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On the Optimality of the Gridding Reconstruction
Algorithm

Hossein Sedarat* and Dwight G. Nishimura

Abstract—Gridding reconstruction is a method to reconstruct
data onto a Cartesian grid from a set of nonuniformly sampled
measurements. This method is appreciated for being robust and
computationally fast. However, it lacks solid analysis and design
tools to quantify or minimize the reconstruction error. Least
squares reconstruction (LSR), on the other hand, is another
method which is optimal in the sense that it minimizes the recon-
struction error. This method is computationally intensive and, in
many cases, sensitive to measurement noise. Hence, it is rarely
used in practice.

Despite their seemingly different approaches, the gridding and
LSR methods are shown to be closely related. The similarity be-
tween these two methods is accentuated when they are properly
expressed in a common matrix form. It is shown that the gridding
algorithm can be considered an approximation to the least squares
method. The optimal gridding parameters are defined as the ones
which yield the minimum approximation error. These parameters
are calculated by minimizing the norm of an approximation error
matrix. This problem is studied and solved in the general form of
approximation using linearly structured matrices.

This method not only supports more general forms of the grid-
ding algorithm, it can also be used to accelerate the reconstruction
techniques from incomplete data. The application of this method to
a case of two-dimensional (2-D) spiral magnetic resonance imaging
shows a reduction of more than 4 dB in the average reconstruction
error.

Index Terms—Gridding reconstruction, image reconstruction,
matrix approximation, nonuniform sampling.

I. INTRODUCTION

T HE problem of reconstructing data onto a Cartesian grid
from a set of nonuniformly sampled measurements arises

in many disciplines ranging from radio astronomy [1] to various
modalities of medical imaging [2]–[4]. In addition to some al-
gorithms developed for specific sampling patterns, such as fil-
tered back projection for radial sampling [5], [6], many other
methods try to solve this problem for a general sampling pattern.
These methods are based on some form of interpolation, such as
nearest neighbor, bilinear transform, local averaging, and fixed
kernel interpolation [7]–[11]. Perhaps the most general method
in this category is the gridding reconstruction algorithm [12],
[13]. This method is computationally fast, robust to measure-
ment errors, and intuitively appealing. Hence, it is widely used
in practice.
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The gridding algorithm consists of two main steps: normal-
ization and local averaging. In the first step, the measured data
is normalized to compensate for the nonuniform sampling den-
sity. The normalization factors, known as density compensation
factors (DCF’s), are inversely proportional to the local sampling
density. Therefore, the measurements taken from densely sam-
pled regions are multiplied by small numbers and those from
sparsely sampled regions are multiplied by large numbers. This
normalization scheme ensures that despite the nonuniform sam-
pling pattern, the measurement space is uniformly weighted.
In the second step, the grid data is calculated by averaging the
neighboring samples. This step is formally expressed as the con-
volution of the normalized data with an interpolating kernel.
The interpolating kernel is normally chosen to have a bell shape
to emphasize the contribution of the samples closer to the grid
points.

Much of the research in the area of gridding reconstruction
has concentrated on the calculation of DCF’s based on various
definitions of the local sampling density. Some of the proposed
methods derive the sampling density from the analytical expres-
sion of the trajectory along which the samples are taken [14],
[15]. Later work in this area allows multiple trajectories with
crossovers [16], [17]. In another approach, the space of mea-
surements is transformed to another space in which the sampling
pattern is uniform [18]. The determinant of the Jacobian of the
transform operator is used as a measure of the local sampling
density. There are also other methods in which the sampling
space is partitioned into several cells, each cell representing
the neighborhood associated with a sample point. The area of
each cell is used as the DCF for the corresponding sample point
[19]–[21]. More recently and based on the work described in
[13], Pipeet al.[22] have suggested an iterative algorithm which
tries to satisfy a necessary condition for correct reconstruction.

An efficient implementation of the gridding algorithm re-
quires an interpolating kernel with narrow width. Interpolation
with any kernel other than a function results in a mag-
nitude modulation in the Fourier domain. This effect is com-
pensated by multiplying the Fourier transform of the data by a
proper deapodization function. Jacksonet al. [13] have exten-
sively studied various kernels and compared them in terms of
the relative amount of aliasing energy that they deposit inside
the field of view (FOV). A more recent study suggests that a
better performance may be achieved by fine tuning the kernel
according to the support region of the data [23].

None of these studies have rigorously addressed the effect
of various gridding parameters on the reconstruction error. Nei-
ther is it clear how to adjust these parameters to achieve the
minimum reconstruction error. In contrast to the gridding algo-
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rithm, there are other reconstruction techniques that are explic-
itly designed to minimize the energy of the reconstruction error
[24], [25]. These so-called least squares methods take advantage
of the linear relationship between the grid data and the sam-
pled points to find the minimum error solution. Least squares
techniques are normally computationally complex and typically
ill-conditioned for highly dense sampling patterns and, thus, are
sensitive to noise and measurement errors.

In this paper, we establish the relationship between the grid-
ding algorithm and the least squares method. These two recon-
struction techniques reveal their similarities when they are ex-
pressed in a common matrix form. We show that the gridding al-
gorithm can be derived from the least squares method by proper
matrix approximation. This approximation is intended to sim-
plify the implementation of the gridding algorithm by replacing
the unstructured matrices in the least squares method with di-
agonal or band matrices. The optimal gridding parameters are
obtained by minimizing the average error of approximation. We
present a method to solve this problem in the more general form
of approximation using linearly structured matrices.

This method is applied directly to derive a closed-form so-
lution for the optimal DCF’s. This derivation requires only in-
formation about the sampling coordinates and does not rely on
the analytical expression of the sampling trajectory. An interpre-
tation of the optimal compensation factors indicates that these
factors are indeed inversely related to the sampling density and
suggests a new approach in the calculation of the local sam-
pling density. We show that our proposed method can be easily
extended to minimize a weighted average of the approximation
error. The weighting function can be chosen to emphasize a sub-
space of the acquisition space or for a better reconstruction of a
portion of the grid data.

We also present a method to obtain the optimal interpolating
kernel and deapodization function. The joint optimization of
these two functions is inherently a nonlinear problem and rather
hard to solve directly. We propose an iterative algorithm that
reduces this problem to a linear problem in each step allowing
the application of our matrix approximation technique. Our
methodology can be used to generalize the gridding algorithm.
We study examples of such cases in interpolation with a
shift-variant kernel and extensions of gridding in reconstruction
from incomplete data. Finally, we present some of our results
from a case of 2-D spiral magnetic resonance (MR) imaging.

II. BACKGROUND

This section presents an overview of both the gridding and
the least squares reconstruction (LSR) methods. The goal is
to express these two techniques in a common frame work and
thereby establish their relationship. Although the discussion is
presented in the context of data acquisition and reconstruction
in MR imaging, the final results hold for other applications as
well.

MR raw data consists of several measurements of the image
in the Fourier domain, or better known in the MR community
as -space [4], [26]. These measurements are discrete samples
of the Fourier transform of the image taken over a sampling tra-
jectory in -space. Fig. 1(a)–(c) shows three trajectories widely

Fig. 1. The sampling patterns known as (a) 2DFT, (b) PR, and (c) spiral are
commonly used in 2D MR imaging. (d) Variable-density 2DFT (VD-2DFT)
is another nonuniform sampling pattern with predictable properties but no
practical applications.

used in 2-D MR imaging: 2-D Fourier transform (2DFT), pro-
jection reconstruction (PR), and spiral. With a uniform sampling
pattern, as in the case of the 2DFT trajectory, the image can
be reconstructed easily by taking the inverse FFT of the raw
data. However, when-space is not uniformly sampled, as in
PR and spiral, the reconstruction algorithm needs to derive the
grid points from the acquired data prior to the inverse FFT op-
eration.

Fig. 1(d) shows another nonuniform sampling pattern which
is very similar to a 2DFT trajectory, except for the central sec-
tion of -space where the sampling density is higher. We refer
to this sampling pattern as the variable-density 2DFT trajec-
tory (VD-2DFT). Although this sampling pattern has never been
used in practice, it provides a simple example with predictable
properties that is used to verify some of the results of this paper.

With a finite imaging FOV, the Nyquist sampling theorem
relates the acquired trajectory data to the desired grid points as

(1)

where is the data in -space, is the set
of trajectory points, and is the set of grid
points. For simplicity, all -space points are normalized to the
FOV. It is assumed that the image has limited resolution, thus
a finite number of grid points at the center of-space can rep-
resent the image uniquely. This assumption may theoretically
contradict the earlier assumption of having an image with fi-
nite FOV. However, with a proper coverage of-space, the grid
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points at higher spatial frequencies can justifiably be ignored in
many practical cases where the energy of the image is domi-
nantly concentrated at the center of-space [27]. Normally, the
number of trajectory points is not smaller than the size of
the grid .

Equation (1) provides a method to interpolate the trajectory
data from the grid samples. The problem of image reconstruc-
tion in MRI is the inverse: the available data is the nonuniform
measured data over the-space trajectory and the un-
knowns are the samples on the rectangular grid . The
gridding reconstruction method tries to solve this problem by
interpolating the grid points back from the trajectory data. In its
simplest form, this method uses the same interpolating kernel
used in (1), i.e., the function. However, to take into ac-
count the nonuniform sampling density of-space, the measure-
ments are normalized by the so-called DCF’s prior to the inter-
polation.

The gridding operation can be expressed as

(2)

where denotes the calculated grid data and is
the DCF at trajectory point . The DCF’s are inversely pro-
portional to the local sampling density at their corresponding

-space points.
Another method of reconstruction is least squares reconstruc-

tion (LSR). Equation (1) indicates a linear relationship between
the measured trajectory data and the unknown grid points. This
linear relationship can be easily inverted to obtain the grid data
from the measured samples. Let denote the
vector of grid points with and denote the

measurement vector with . We can rewrite
(1) as

(3)

where is the interpolation matrix with
. Note that the th column of consists of the

trajectory samples of the interpolating kernel centered at theth
grid point .

LSR solves this linear equation for a grid vector that yields the
minimum measurement error. This solution can be expressed in
terms of the pseudoinverse ofderived from the singular values
of that matrix [28]. When the interpolation matrix is full rank
this solution can be expressed as

(4)

where denotes the complex conjugate transpose of the ma-
trix . This method of reconstruction is optimal in the sense that
it results in minimum error, hence the name least-squares recon-
struction. LSR can be ill-conditioned with highly over-sampled
trajectories. In such cases, the problem should be regularized by
taking into account the effect of noise and measurement error.

The LSR and the gridding reconstruction equations (2) and
(4) are obtained by different approaches and they seemingly
have different forms. Nevertheless, these two reconstruction

techniques are closely related. To establish this relationship, the
gridding reconstruction of (2) is rewritten in a matrix form as

(5)

where and are defined as before and is
the diagonal density compensation matrix with the DCF’s as its
diagonal elements: .

To obtain a similar form for LSR (4) is rewritten as

(6)

where the compensation matrix is defined as
. Comparing (5) and (6), it is clear

that gridding and LSR have very similar forms. In fact, one can
consider the gridding algorithm as a special form of LSR where
the compensation matrix is approximated with a diagonal
matrix . This approximation allows fast calculation of the
compensated data. This calculation has a complexity on the
order of in LSR and only on the order of in gridding ( is
the number of trajectory samples).

III. OPTIMAL DENSITY COMPENSATION

Up to this point, the relationship between the gridding recon-
struction algorithm and the LSR method has been established.
Moreover, it has been shown that the gridding method can be
considered as an approximation to LSR. To introduce the no-
tion of optimality to gridding reconstruction, one needs to show
how to do this approximation optimally. In this section, we pro-
pose a method to obtain the optimal DCF’s such that the error
due to the gridding approximation is minimum.

The reconstruction error due to the gridding approximation is

(7)

The goal is to find a diagonal matrix that optimally approx-
imates the compensation matrix in the sense that the norm
of error vector is minimized. The error vector depends not
only on the choice of matrix but also on the vector of mea-
surements . To minimize the error for all possible measure-
ments, the norm of error matrix has to be min-
imized. Note that, by definition, the norm of a matrix indicates
how much the length of a vector is amplified when multiplied
by that matrix [28]. Thus, by minimizing the norm of the error
matrix , one can assure that the approximation error
will be minimum for all possible measurement vectors.

Appendix I presents a method on optimal matrix approxima-
tion. We apply the method described there to find the optimal
density compensation matrix. The final result is

(8)

and the average squared error of approximation is obtained as

(9)

where and both denote the element of matrix
.
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To ensure that the solution of (8) always exists, we need to
show that the denominator is nonzero and the numerator is well
defined. The diagonal elements of can be expressed as

(10)

This is the amount of energy that a kernel centered at
the trajectory point deposits on the grid points. This factor
is always greater than zero and, more specifically, for a grid of
infinite extent this factor is equal to unity. For a finite grid size
and for sample points close to the center of-space these values
are very close to one, but for samples at the edge of-space they
may be smaller than one but always greater than zero.

The other term of concern is in the numerator of
(8). When the condition number of the interpolation matrix
is large, which may be the case for highly over sampled tra-
jectories, the calculation of is numerically unstable.
However, the whole numerator, which represents a projection
operator to the range space of the matrix, is independent of
the condition number of that matrix. To confirm this fact, we
start with the singular value decomposition of matrixas

where and are unitary matrices and is a diag-
onal matrix with the singular values ofon the diagonal. After
some basic matrix manipulations, the numerator of (8) can be
re-expressed as

where is an identity matrix with dimensions similar to. This
equation indicates that the numerator in (8) is independent of the
singular values of . It also presents a stable method to calculate
that numerator.

The optimal DCF’s are calculated for the VD-2DFT, PR, and
spiral trajectories of Fig. 1. We assume an oversampling factor
of four at the center of -space in the VD-2DFT trajectory. The
optimal DCF’s for this trajectory is shown in Fig. 2(a). These
factors are close to unity everywhere except at the center of

-space where they take values close to. As expected, these
values are inversely proportional to the local sampling density.

For a PR trajectory with fine sampling pattern, the local sam-
pling density is inversely proportional to the distance from the

-space origin. Therefore, the DCF’s at each-space point are
conventionally chosen to be proportional to the distance of that
point from the origin. This fact is also well known from the
theory of tomography and the Radon transform [29]. The three-
dimensional 3-D contour plot of Fig. 2(b) shows that the optimal
DCF’s also endorse this linear relationship. The small variations
of the optimal DCF’s for points on a constant radius is due to
the fact that unlike the sampling pattern of PR trajectory, the
Cartesian grid pattern does not have a circular symmetry. Con-
sequently, the average distance between trajectory samples and
grid points is angle dependent. Hence, the optimal DCF’s can
vary for points on a constant radius. This variation is smaller at

Fig. 2. The optimal DCF’s for (a) VD-2DFT and (b) PR trajectories (contour
plot). (c) The optimal (solid) and conventional (dashed) DCF’s for the spiral
trajectory.

the center of -space where the sampling density is higher and
larger at the periphery of-space where the local sampling den-
sity is lower.

The optimal DCF’s for a spiral trajectory are plotted in
Fig. 2(c). This figure shows that the conventional DCF’s
obtained analytically by Meyeret al. [16] are very close to the
optimal values. Note the difference between the two DCF’s at
the -space origin. While the analytical expression assumes
an infinite sampling density at origin resulting in a zero DCF,
the optimal DCF is nonzero complying with the fact that the
sampling density at the origin is finite.
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A. Interpretation

In the previous section, we presented a method to obtain
the DCF’s that are optimal in the sense that they minimize
the average approximation error in the gridding reconstruction
algorithm. We also showed that, for some typical trajectories,
these factors are very close to what is expected and also to what
is obtained through other conventional methods. However, we
have not shown that the optimal factors obtained from (8) carry
the notion of density compensation in any way. This section
presents an argument to indicate that the optimal DCF’s are
in fact inversely related to the local sampling density. The
conventional methods for calculating the DCF’s use various
definitions for sampling density, all of which are intuitively
appealing. The argument in this section leads to yet another
definition for local sampling density which is derived from the
optimization procedure of the previous section.

We start with (8). As discussed in the previous section, the de-
nominator in this equation is equal or very close to one. There-
fore, for simplicity, we discard this term and rewrite this equa-
tion as

where is the unity vector with all zero elements except for
a 1 at the position. The matrix represents a
projection operator which projects the vectorinto the range
space of the matrix . This equation indicates that the DCF
can be obtained by projecting the corresponding unity vector
into the range space of and taking the element of the pro-
jected vector. The range space ofis nothing but all the pos-
sible measurements that satisfy the FOV constraint in the object
domain. In -space, this range space consists of all signals that
have smooth variations such that their inverse Fourier transform
have a finite support confined in the FOV. Therefore, the opera-
tion of projection into the range of is equivalent to a low-pass
filtering in -space. On the other hand, the unity vectorrep-
resents a Kronecker delta in-space centered at . Thus, the
optimal DCF at a certain point in-space is obtained by a proper
low-pass filtering of a delta function centered at that point and
measuring the amplitude of the resulting waveform at the same
point.

To illustrate these operations, we use a simple one-dimen-
sional (1-D) trajectory with the sampling pattern shown in
Fig. 3(a). The local sampling density for this trajectory is
high at the center and approaches unity at the periphery of

-space. The -space velocity for this trajectory is shown
in Fig. 3(b) and is assumed to have a saturated exponential
profile. To obtain the DCF at the origin, we start with the delta
function of Fig. 4(a) and project that to the range of. The
resulting waveform is the low-pass signal shown in Fig. 4(b).
The corresponding DCF is the amplitude of this signal at the
origin denoted as . Unlike the original delta function, the
low-pass waveform cannot have sharp variations. Thus, the
final waveform shows smooth transition from large samples
close to the -space origin to small samples farther from origin.

Fig. 3. (a) A nonuniform 1-D sampling pattern. (b) The correspondingk-space
velocity.

Fig. 4. To calculate the DCF at a point ink-space, a delta function center at
that point (a) is projected into the space ofk-space signals which satisfy the
FOV constraint. The projected function (b) has a low-pass waveform which can
be approximated with a rectangular function withn nonzero samples (c). The
amplitude of this function(d ) represent the DCF.

The number of large samples is greater when the local sampling
density at origin is higher. We approximate this low-pass
signal with a rectangular waveform shown in Fig. 4(c). This
waveform exhibits a constant amplitude forsamples close to
the origin and zero for other samples. The number of nonzero
samples is directly related to the sampling density at origin.
The projected signal not only satisfy the FOV constraint, but it
also is the closest signal, in Euclidean distance, to the original
delta function. This distance for the approximated waveform
is easily expressed as . This distance is
minimized for indicating that the optimal DCF’s are
in fact inversely related to the local sampling density.

This discussion not only justifies the fact that the conventional
DCF’s are close to the optimal values, but it also provides a new
definition of local sampling density which yields the optimal
DCF’s.
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B. Generalized Compensation Factors

In the previous section, we proposed a method to calculate
DCF’s such that the average approximation error in the gridding
algorithm is minimized. This method is easily generalizable and
can be used to minimize a weighted average of the approxima-
tion error. This is done by minimizing the norm of a weighted
error matrix, , which is obtained by pre- or post-multiplying
the error matrix of (7) by some weighting matrices as

is the left weighting matrix that provides weighting for the
grid data and can be used, for instance, to emphasize a partic-
ular region of interest in the image and reduce the reconstruction
error in that region. The right weighting matrix introduces
weighting into the measured data and can be used, for instance,
to impose some constraints on the measured data. The optimal
diagonal matrix , which is obtained by minimizing the norm of
weighted error matrix, is called the weighted compensation ma-
trix and its diagonal elements are referred to as weighted com-
pensation factors (WCF).

A weighting scheme of particular interest is with
and . With these weighting matrices the image is uni-
formly weighted in the object domain but the measured data is
weighted with the interpolation matrix. As discussed before,
this matrix spans the space of all possible measurement vec-
tors that satisfy the FOV constraint in the object domain. There-
fore, with this weighting scheme the error is minimized for the
measurement vectors that can be obtained from objects with the
specified FOV while ignoring all other vectors. This weighting
scheme also minimizes the average reconstruction error in the
point spread function (PSF). This is because each column of

represents the PSF at the corresponding grid point and
thus the weighted error matrix represents the grid-
ding error in the PSF. It is worth noting that the WCF’s obtained
from this weighting scheme are the ones discussed by Rosenfeld
[25].

Using the results of Appendix I, we can show that the WCF’s
for this particular weighting scheme are the solution to the fol-
lowing linear equation:

where and . The solution to this
problem can be ill-conditioned, in which case some form of reg-
ularization may be necessary for a numerically stable solution.

These compensation factors have been calculated for the
VD-2DFT trajectory. Note that, the set of sample points in
VD-2DFT includes all the grid points. The calculated WCF for
the trajectory points that coincide with grid points is one and
the WCF for all the other points is zero. This result is expected
because, in the absence of noise, knowing the sampling points
on the grid can uniquely express the image and the extra
trajectory points off the grid do not add any extra information.
Therefore, with these compensation factors, the image is
reconstructed perfectly and the error in the PSF will be zero.
This also explains the fact that the approximation error using
these WCF’s is zero.

Fig. 5. The optimal compensation factors which minimize the average
reconstruction error in the PSF for (a) the PR trajectory and (b) the spiral
trajectory (optimal factors: solid line, conventional factors: dashed line).

Fig. 5 shows the weighted compensation factors for the PR
and the spiral trajectories. Note that unlike the DCF’s, which
are always positive, these compensation factors can take neg-
ative values and consequently do not carry the notion of den-
sity compensation. Nevertheless, the conventional DCF’s are
very close to the optimal WCF’s, suggesting that the reconstruc-
tion error using the conventional DCF’s should be close to a
minimum. To confirm this fact, we have calculated the average
signal-to-error ratio (SER) in the PSF using the optimal WCF’s
and the conventional DCF’s for both trajectories. The SER is
defined as the signal amplitude, which is one for the PSF, to
the root-mean-square value of the error. This definition resem-
bles the common definition of SNR in the MR community. The
SER for the PR trajectory is calculated as 30.2 dB using the con-
ventional DCF’s and 32.4 dB using the optimal WCF’s. These
numbers for the spiral trajectory are 29.6 and 31.8 dB, respec-
tively.

Gridding with the weighted compensation factors is only one
way of generalizing the conventional gridding algorithm. The
proposed approach of the previous section allows other exten-
sions to the gridding algorithm which otherwise may not be
attainable intuitively. For instance, another way of generaliza-
tion is to approximate the compensation matrixof (6) with
a matrix that has a structure other than diagonal. In the sim-
plest form, this structure should be sparse so that the resulting
algorithm remains fast. An interesting structure, which is a di-
rect extension to the conventional diagonal form, is the band
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structure. With this form, the compensated measurements are
obtained as the linear combination of the local samples. The ap-
proximation error with a band matrix is smaller than the error in
conventional gridding with a diagonal matrix because the band
structure provides extra degrees of freedom in the optimization
problem. This improvement, however, comes with a price in re-
construction time which in turn restricts the maximum width of
the band. The optimal band matrix can be easily obtained with
the method of Appendix I. This method is studied further in Sec-
tion IV in a more general form and in the context of gridding
with finite kernels.

IV. OPTIMAL SHIFT-VARIANT INTERPOLATING KERNEL

A fast implementation of gridding reconstruction requires
an interpolating kernel with a narrow width. For this reason,
a function, which has large side lobes, is seldom used
in practice. Note that, the interpolation operation in-space is
equivalent to multiplication by the inverse Fourier transform of
the kernel in the object domain. With a kernel, the image
is multiplied by a rectangular function which will not affect
the image inside the FOV. However, interpolating with other
kernels generally results in a roll off in the intensity of the
image. To compensate for this effect, the reconstructed image
has to be deapodized by dividing the image by the inverse
Fourier transform of the kernel. This modified form of the
gridding algorithm can be expressed as

(11)

where denotes the Fourier transform operator and
represents the interpolating kernel.

Jacksonet al. [13] have studied the effect of various ker-
nels on the reconstructed image. They have shown that the
Kaiser–Bessel function is a proper kernel which results in a
small aliasing error. This section presents a method to find the
optimal interpolating kernel and deapodization function that
minimizes the gridding approximation error. We follow the
same steps taken in the calculation of the optimal DCF’s in the
previous section. First, we rewrite (11) in a matrix form as

(12)

where is the Fourier transform matrix and is a new
interpolation matrix. For a finite width kernel, the interpolation
matrix has a band structure. The diagonal matrix repre-
sents the deapodization matrix with the inverse Fourier trans-
form of the kernel on its diagonal.

The optimal interpolation and deapodization matrices that
minimize the gridding approximation error can be obtained by
minimizing the norm of the error matrix

This expression consists of the product ofand , thus the
joint optimization of these two matrices is not a linear problem
and the method of Appendix I is not directly applicable. The
block diagram of Fig. 6 illustrates an iterative algorithm that

Fig. 6. An iterative algorithm for joint optimization of the interpolation and
deapodization matrices.

reduces the problem to a linear problem in each iteration. The
algorithm starts with an initial guess for the interpolation matrix

and iterates on the following two steps until it converges to a
stationary point. In the first step, the optimal deapodization ma-
trix is calculated by fixing the interpolation matrix found in
the previous step. Using this deapodization matrix, the optimal
interpolation matrix is found in the second step. By assuming
that one of the matrices is known in each step, the problem be-
comes linear in terms of the unknown matrix allowing the appli-
cation of the approximation method of Appendix I. Moreover,
since the norm of the error matrix reduces after each step, it is
guaranteed that this method converges to a local minimum. To
increase the chances of reaching the global minimum, this algo-
rithm has to be repeated for different initial settings. The con-
ventional values of the interpolation and deapodization matrices
are found to be proper starting points in many practical cases.

It is worth noting that since the only structure imposed on
the interpolation matrix is a band structure, the optimal inter-
polating kernel can in fact be shift variant. Therefore, although
the width of the kernel is fixed, its shape can vary from one
point of -space to another. The intuitive approach of the con-
ventional gridding algorithm does not support shift-variant ker-
nels and cannot interpret the relationship between these kernels
and the deapodization function.

We have applied this method to the 1-D example of Fig. 3(a).
The optimal shift-variant kernels of width and the cor-
responding deapodization function have been calculated using
the proposed iterative algorithm. For the initial condition, we
have used a Kaiser–Bessel function with shaping factor of

. This shaping factor has been found to be the best in con-
ventional gridding for this particular kernel width [13]. The al-
gorithm converges after only a few iterations. Fig. 7(a) shows
the optimal interpolating kernel at the center of-space and
Fig. 7(b) shows the optimal deapodization function. The con-
ventional interpolating kernel and the corresponding deapodiza-
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Fig. 7. (a) The optimal (solid) and conventional (dashed) interpolating kernel
at the center ofk-space. (b) The optimal (solid) and the conventional (dashed)
deapodization function.

tion function are also plotted in dashed line for the sake of com-
parison. The average relative error of approximation using the
full kernel is 20.4 dB. This error is only due to the DCF
approximation and is the minimum error that one can get by
tuning the interpolating kernel. With conventional gridding, this
error is as high as 14.9 dB. Using the optimal values, the ap-
proximation error reduces to16.8 dB.

V. FAST RECONSTRUCTION FROMINCOMPLETEDATA

We have shown that the gridding algorithm is a fast recon-
struction technique which can be derived from LSR by proper
approximations. We have also proposed a method to obtain the
optimal gridding parameters by minimizing the approximation
error. This approach can be applied to other reconstruction tech-
niques to reduce the complexity with a cost in the approximation
error. In this section, we consider a broad range of problems in
image reconstruction from incomplete data. We claim that many
of these reconstruction techniques can be studied under a unified
framework. We present the optimal solution for this framework
and present the approximate, gridding-like solution which has
reduced complexity.

Despite the recent developments in MR technology, the scan
time in this imaging modality is still longer than what is desired
in many applications. One approach to reduce the scan time is
to acquire only an incomplete set of raw data.A priori knowl-
edge about the image is to be used to fill in for the missing data.
Several methods have been proposed for reconstruction from
incomplete data which use various forms of prior information.
For instance, in homodyne reconstruction, the prior information
is the symmetry of the -space data [30]. In finite support so-
lution, the prior knowledge is on the region of the image that
the object can have nonzero values [31]. The prior information
on the inherent local spatial and temporal resolution have also
been used in locally focused MRI [32], [33] and partial FOV re-
construction [34]–[36]. Some other methods of reconstruction
from incomplete data are: keyhole imaging and UNFOLD that

use prior knowledge about the temporal behavior in the spatial
frequency domain [37]–[39] and feature-recognizing MRI that
uses the salient features derived from similar images [40]. The
practical use of some of these reconstruction techniques is hin-
dered partially because of their often complex reconstruction
algorithm.

In many of these techniques, the prior information can be
represented as an affine constraint on the image in the following
form

(13)

where is the vector of grid points to be reconstructed, is
a vector that is known in advance, andis an unknown vector.

is the constraint matrix with a rank of . This
matrix reduces the degrees of freedom of the problem fromto

, thus allowing an incomplete set of acquired data to represent
the image uniquely. For instance, in partial FOV reconstruction
where a portion of the image is assumed to be known in advance,

represents the Fourier transform of the known part andis
the pixel values of the unknown section andis the matrix that
maps to a full FOV image and calculates its Fourier transform.

The combination of (3) and (13) forms a framework
that can express many reconstruction techniques. The min-
imum-squared-error solution under this framework is expressed
as

(14)

This solution, like LSR, suffers from high complexity. A fast
implementation of this algorithm may be obtained by approxi-
mating some of the involved matrices with sparse (or other prop-
erly structured) matrices. This approximation can be done in
many different ways with respect to the matrices being approx-
imated or the structures being used.

To illustrate this approach, an example for a case of locally fo-
cused MRI using the 1-D variable-density trajectory of Fig. 3(a)
is studied. The image is assumed to have twice the original FOV.
Therefore, the sampling density at the periphery of-space is
half of the Nyquist requirement, resulting an incomplete set of
raw data. It is, however, assumed that the inherent resolution of
the object outside the original FOV is only 15 of the resolu-
tion inside (Fig. 8). The -space trajectory of Fig. 3(a) provides
a proper sampling pattern for this particular object model. Note
that Fig. 3(b), which is a rough plot of the local sampling period,
indicates that the center of-space is sampled dense enough for
an aliasing-free reconstruction of the whole image. This central
area covers of -space, providing low–resolution informa-
tion for the large FOV. The rest of raw data, which consists of
the low-density samples of the high spatial frequency content of
the image, provides high resolution information for only half of
the whole FOV.

This image model can be expressed in the affine form of (13)
with . The constraint matrix can be obtained using
the method described in [32] or simply by collecting the desired
independent PSF’s as the columns of this matrix. In its simplest
form, the PSF at the low resolution section of the image can be
represented by a rectangular function with a width of 5 pixels.
A gridding-like reconstruction for this example is carried out in
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Fig. 8. (a) The 1-D variable-density trajectory provides high sampling density
(>2 � FOV) at the center ofk-space and low density(>1 � FOV) at the
outer parts. (b) The extent of the object is twice the designed FOV. The inherent
resolution of the object in the outer section is only 1=5 of the resolution in the
central part. (All numbers are normalized to the designed FOV.)

two steps. First, the central section of-space is gridded over a
dense grid to form the low-resolution information for the whole
FOV. Then the outer part of the-space is gridded over a sparse
grid to provide the high-resolution data for the central part of the
image. These two sections are added together to form the final
reconstructed image. These operations can be expressed in the
following form:

(15)

denotes the raw data corresponding to the high (low)
density central (outer) part of the-space. is the diag-
onal density compensation matrix for the central (outer)-space
points. is the interpolation matrix for the dense (sparse)
grid. represents the deapodization matrix for the low-
(high-) resolution part of the image. is the Fourier
transform matrix that maps the low- (high-) resolution image
to the dense (sparse) grid. The interpolation matrices have band
structures. A larger kernel width is used for which interpo-
lates the sparse grid. The deapodization matrices have a diag-
onal structure.

To obtain the optimal interpolation and deapodization ma-
trices, we rewrite (15) in a more familiar form of (12) as

Note that the second and forth augmented matrices are un-
knowns to be found using the iterative algorithm of the previous
section.

We have calculated the error using interpolating kernels with
widths of three times their corresponding grid units. The average
relative approximation error using the Kaiser–Bessel function
with shaping factor of is 12.3 dB. This error is

15.8 dB when the optimal gridding parameters are used. Fig. 9
shows the optimal and the conventional interpolating kernels at
the center of -space.

Fig. 9. The optimal (solid) and the conventional (dashed) interpolating kernels
for the simple case of locally-focused reconstruction using a variable density
trajectory.

It is worth noting that, the frame-work introduced in this sec-
tion can be extended to incorporate some prior statistical infor-
mation on the image, similar to the method described in [41]
and [42]. A particular case of interest is when the second-order
statistics of the image is available in advance. In this case, one
can approximate each pixel as a linear combination of the other
pixels such that the average error of approximation is minimal.
In other words, knowing the second-order statistics, one can de-
rive a matrix from the autocorrelation function of the image
such that represents the approximation error vector with
minimum norm. This requirement can be forced to the least
squares solution by using the following augmented form of (3):

(16)

The least squares solution to this equation minimizes the norm
of

The first term, by itself, yields the solution of (4) and the second
term imposes the desired second-order statistics on the recon-
structed image. is a weighting factor that adjusts the proper
emphasis on these two terms. It can be shown that this solu-
tion generates an image with maximuma posterioriprobability
when the image and noise have Gaussian distributions. Note
that , the combination of equations (16) and (13) can be used
to impose both the statistical and affine constraints on the re-
constructed image. The resulting least squares solution may be
properly approximated for fast implementation.

VI. A PPLICATIONS TO2-D SPIRAL MR IMAGING

Data acquisition along a spiral trajectory [16], [43] offers
many benefits in magnetic resonance imaging. Spiral trajectory
provides a more efficient coverage of-space, resulting in a
shorter scan time. This type of acquisition also exhibits more
immunity to flow and motion artifacts. Gridding is the most pre-
vailing reconstruction technique for spiral acquisition. In this
section, we calculate the optimal gridding parameters for the
spiral trajectory of Fig. 1(c) and compare the average recon-
struction error in an exemplary 2-D image using the optimal and
the conventional parameters.

The phantom image of Fig. 10(a) is used as a reference image.
The spiral raw data for this image is synthetically generated
by taking the Fourier transform of the image to obtain the grid
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Fig. 10. (a) The reference image to be used in calculation of the reconstruction
error. (b) The support region of the reference image to be used as the prior
information for reconstruction from incomplete data.

points and then interpolating the spiral samples from the grid
data using a kernel. The computational complexity and
the memory requirement of our algorithm are on the order of

where is the grid size. We limit the grid size to 64 64
to avoid excessive complexity. Note that, this complexity is only
related to the calculation of the gridding parameters. This calcu-
lation is done only once when a new trajectory is designed. The
image reconstruction algorithm, however, has the same order of
complexity as the conventional gridding reconstruction.

We calculate the optimal shift-variant interpolating kernel of
width such that a weighted average of the approxima-
tion error is minimum. The weighting matrix is chosen to mini-
mize the reconstruction error in the PSF. We solve the problem
as a case of reconstruction from incomplete data using infor-
mation on the support region of the image as the prior knowl-
edge [31]. We assume that object is confined within the circle
inscribed in the rectangular FOV and everything outside this cir-
cular region have zero values. This support region is shown in
Fig. 10(b). This prior knowledge can be modeled as

where is a vector consisting of all pixel values within the
circular FOV, is the Fourier transform matrix that maps
the pixel values of an image with rectangular FOV to-space
grid point, and is a matrix that adds zero-value
pixels to such that the resulting vector represents an image
with rectangular FOV. is obtained by extracting the columns
of an identity matrix that correspond to the pixels outside
the circular support region.

The norm of the following approximation error matrix is min-
imized:

where and are the left and right
weighting matrices that effectively yield a minimum recon-
struction error in the point-spread function inside the circular
support region. and are the unknown interpolating and
deapodization matrices to be calculated using the iterative
algorithm of Section IV. Note that, since we are considering
a shift-variant kernel we are able to combine the interpolating
and compensation matrices into a single matrix denoted by.

The image is reconstructed from the synthetic raw data using
both the optimal and the conventional gridding parameters. For

Fig. 11. The magnitude of the reconstruction error using (a) the conventional
gridding parameters and (b) the optimal gridding parameters (the images
are scaled by a factor of four for better visualization of the error). (c) The
reconstruction error over the high lighted line of Fig. 10 using the optimal
(solid) and the conventional (dashed) gridding parameters.

the conventional gridding parameters, we use the DCF’s sug-
gested in [16] and a Kaiser–Bessel function with the shaping
factor of as the interpolating kernel. This shaping
factor has been found to be the best for the corresponding kernel
width [13]. The reconstruction error, calculated by subtracting
the reconstructed images from the reference image, is shown in
Fig. 11. Note that these images are scaled by a factor of four for
a better depiction of the error. Fig. 11(c) shows the error for the
high lighted line of Fig. 10(a). The results show that for almost
all pixels the reconstruction error is smaller using the optimal
gridding parameters. The average signal to reconstruction error
ratio over the entire image is 21.14 dB using the conventional
gridding parameters and 25.93 dB using the optimal parameters,
an enhancement of more than 4 dB.

Note that, in the analysis presented in this paper, we have ig-
nored the effect of measurement noise for simplicity. However,
it is not difficult to incorporate the effect of noise in the least
squares solution. The optimal gridding parameters that take into
account the measurement noise are obtained with a proper ap-
proximation of this least squares solution.

VII. SUMMARY

We showed that the gridding reconstruction algorithm is an
approximation to the least-squares solution. The optimal grid-
ding parameters minimize the approximation error. These pa-
rameters are calculated by minimizing the Frobenious norm of
an approximation error matrix. We presented a method to solve
this problem in a more general form of approximation using
linearly structured matrices. Based on this approach, a closed
form solution for the optimal DCF’s is obtained. We showed
that these factors are in fact inversely related to the local sam-
pling density, thus carrying the notion of density compensation.
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The optimal interpolating kernel and the optimal deapodiza-
tion function are more difficult to calculate because the joint op-
timization of these two factors is a nonlinear problem. We pro-
posed an iterative algorithm that reduces this nonlinear problem
to a linear one in each step, allowing the application of our
method of matrix approximation. The algorithm is guaranteed
to converge to a local minimum and our simulation shows that
the rate of convergence is rather fast.

Our method of calculating the gridding parameters provides
solutions for situations that intuition may not be helpful and
the notion of density compensation or the Fourier relationship
between the interpolating kernel and the deapodization function
are not valid anymore. We studied examples of such cases in
gridding with shift-variant kernels and reconstruction targeted
for minimum error in the PSF. We also illustrated the utility
of our method in developing gridding-like algorithms for fast
implementation of methods of reconstruction from incomplete
data.

We applied this technique to find the optimal gridding pa-
rameters for a case of 2D spiral MR imaging. We calculated the
shift-variant kernel that yields the minimum error in the PSF.
The problem was solved as a case of reconstruction from incom-
plete data where the prior information was the support region of
the image. We obtained more than 4-dB reduction in the recon-
struction error using the optimal gridding parameters.

Our method of calculating the optimal gridding parameters
is computationally demanding. This problem can be alleviated
by taking advantage of the sparse structure of many matrices
involved. However, note that, this complexity needs to be tol-
erated only when a new sampling trajectory is designed. Once
the optimal parameters are calculated, the complexity of the re-
construction algorithm is still as low as the complexity of the
conventional gridding reconstruction algorithm.

APPENDIX I
OPTIMAL STRUCTUREDMATRIX APPROXIMATION

In this section, we study the general problem of matrix ap-
proximation with structured matrices. We specifically consider
the so-called linearly structured matrices. A matrix has a linear
structure if all of its elements can be written as a linear combina-
tion of a few free variables. Many well-known structures, such
as diagonal, triangular, band, sparse, Toeplitz, Hankel, etc., can
be categorized as special cases of the linear structure. A matrix

has a linear structure if and only if

(17)

where the operator maps to a tall vector obtained by
stacking all the columns of on top of each other. represents
the vector of free variables and is a matrix that enforces a
specific linear structure (such as diagonal or Toeplitz) on.
For instance, if is a 3 3 symmetric Toeplitz matrix, then
is the first column of and

Similarly, if is a diagonal matrix, then consists of
the diagonal elements of and is obtained by inserting three
rows of zeros under the first two rows of the identity matrix.

With this introduction, we continue with the matrix approxi-
mation problem:
Problem Statement:Given matrices and ,
find a matrix such that:

1) has a predefined linear structure;
2) the product is a good approximation to matrix.

The approximation error matrix is defined as .
The Frobenious norm of this matrix, , is chosen as a mea-
sure of appropriateness of the approximation. The unknown ma-
trix is calculated such that this norm is minimum. The choice
of Frobenious norm from the variety of other matrix norms, such
as 2-norm, is due to two reasons. First, the Frobenious norm pro-
vides a measure of average induced error which may be more ap-
propriate in many applications because it is a less conservative
indicator than the 2-norm which is a measure of the maximum
induced error. Second, with the Frobenious norm, the solution
to this problem is mathematically tractable which may not be
the case with other norms.

Note that if no particular structure were imposed on, the so-
lution would be easily obtained by multiplying from left and
right by the pseudo-inverses ofand , respectively. The com-
plexity of the problem is mainly due to the fact that the solution
must have the predefined linear structure. We start the solution
with the following two lemmas from basic matrix theory.

Lemma 1: The Frobenious norm of a matrix is equal to the
squared length of the of that matrix

Lemma 2: For matrices and

where denotes the transpose (and not the conjugate trans-
pose) of and represents the Kronecker (or direct)
product of and [44].

Using these two lemmas, we can express the norm of error
matrix as

Now the problem is to find a matrix such that the length of
vector is minimum. This problem
is equivalent to finding the least squares solution to the fol-
lowing linear equation:

where is the unknown vector. The next step is to solve
this least squares problem under the constraint of a linear struc-
ture. To enforce the desire structure on, we use (17) to sub-
stitute for in the previous equation and to obtain

(18)
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The final solution to the matrix approximation problem is ob-
tained from (17) where is the least squares solution to (18).
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