. A fast
implementation of this algorithm may be obtained by approxi-
mating some of the involved matrices with sparse (or other prop-
We have shown that the gridding algorithm is a fast recoe+ly structured) matrices. This approximation can be done in
struction technique which can be derived from LSR by propemnany different ways with respect to the matrices being approx-
approximations. We have also proposed a method to obtain thmated or the structures being used.
optimal gridding parameters by minimizing the approximation To illustrate this approach, an example for a case of locally fo-
error. This approach can be applied to other reconstruction techsed MRI using the 1-D variable-density trajectory of Fig. 3(a)
nigues to reduce the complexity with a cost in the approximatigmstudied. The image is assumed to have twice the original FOV.
error. In this section, we consider a broad range of problemsTherefore, the sampling density at the periphery:apace is
image reconstruction from incomplete data. We claim that mahglf of the Nyquist requirement, resulting an incomplete set of
of these reconstruction techniques can be studied under a unifiad data. It is, however, assumed that the inherent resolution of
framework. We present the optimal solution for this frameworthe object outside the original FOV is only3 of the resolu-
and present the approximate, gridding-like solution which hésn inside (Fig. 8). Thé-space trajectory of Fig. 3(a) provides
reduced complexity. a proper sampling pattern for this particular object model. Note
Despite the recent developments in MR technology, the sciat Fig. 3(b), which is a rough plot of the local sampling period,
time in this imaging modality is still longer than what is desirethdicates that the center bfspace is sampled dense enough for
in many applications. One approach to reduce the scan timaisaliasing-free reconstruction of the whole image. This central
to acquire only an incomplete set of raw dakapriori knowl- area coverd /5 of k-space, providing low—resolution informa-
edge about the image is to be used to fill in for the missing datan for the large FOV. The rest of raw data, which consists of
Several methods have been proposed for reconstruction frime low-density samples of the high spatial frequency content of
incomplete data which use various forms of prior informationthe image, provides high resolution information for only half of
For instance, in homodyne reconstruction, the prior informatighe whole FOV.
is the symmetry of thé-space data [30]. In finite support so- This image model can be expressed in the affine form of (13)
lution, the prior knowledge is on the region of the image thatith my = 0. The constraint matrix”’ can be obtained using
the object can have nonzero values [31]. The prior informatidhe method described in [32] or simply by collecting the desired
on the inherent local spatial and temporal resolution have aisdependent PSF’s as the columns of this matrix. In its simplest
been used in locally focused MRI [32], [33] and partial FOV reform, the PSF at the low resolution section of the image can be
construction [34]-[36]. Some other methods of reconstructioapresented by a rectangular function with a width of 5 pixels.
from incomplete data are: keyhole imaging and UNFOLD thét gridding-like reconstruction for this example is carried outin

V. FAST RECONSTRUCTION FROMINCOMPLETE DATA
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20 - Fig.9. The optimal (solid) and the conventional (dashed) interpolating kernels
> for the simple case of locally-focused reconstruction using a variable density
-1 0.5 +05 1 trajectory.
(b)

Fi . . ) . . . Itis worth noting that, the frame-work introduced in this sec-
ig. 8. (@) The 1-D variable-density trajectory provides high sampling density . . . )
(>2 x FOV) at the center ok-space and low density>1 x FOV) at the 0N can be extended to incorporate some prior statistical infor-
outer parts. (b) The extent of the object is twice the designed FOV. The inherenaition on the image, similar to the method described in [41]
resolution of the object in the outer section is onf\6lof the resolution in the and [42]. A particular case of interest is when the second-order
central part. (All numbers are normalized to the designed FOV.) R P . . . _ _

statistics of the image is available in advance. In this case, one

can approximate each pixel as a linear combination of the other
two steps. First, the central sectionfebpace is gridded over apixels such that the average error of approximation is minimal.
dense grid to form the low-resolution information for the whol@ other words, knowing the second-order statistics, one can de-
FOV. Then the outer part of thespace is gridded over a sparsgive a matrixR from the autocorrelation function of the image
grid to provide the high-resolution data for the central part of theich thatRm represents the approximation error vector with
image. These two sections are added together to form the firihimum norm. This requirement can be forced to the least
reconstructed image. These operations can be expressed instiifares solution by using the following augmented form of (3):

following form:
T
[fﬂ = LR} m. (16)

The least squares solution to this equation minimizes the norm
u;, (py) denotes the raw data corresponding to the high (low}

density central (outer) part of thespace D;, (D) is the diag-

onal density compensation matrix for the central (outespace e — Tm||* + o%|| Rm||?.

points.H;, (H;) is the interpolation matrix for the dense (sparse)

grid. U, (Uy) represents the deapodization matrix for the lowLhe first term, by itself, yields the solution of (4) and the second
(high-) resolution part of the imag&?;, (Q;) is the Fourier term imposes the desired second-order statistics on the recon
transform matrix that maps the low- (high-) resolution imaggtructed images is a weighting factor that adjusts the proper
to the dense (sparse) grid. The interpolation matrices have b&fgphasis on these two terms. It can be shown that this solu-
structures. A larger kernel width is used fHg which interpo- tion generates an image with maximanposterioriprobability
lates the sparse grid. The deapodization matrices have a di&§en the image and noise have Gaussian distributions. Note

m = QU Q5 Hy, Dy, + QUi Q7 Hi Dy, (15)

onal structure. that , the combination of equations (16) and (13) can be used
To obtain the optimal interpolation and deapodization m&° impose both the statistical and affine constraints on the re-
trices, we rewrite (15) in a more familiar form of (12) as constructed image. The resulting least squares solution may be
properly approximated for fast implementation.
. U, 0 0
m=[Qn Q] { 0] UJ {%} Q}“} VI. APPLICATIONS T02-D SPIRAL MR IMAGING
H, 0 D, 0 w, Data acquisition along a spiral trajectory [16], [43] offers

*1 0 H, 0 Di||ml|” many benefits in magnetic resonance imaging. Spiral trajectory

provides a more efficient coverage bfspace, resulting in a

Note that the second and forth augmented matrices are sherter scan time. This type of acquisition also exhibits more
knowns to be found using the iterative algorithm of the previousimunity to flow and motion artifacts. Gridding is the most pre-
section. vailing reconstruction technique for spiral acquisition. In this

We have calculated the error using interpolating kernels witiection, we calculate the optimal gridding parameters for the
widths of three times their corresponding grid units. The averaggiral trajectory of Fig. 1(c) and compare the average recon-
relative approximation error using the Kaiser—Bessel functigtruction error in an exemplary 2-D image using the optimal and
with shaping factor of2 = 4.2054 is —12.3 dB. This error is the conventional parameters.
—15.8 dB when the optimal gridding parameters are used. Fig. 9The phantom image of Fig. 10(a) is used as a reference image.
shows the optimal and the conventional interpolating kernels®te spiral raw data for this image is synthetically generated
the center of;-space. by taking the Fourier transform of the image to obtain the grid



SEDARAT AND NISHIMURA: ON THE OPTIMALITY OF THE GRIDDING RECONSTRUCTION ALGORITHM 315

{a) {B) (&) (b}

Fig. 10. (a) The reference image to be used in calculation of the reconstructi il
error. (b) The support region of the reference image to be used as the pr a=r - — — —
information for reconstruction from incomplete data.

points and then interpolating the spiral samples from the gri* |
data using ainc(-) kernel. The computational complexity and
the memory requirement of our algorithm are on the order ¢ =
NZ whereN is the grid size. We limit the grid size to 64 64 gl
to avoid excessive complexity. Note that, this complexity is only
related to the calculation of the gridding parameters. This calatlg. 11. The magnitude of the reconstruction error using (a) the conventional
lation is done only once when a new trajectory is designed. Terglding parameters and (b) the optimal gridding parameters (the images
. tructi | ithm. h has th d are. scaled by a factor of four for better visualization of the error). (c) The
Image relcons ruction a gO.r' m, .OW?VEI" asthe sgme or eFé%t:)nstruction error over the high lighted line of Fig. 10 using the optimal
complexity as the conventional gridding reconstruction. (solid) and the conventional (dashed) gridding parameters.

We calculate the optimal shift-variant interpolating kernel of

width 2/FOV such that a weighted average of the approxim_%e conventional gridding parameters, we use the DCF’s sug-

m;eetrrr]zrrlzcrg:,]nslgfézblﬁrvgf;gTﬂggprgétr\l/)\(/fs%?\?esfﬁeto rr:)ubr;l- ested in [16] and a Kaiser—Bessel function with the shaping
' P actor of 3 = 2.3934 as the interpolating kernel. This shaping

f reconstruction from incompl ing infor- .
as a case of reco st uctq 0 comp ete data using ? ctor has been found to be the best for the corresponding kernel
mation on the support region of the image as the prior knowl-

idth [13]. The reconstruction error, calculated by subtracting

_edge_ [31].' We assume that object is conﬂne_d W'th"? the ‘"% reconstructed images from the reference image, is shown in
inscribed in the rectangular FOV and everything outside this CE .11 Note that these images are scaled by a factor of four for

cular region have zero values. This support region is shown'i - .
Fig. 10(b). This prior knowledge can be modeled as argetter depiction of the error. Fig. 11(c) shows the error for the

high lighted line of Fig. 10(a). The results show that for almost
m = QRzx all pixels the reconstruction error is smaller using the optimal
gridding parameters. The average signal to reconstruction error
wherez > is a vector consisting of all pixel values within theratio over the entire image is 21.14 dB using the conventional
circular FOV,Qn x v is the Fourier transform matrix that mapsgridding parameters and 25.93 dB using the optimal parameters,
the pixel values of an image with rectangular FOVit@pace an enhancement of more than 4 dB.
grid point, andRn x p (N > P) is a matrix that adds zero-value  Note that, in the analysis presented in this paper, we have ig-
pixels tox such that the resulting vector represents an ima@ered the effect of measurement noise for simplicity. However,
with rectangular FOVR is obtained by extracting the columnsit is not difficult to incorporate the effect of noise in the least
of an/V x IV identity matrix that correspond to the pixels outsidgquares solution. The optimal gridding parameters that take into

the circular support region. account the measurement noise are obtained with a proper ap-
The norm of the following approximation error matrix is minproximation of this least squares solution.
imized:

a4 13 il ol a i 1 [iE] il

E=WQUQHW, —Ipyp VII. SUMMARY

whereW; = R* and W, = TQR are the left and right We showed that the gridding reconstruction algorithm is an
weighting matrices that effectively yield a minimum reconapproximation to the least-squares solution. The optimal grid-
struction error in the point-spread function inside the circulaling parameters minimize the approximation error. These pa-
support regionH and U are the unknown interpolating andrameters are calculated by minimizing the Frobenious norm of
deapodization matrices to be calculated using the iteratiga approximation error matrix. We presented a method to solve
algorithm of Section IV. Note that, since we are considerinipis problem in a more general form of approximation using
a shift-variant kernel we are able to combine the interpolatitigearly structured matrices. Based on this approach, a closed
and compensation matrices into a single matrix denoteH by form solution for the optimal DCF’s is obtained. We showed
The image is reconstructed from the synthetic raw data usitiwat these factors are in fact inversely related to the local sam-
both the optimal and the conventional gridding parameters. Raing density, thus carrying the notion of density compensation.
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The optimal interpolating kernel and the optimal deapodiz&imilarly, if X is a3 x 3 diagonal matrix, therv consists of
tion function are more difficult to calculate because the joint ophe diagonal elements &f and.S is obtained by inserting three
timization of these two factors is a nonlinear problem. We proews of zeros under the first two rows of tBg 3 identity matrix.
posed an iterative algorithm that reduces this nonlinear problemWith this introduction, we continue with the matrix approxi-
to a linear one in each step, allowing the application of ounation problem:
method of matrix approximation. The algorithm is guarantederoblem StatemeniGiven matricesA, ., Brxg and Cpyq,
to converge to a local minimum and our simulation shows théihd a matrix X,,, «x» such that:

the rate of convergence is rather fast. 1) X has a predefined linear structure;
Our method of calculating the gridding parameters provides 2) the productd.X B is a good approximation to matrix.

solutions for situations that intuition may not be helpful angpe approximation error matrix is defined Bs= AXB — C.
the notion of density compensation or the Fourier relationshifhe Frobenious norm of this matrikg|| r, is chosen as a mea-
between thg interpolating kernel gnd the deapodization functig@re of appropriateness of the approximation. The unknown ma-
are not valid anymore. We studied examples of such casey{R x is calculated such that this norm is minimum. The choice
gridding with shift-variant kernels and reconstruction targetes} rropenious norm from the variety of other matrix norms, such
for minimum error in the PSF. We also illustrated the utilityg 2-norm, is due to two reasons. First, the Frobenious norm pro-
of our method in developing gridding-like algorithms for fas{ijes a measure of average induced error which may be more ap-
implementation of methods of reconstruction from incomple{gopriate in many applications because it is a less conservative
data. i ) ) ] ] o indicator than the 2-norm which is a measure of the maximum
We applied this technique to find the optimal gridding pandyced error. Second, with the Frobenious norm, the solution

rameters for a case of 2D spiral MR imaging. We calculated the this problem is mathematically tractable which may not be
shift-variant kernel that yields the minimum error in the PSkpe case with other norms.

The problem was solved as a case of reconstruction from incomyote that if no particular structure were imposed'orthe so-

plete data where the prior information was the support regiongtion would be easily obtained by multiplying from left and

the im_age. We optained more than.4—(_jB reduction in the reCqilyht by the pseudo-inverses dfandB, respectively. The com-
struction error using the optimal gridding parameters. plexity of the problem is mainly due to the fact that the solution

~ Our method of calculating the optimal gridding parameteigst have the predefined linear structure. We start the solution
is computationally demanding. This problem can be alleviatggin, the following two lemmas from basic matrix theory.

by taking advantage of the sparse structure of many matriceé§ emma 1: The Frobenious norm of a matrix is equal to the
involved. However, note that, this complexity needs to be t%‘quared length of theec{-} of that matrix

erated only when a new sampling trajectory is designed. Once

the optimal parameters are calculated, the complexity of the re- |Al|p = |[vec{A}%.
construction algorithm is still as low as the complexity of the

conventional gridding reconstruction algorithm. Lemma 2: For matricesd,, s, X xn aNd B, g

— !
APPENDIX | vec{AXB} = (B' ® A) vec{X}

OPTIMAL STRUCTURED MATRIX APPROXIMATION where B’ denotes the transpose (and not the conjugate trans-
In this section, we study the general problem of matrix af0se) ofB and(B’ @ A) represents the Kronecker (or direct)
proximation with structured matrices. We specifically considdtroduct of B” and A [44].
the so-called linearly structured matrices. A matrix has a linearUsing these two lemmas, we can express the norm of error
structure if all of its elements can be written as a linear combin@atrix as
tion of a few free variables. Many well-known structures, such
as diagonal, triangular, band, spgrse, Toeplitz, Hankel, etc., can [AXB = Cllp = |[vec{AXB - C}?

be categorized as special cases of the linear structure. A matrix = [vec{AX B} — vec{C}|?
X has alinear structure if and only if = |(B' ® A)vec{X} — vec{C}.
vee{ X} = Su (17) Now the problem is to find a matriX' such that the length of

vector|(B' @ A) vec{ X } — vec{C}| is minimum. This problem
is equivalent to finding the least squares solution to the fol-

where thevec{-} operator maps to a tall vector obtained by A )
lowing linear equation:

stacking all the columns of on top of each othew represents
the vector of free variables anfl is a matrix that enforces a y

o ; . BoA X} = C
specific linear structure (such as diagonal or Toeplitz)Xon (B @ 4) vee{ X} = vec{C}

For instance, ifX is a 3x 3 symmetric Toeplitz matrix, them  \yherevec{ X} is the unknown vector. The next step is to solve
is the first column ofX and this least squares problem under the constraint of a linear struc-
ture. To enforce the desire structure &nwe use (17) to sub-

100001001 stitute for X in the previous equation and to obtain
S=10 1 0 1 0 0 0 1 O
001010100 (B' @ A)Sv = vec{C}. (18)
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The final solution to the matrix approximation problem is ob-[22]
tained from (17) where is the least squares solution to (18).
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